Genetically Modified Mouse Models in Drug Discovery

Total Page:16

File Type:pdf, Size:1020Kb

Genetically Modified Mouse Models in Drug Discovery Drug Discovery Genetically Modified Mouse Models in Drug Discovery Advances in the production of genetically modified mouse models – notably the ability to make multiple genetic changes in one mouse-line – has opened up new areas of application in drug discovery and development. By Dr Paul Rounding at Artemis Pharmaceuticals GmbH and Dr Tom Shepherd at CXR Biosciences Ltd Dr Paul Rounding is Managing Director, Business and Operations, at Artemis Pharmaceuticals GmbH; he joined the company in January 2000 to lead the business development operation. Dr Rounding has over 17 years’ experience working for Bayer AG where he held various positions in the pharmaceutical business group, including drug discovery for respiratory and cardiovascular diseases, cardiovascular technology, international co-operation and licensing, and strategic marketing for Bayer’s blockbuster antibiotic Ciprofloxacin. Dr Rounding has a BSc in Pharmacology from the University of Bath, and a PhD in Pharmacology from London University. Dr Tom Shepherd is Chief Executive of CXR Biosciences Ltd (Dundee, Scotland). Prior to moving back to his country of origin, he was Chief Executive Officer of Neurotech SA in France; earlier posts included Vice President positions at ICN Pharmaceuticals Inc and IntraBiotics Pharmaceuticals Inc, both in California. He has over 20 years’ experience in business development in the pharmaceutical industry and holds a PhD in Biochemistry from Strathclyde University (Glasgow, Scotland). The pharmaceutical industry is continually looking for time-consuming areas of vector construction, cell new approaches to increase the efficiency of R&D and biology and mouse breeding – have reduced these times improve the quality of the innovative new medicines such that today all types of genetically modified mouse that they produce. In recent years, innovations in the models can be generated within 12 months. Further ability to produce genetically modified mouse models improvements in technology – such as RNAi-induced have increased their use in drug discovery – both for the gene knock-down in vivo – have led to model generation evaluation of the function of genetic targets in vivo, and times of less than four months (Figure 1). These times the predictive testing of the efficacy, pharmacokinetic are now compatible with drug discovery programmes and side effect profile of potential therapeutic agents. Figure 1: Improvements in time to generate conditional knock-out mouse models from 1999 to 2004 THE GENERATION OF GENETICALLY MODIFIED MOUSE MODELS Time (Months) 0 3 6 9 12 15 18 21 24 98 Time and Cost Cell culture experiment Conditional knockout mouse 24 Historically, the production of a genetically modified 99 mouse model has been a very long and expensive process. 00 Industrial production line process 18 The large number of techniques and disciplines required 01 (high quality molecular genetics, ES (embryonic stem) ArteMiceTM Platform 15 cell culture, cell injection techniques and mouse Year 02 Designer mice 12 breeding) combined into a complex process that resulted 03 in mouse model generation times of up to 24 months; this was far too long a time to allow a significant 04 RNAi 4 Significant reductions in time and effort to contribution to decision-making in drug discovery 05 RNAi ind. 4 generate genetically modified mouse models programmes. However, recent improvements in project 06 management – as well as technical improvements in the Innovations in Pharmaceutical Technology 21 and mean that data from advanced in vivo models can be technique was used during the 1990s in particular for the made available in time to contribute to the decision- tissue-specific modification of gene expression. This making process, and thereby make a significant allowed a closer dissection of genetic function for a contribution to increasing the efficiency and output of particular tissue of interest. For drug discovery purposes, R&D drug discovery programmes. the more interesting and relevant application is an inducible gene modification. In order to achieve this, a Early Limitations suitable gene switch was required which, when During the 1990s, genetic modification in a mouse was introduced into a mouse, produced a high level of gene limited to the over-expression or knock-out of a gene knock-down and only upon a particular chemical from birth onwards. Experimenters introduced the stimulus. It has recently become apparent that the gene modification into mouse germ-line or embryonic stem switch of choice for this application is the CreER gene cells, which then developed into the genetically modified switch, which when introduced into a mouse can mouse model. This had the significant disadvantage that produce a suitable gene knock-down in all tissues of the the gene of interest was modified in all mice from body, only in the adult (2, 3). conception onwards. Associated problems – such as embryonic lethality (mice dying before birth due to the These advances – together with the advances in timing gene modification) or compensatory changes (changed described above – mean that for the first time drug expression of non-modified genes in the embryo discovery researchers have the ability to produce animal compensating for the absence or over-expression of the models, in a reasonable period of time, in which their gene of interest) – complicate the phenotypic analysis of gene of interest is only modified in the adult. This such mice. For drug discovery teams who were interested provides significant advantages in terms of the type and in looking at the effects of gene modification in the utility of the data obtained. In particular, it allows adult, these techniques were – at best – only surrogates. discovery teams to obtain direct information regarding drug target efficacy only in the adult and, if the target Figure 2: Efficient RNAi knock-down in vivo in the mouse deletion is made once a disease state has developed, then direct information can be obtained about the therapeutic relevance of the target. In addition, discovery teams can 100 obtain information about any non efficacy-related effects 80 of the target, such as what degree of on-target toxicity 60 could be expected from a future inhibitor. All of this data is obtained after gene modification only in the adult, and 40 is therefore unencumbered by any compensatory or other Relative expression level 20 effects which may complicate interpretation of the results if the gene expression is modified also in the embryo. 0 Liver Lung Brain Heart Testis Kidney Spleen Muscle RNAi Gene Knock-Down Pancreas In recent years, RNAi knock-down in vitro has become a Salivary Gland Control Suprarenal Gland popular tool to study the effects of genetic modification. shRNA knock-down However, despite some early successes, it has not yet shRNA knock-down become widely usable in vivo. There are still many questions relating to repeatability and breadth of gene knock-down, as well as to the potential for off-target Conditional Gene Modification effects in vivo. Nevertheless, advances are being made in In the mid 1990s, Professor Rajewsky and his group in this field. The use of a targeted transgenesis approach in Cologne, Germany, identified a method to allow the ES cells, together with generation of the mouse model ‘conditional’ modification of gene expression in a mouse via injection into tetraploid blastocysts, may have (1). The intention was to provide the investigator with provided a breakthrough (4). Seibler’s group has shown the possibility of modifying gene expression in a mouse that the incorporation of a single siRNA sequence into a either in a particular cell of interest (leaving gene specific genetic locus in the mouse leads to reproducible expression in all other cells unaffected), or at the time of and broad deletion of the gene of interest (Figure 2). interest (for instance only in the adult mouse). This When combined with advanced methods of tetraploid 22 Innovations in Pharmaceutical Technology injection, the group can produce adult mouse models LEAD SELECTION AND OPTIMISATION within a four-month period. Potentially this can provide a revolution in the use of mouse models for discovery Traditionally, the major application of genetically purposes. For the first time, investigators can obtain modified mouse models in drug discovery has been relevant models relatively cheaply and within a very in the areas of modelling human disease, target short period of time. By reducing these twin constraints, identification, target validation and the testing of more genetic targets can be validated in vivo earlier candidate compounds to evaluate in vivo efficacy. in the drug discovery process, thereby increasing the Although standard rodent models are extensively used to quality of decision-making and having a positive impact study the safety and pharmacokinetic properties of on R&D efficiency. compounds, the use of genetically modified mouse models has been relatively limited in this area. Humanisation of Mouse Proteins In Vivo A further use of genetically modified mouse models, in This is due to a range of factors including: the generally addition to gene validation, is for drug testing. Recent more conservative nature of the drug development advances in the technique of ‘humanisation’ have process as opposed to drug discovery; the extensive contributed to the utility of mouse models for drug existing experience of using in-bred rodent species to testing applications. Using advanced cloning techniques evaluate risk to man; the preference in toxicological such as ET cloning (5), it is now possible to easily modify studies for the rat as a species, while the mouse is the large pieces of human DNA and build them into gene preferred species for genetic modification; and the vectors. By homologous recombination, these can be perceived difficulty in establishing with regulatory introduced into the mouse genome at the appropriate authorities the value of genetically modified animals in site, and the resulting human protein can be expressed in predicting the human situation. the mouse. This protein will be active, expressed at the correct level and in the correct tissues.
Recommended publications
  • What Are Knockout Mice?
    Lecture 37 Knockout mice Lecture 29 Cloning and Expression vectors Lecture 30 Eukaryotic Protein Expression Systems –I Lecture 31 Eukaryotic Protein Expression Systems –II Lecture 32 Eukaryotic Protein Expression Systems –III Lecture 33 Human Gene Therapy Lecture 34 DNA Vaccines Lecture 35 Transgenic Animals Lecture 36 Transgenic Plants Lecture 37 Knockout Mice What are knockout mice? A knockout mouse is a mouse in which a specific gene has been inactivated or “knocked out” by replacing it or disrupting it with an artificial piece of DNA. The loss of gene activity often causes changes in a mouse's phenotype and thus provides valuable information on the function of the gene. Researchers who developed the technology for the creation of knockout mice won Nobel Prize in the year 2007 The Nobel Prize in Physiology or Medicine 2007 was awarded jointly to Mario R. Capecchi, Sir Martin J. Evans and Oliver Smithies "for their discoveries of principles for introducing specific gene modifications in mice by the use of embryonic stem cells". Mario R. Capecchi Sir Martin J. Evans Oliver Smithies The ability to delete or mutate any gene of interest in mice has transformed the landscape of mammalian biology research. Cultivation of embryonic stem (ES) cells – Martin Evans • Gene targeting – Oliver Smithies • Gene knockout – Mario Capecchi Gene correction by Oliver Smithies Targeted correction of a mutant HPRT gene in mouse ES cells. Nature 330:576-8, 1987 This modification of a chosen gene in pluripotent ES cells demonstrates the feasibility of this route to manipulating mammalian genomes in predetermined ways. -------------------------------------------------------------------------------------- Nature. 1985 Sep 19-25;317(6034):230-4.
    [Show full text]
  • The Human Genome Project Focus of the Human Genome Project
    TOOLS OF GENETIC RESEARCH THE HUMAN GENOME PROJECT FOCUS OF THE HUMAN GENOME PROJECT The primary work of the Human Genome Project has been to Francis S. Collins, M.D., Ph.D.; produce three main research tools that will allow investigators to and Leslie Fink identify genes involved in normal biology as well as in both rare and common diseases. These tools are known as positional cloning The Human Genome Project is an ambitious research effort aimed at deciphering the chemical makeup of the entire human (Collins 1992). These advanced techniques enable researchers to ge ne tic cod e (i.e. , the g enome). The primary wor k of the search for disease­linked genes directly in the genome without first having to identify the gene’s protein product or function. (See p ro j e c t i s t o d ev e lop t h r e e r e s e a r c h tool s t h a t w i ll a ll o w the article by Goate, pp. 217–220.) Since 1986, when researchers scientists to identify genes involved in both rare and common 2 diseases. Another project priority is to examine the ethical, first found the gene for chronic granulomatous disease through legal, and social implications of new genetic technologies and positional cloning, this technique has led to the isolation of consid­ to educate the public about these issues. Although it has been erably more than 40 disease­linked genes and will allow the identi­ in existence for less than 6 years, the Human Genome Project fication of many more genes in the future (table 1).
    [Show full text]
  • Generation of Mouse Conditional Knockout Alleles in One Step Using the I-GONAD Method
    Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Method Generation of mouse conditional knockout alleles in one step using the i-GONAD method Renjie Shang,1,2 Haifeng Zhang,1 and Pengpeng Bi1,2 1Center for Molecular Medicine, University of Georgia, Athens, Georgia 30602, USA; 2Department of Genetics, University of Georgia, Athens, Georgia 30602, USA The Cre/loxP system is a powerful tool for gene function study in vivo. Regulated expression of Cre recombinase mediates precise deletion of genetic elements in a spatially– and temporally–controlled manner. Despite the robustness of this system, it requires a great amount of effort to create a conditional knockout model for each individual gene of interest where two loxP sites must be simultaneously inserted in cis. The current undertaking involves labor-intensive embryonic stem (ES) cell– based gene targeting and tedious micromanipulations of mouse embryos. The complexity of this workflow poses formida- ble technical challenges, thus limiting wider applications of conditional genetics. Here, we report an alternative approach to generate mouse loxP alleles by integrating a unique design of CRISPR donor with the new oviduct electroporation technique i-GONAD. Showing the potential and simplicity of this method, we created floxed alleles for five genes in one attempt with relatively low costs and a minimal equipment setup. In addition to the conditional alleles, constitutive knockout alleles were also obtained as byproducts of these experiments. Therefore, the wider applications of i-GONAD may promote gene func- tion studies using novel murine models. [Supplemental material is available for this article.] Our understanding of the genetic mechanisms of human diseases strains are readily available, generation of the loxP-flanked (floxed) has been largely expanded by loss-of-function studies using engi- alleles is challenging and labor-intensive due to the lack of an effi- neered mouse models.
    [Show full text]
  • Generation of Knockout Mouse Models of Cyclin-Dependent Kinase Inhibitors by Engineered Nuclease-Mediated Genome Editing
    ISSN 1738-6055 (Print) ISSN 2233-7660 (Online) Lab Anim Res 2018: 34(4), 264-269 https://doi.org/10.5625/lar.2018.34.4.264 Generation of knockout mouse models of cyclin-dependent kinase inhibitors by engineered nuclease-mediated genome editing Bo Min Park, Jae-il Roh*, Jaehoon Lee*, Han-Woong Lee* Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Korea Cell cycle dysfunction can cause severe diseases, including neurodegenerative disease and cancer. Mutations in cyclin-dependent kinase inhibitors controlling the G1 phase of the cell cycle are prevalent in various cancers. Mice lacking the tumor suppressors p16Ink4a (Cdkn2a, cyclin-dependent kinase inhibitor 2a), p19Arf (an alternative reading frame product of Cdkn2a,), and p27Kip1 (Cdkn1b, cyclin-dependent kinase inhibitor 1b) result in malignant progression of epithelial cancers, sarcomas, and melanomas, respectively. Here, we generated knockout mouse models for each of these three cyclin-dependent kinase inhibitors using engineered nucleases. The p16Ink4a and p19Arf knockout mice were generated via transcription activator-like effector nucleases (TALENs), and p27Kip1 knockout mice via clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9 (CRISPR/Cas9). These gene editing technologies were targeted to the first exon of each gene, to induce frameshifts producing premature termination codons. Unlike preexisting embryonic stem cell-based knockout mice, our mouse models are free from selectable markers or other external gene insertions, permitting more precise study of cell cycle-related diseases without confounding influences of foreign DNA. Keywords: TALEN, CRISPR/Cas9, cyclin-dependent kinase inhibitor Received 20 October 2018; Revised version received 7 December 2018; Accepted 8 December 2018 The cell cycle constitutes a series of events required proteins can cause severe disease [16,25,33].
    [Show full text]
  • Generating Mouse Models for Biomedical Research: Technological Advances Channabasavaiah B
    © 2019. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2019) 12, dmm029462. doi:10.1242/dmm.029462 AT A GLANCE Generating mouse models for biomedical research: technological advances Channabasavaiah B. Gurumurthy1,2 and Kevin C. Kent Lloyd3,4,* ABSTRACT recombination in embryonic stem cells has given way to more refined Over the past decade, new methods and procedures have been methods that enable allele-specific manipulation in zygotes. We also developed to generate geneticallyengineered mouse models of human highlight advances in the use of programmable endonucleases that disease. This At a Glance article highlights several recent technical have greatly increased the feasibility and ease of editing the mouse advances in mouse genome manipulation that have transformed genome. Together, these and other technologies provide researchers our ability to manipulate and study gene expression in the mouse. with the molecular tools to functionally annotate the mouse genome We discuss how conventional gene targeting by homologous with greater fidelity and specificity, as well as to generate new mouse models using faster, simpler and less costly techniques. 1Developmental Neuroscience, Munroe Meyer Institute for Genetics and KEY WORDS: CRISPR, Genome editing, Mouse, Mutagenesis Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68106-5915, USA. 2Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE 68106-5915, USA. Introduction 3Department
    [Show full text]
  • Double-Strand Break Repair Pathways in Dna Structure-Induced Genetic Instability
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 8-2010 DOUBLE-STRAND BREAK REPAIR PATHWAYS IN DNA STRUCTURE-INDUCED GENETIC INSTABILITY Diem T. Kha Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Laboratory and Basic Science Research Commons Recommended Citation Kha, Diem T., "DOUBLE-STRAND BREAK REPAIR PATHWAYS IN DNA STRUCTURE-INDUCED GENETIC INSTABILITY" (2010). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 76. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/76 This Thesis (MS) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. DOUBLE-STRAND BREAK REPAIR PATHWAYS IN DNA STRUCTURE-INDUCED GENETIC INSTABILITY BY Diem Thi Kha, Bachelor of Science APPROVED: ______________________________ Karen M. Vasquez, Ph.D., Supervisory ______________________________
    [Show full text]
  • Manipulating the Mouse Genome Using Recombineering
    e in G net ts ic n E e n Biswas and Sharan, Adv Genet Eng 2013, 2:2 g m i e n c e e n DOI: 10.4172/2169-0111.1000108 r a i v n d g A Advancements in Genetic Engineering ISSN: 2169-0111 Review Article Open Access Manipulating the Mouse Genome Using Recombineering Kajal Biswas and Shyam K Sharan* Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA Abstract Genetically engineered mouse models are indispensable for understanding the biological function of genes, understanding the genetic basis of human diseases, and for preclinical testing of novel therapies. Generation of such mouse models has been possible because of our ability to manipulate the mouse genome. Recombineering is a highly efficient, recombination-based method of genetic engineering that has revolutionized our ability to generate mouse models. Since recombineering technology is not dependent on the availability of restriction enzyme recognition sites, it allows us to modify the genome with great precision. It requires homology arms as short as 40 bases for recombination, which makes it relatively easy to generate targeting constructs to insert, change, or delete either a single nucleotide or a DNA fragment several kb in size; insert selectable markers or reporter genes; or add epitope tags to any gene of interest. In this review, we focus on the development of recombineering technology and its application to the generation of genetically engineered mouse models. High-throughput generation of gene targeting vectors, used to construct knockout alleles in mouse embryonic stem cells, is now feasible because of this technology.
    [Show full text]
  • Embryo-Based Large Fragment Knock-In in Mammals: Why, How and What’S Next
    G C A T T A C G G C A T genes Review Embryo-Based Large Fragment Knock-in in Mammals: Why, How and What’s Next Steven Erwood 1,2 and Bin Gu 3,* 1 Program in in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; [email protected] 2 Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada 3 Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada * Correspondence: [email protected]; Tel.: +647-702-9608; Fax: 416-813-6382 Received: 31 December 2019; Accepted: 26 January 2020; Published: 29 January 2020 Abstract: Endonuclease-mediated genome editing technologies, most notably CRISPR/Cas9, have revolutionized animal genetics by allowing for precise genome editing directly through embryo manipulations. As endonuclease-mediated model generation became commonplace, large fragment knock-in remained one of the most challenging types of genetic modification. Due to their unique value in biological and biomedical research, however, a diverse range of technological innovations have been developed to achieve efficient large fragment knock-in in mammalian animal model generation, with a particular focus on mice. Here, we first discuss some examples that illustrate the importance of large fragment knock-in animal models and then detail a subset of the recent technological advancements that have allowed for efficient large fragment knock-in. Finally, we envision the future development of even larger fragment knock-ins performed in even larger animal models, the next step in expanding the potential of large fragment knock-in in animal models.
    [Show full text]
  • Genes Adapt to Outsmart Gene Targeting Strategies in Mutant Mouse Strains by Skipping Exons to Reinitiate Transcription and Translation
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.22.041087; this version posted April 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Genes adapt to outsmart gene targeting strategies in mutant mouse strains by skipping exons to reinitiate transcription and translation Vishnu Hosur1*, Benjamin E. Low1, Daniel Li2, Grace A. Stafford1, Vivek Kohar1, Leonard D. Shultz1, Michael V. Wiles1* 1The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME. 2Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, NY, 10021 *Correspondence: [email protected]; [email protected] Abstract Gene disruption in mouse embryonic stem cells or zygotes is a conventional genetics approach to identify gene function in vivo. However, because different gene-disruption strategies use different mechanisms to disrupt genes, the strategies can result in diverse phenotypes in the resulting mouse model. To determine whether different gene-disruption strategies affect the phenotype of resulting mutant mice, we characterized Rhbdf1 mouse mutant strains generated by three commonly used strategies—definitive-null, targeted knockout (KO)-first, and CRISPR/Cas9. We find that Rhbdf1 responds differently to distinct KO strategies, for example, by skipping exons and reinitiating translation to potentially yield gain-of-function alleles rather than the expected null or severe hypomorphic alleles. Our analysis also revealed that at least 4% of mice generated using the KO-first strategy show conflicting phenotypes, suggesting that exon skipping is a widespread phenomenon occurring across the genome.
    [Show full text]
  • Dual AAV-Mediated Gene Therapy Restores Hearing in a DFNB9 Mouse Model
    Dual AAV-mediated gene therapy restores hearing in a DFNB9 mouse model Omar Akila, Frank Dykab, Charlotte Calvetc,d,e, Alice Emptozc,d,e, Ghizlene Lahlouc,d,e, Sylvie Nouaillec,d,e, Jacques Boutet de Monvelc,d,e, Jean-Pierre Hardelinc,d,e, William W. Hauswirthb, Paul Avanf, Christine Petitc,d,e,g,1, Saaid Safieddinec,d,e,h,1, and Lawrence R. Lustigi aDepartment of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, CA; bDepartment of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL 32610; cGenetics and Physiology of Hearing Laboratory, Institut Pasteur, 75015 Paris, France; dInserm Unité Mixte de Recherche en Santé 1120, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France; eComplexité du Vivant, Sorbonne Universités, F-75005 Paris, France; fLaboratoire de Biophysique Sensorielle, Faculté de Médecine, Centre Jean Perrin, Université d’Auvergne, 63000 Clermont-Ferrand, France; gCollège de France, 7505 Paris, France; hCentre National de la Recherche Scientifique, 75794 Paris, France; and iDepartment of Otolaryngology–Head and Neck Surgery, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY 10032 Contributed by Christine Petit, November 27, 2018 (sent for review October 12, 2018; reviewed by Jonathan Gale and Botond Roska) Autosomal recessive genetic forms (DFNB) account for most cases of (about 4.7 kb) makes it difficult to use this technique for larger profound congenital deafness. Adeno-associated virus (AAV)-based genes, such as Otof (cDNA ∼6kb).Weovercamethissize gene therapy is a promising therapeutic option, but is limited by a limitation by adapting a previously reported dual AAV-vector potentially short therapeutic window and the constrained packaging method for the delivery of large cDNAs (29).
    [Show full text]
  • KNOCKOUT MOUSE MODELS for HUMAN DISEASES Muhammad Nazir, Suruchika Gaur, Abdallah Alsaadi, Mahmoud Yasser and Mohammed Saif
    Available Online at http://www.recentscientific.com International Journal of Recent Scientific International Journal of Recent Scientific Research Research Vol. 6, Issue, 7, pp.5517-5520, July, 2015 ISSN: 0976-3031 RESEARCH ARTICLE KNOCKOUT MOUSE MODELS FOR HUMAN DISEASES Muhammad Nazir, Suruchika Gaur, Abdallah Alsaadi, Mahmoud Yasser and Mohammed Saif ARTICLEDepartment INFO of Zoology,ABSTRACT Dyal Singh College, University of Delhi, Lodhi Road, New Delhi, 110003 Article History: Knockout mouse models are the mice used as a model to study human diseases by knowing the function Received 14th, June, 2015 of genes causing disease or study the function of unknown genes It can be done using transgenic mice Received in revised form 23th, with introducing a foreign gene or deleting an existing gene in them. Knocking out a gene that is June, 2015 corresponding to disease will cause the disease in mice. Knockout mice resemble the human disease in Accepted 13th, July, 2015 similar gene which is used to find new drug targets and try different treatments on mice to see the effect. Published online 28th, To introduce a knockout gene in mice, either homologous recombination or Cre-lox system must be used. July, 2015 Knockout mice are produced to study and compare different dysfunction genes with human diseases to come up with a treatment for different cases. Key words: Knockout mouse, homologous recombination, knockout Copyright © Abdallah Alsaadi, et al . This is an open-access article distributed under the terms of the Creative Commons Attribution License,INTRODUCTION which permits unrestricted use, distribution and reproduction instudy any medium,the development provided the of original humans, work diseaseis properly and cited.
    [Show full text]
  • Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss
    cells Review Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss 1, 1, 1 1,2,3 1 Gayle B. Collin y, Navdeep Gogna y, Bo Chang , Nattaya Damkham , Jai Pinkney , Lillian F. Hyde 1, Lisa Stone 1 , Jürgen K. Naggert 1 , Patsy M. Nishina 1,* and Mark P. Krebs 1,* 1 The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; [email protected] (G.B.C.); [email protected] (N.G.); [email protected] (B.C.); [email protected] (N.D.); [email protected] (J.P.); [email protected] (L.F.H.); [email protected] (L.S.); [email protected] (J.K.N.) 2 Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand 3 Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand * Correspondence: [email protected] (P.M.N.); [email protected] (M.P.K.); Tel.: +1-207-2886-383 (P.M.N.); +1-207-2886-000 (M.P.K.) These authors contributed equally to this work. y Received: 29 February 2020; Accepted: 7 April 2020; Published: 10 April 2020 Abstract: Inherited retinal degeneration (RD) leads to the impairment or loss of vision in millions of individuals worldwide, most frequently due to the loss of photoreceptor (PR) cells. Animal models, particularly the laboratory mouse, have been used to understand the pathogenic mechanisms that underlie PR cell loss and to explore therapies that may prevent, delay, or reverse RD. Here, we reviewed entries in the Mouse Genome Informatics and PubMed databases to compile a comprehensive list of monogenic mouse models in which PR cell loss is demonstrated.
    [Show full text]