Homozygous Frameshift Mutation in TMCO1 Causes a Syndrome with Craniofacial Dysmorphism, Skeletal Anomalies, and Mental Retardation

Total Page:16

File Type:pdf, Size:1020Kb

Homozygous Frameshift Mutation in TMCO1 Causes a Syndrome with Craniofacial Dysmorphism, Skeletal Anomalies, and Mental Retardation Homozygous frameshift mutation in TMCO1 causes a syndrome with craniofacial dysmorphism, skeletal anomalies, and mental retardation Baozhong Xina, Erik G. Puffenbergerb,c, Susan Turbena, Haiyan Tand, Aimin Zhoud, and Heng Wanga,e,f,1 aDDC Clinic for Special Needs Children, Middlefield, OH 44062; bThe Clinic for Special Children, Strasburg, PA 17579; cDepartment of Biology, Franklin and Marshall College, Lancaster, PA 17603; dDepartment of Chemistry, Cleveland State University, Cleveland, OH 44115; eDepartment of Pediatrics, Rainbow Babies and Children’s Hospital, Cleveland, OH 44106; and fDepartment of Molecular Cardiology, Cleveland Clinic, Cleveland, OH 44195 Edited by Albert de la Chapelle, Ohio State University Comprehensive Cancer Center, Columbus, OH, and approved November 18, 2009 (received for review July 27, 2009) We identified an autosomal recessive condition in 11 individuals Results in the Old Order Amish of northeastern Ohio. The syndrome was Clinical Phenotype. TMCO1 defect syndrome was diagnosed in 11 characterized by distinctive craniofacial dysmorphism, skeletal individuals (6 males, 5 females) ranging in age from 3 to 39 years. anomalies, and mental retardation. The typical craniofacial dys- All 11 patients demonstrated Old Order Amish ancestry, and morphism included brachycephaly, highly arched bushy eye- genealogical analyses revealed multiple lines of common descent brows, synophrys, long eyelashes, low-set ears, microdontism of between all parents of affected children (Fig. 1). The phenotype primary teeth, and generalized gingival hyperplasia, whereas was not observed in the parents or 23 unaffected siblings. Sprengel deformity of scapula, fusion of spine, rib abnormities, A history of first trimester spontaneous abortions was reported pectus excavatum, and pes planus represented skeletal anomalies. by four mothers with an overall incidence of 10 of 45 pregnancies The genome-wide homozygosity mapping using six affected indi- (22%). The abnormalities in affected individuals were observed viduals localized the disease gene to a 3.3-Mb region on chromo- from prenatal period (Table 1). Ventriculomegaly, cleft lip and fi some 1q23.3-q24.1. Candidate gene sequencing identi ed a palate were noted through prenatal ultrasound in one patient, homozygous frameshift mutation, c.139_140delAG, in the trans- TMCO1) although this procedure was not routinely performed in this MEDICAL SCIENCES membrane and coiled-coil domains 1 ( gene, as the patho- ethnic group. All affected individuals were born with normal genic change in all affected members of the extended pedigree. birth weight for their gestational age (10 of 11 being full term), This mutation is predicted to result in a severely truncated protein and five exhibited length exceeding the 90th percentile. Nine (p.Ser47Ter) of only one-fourth the original length. The TMCO1 infants were reportedly macrocephlic at birth, probably secon- gene product is a member of DUF841 superfamily of several dary to their dysmorphic craniofacial features because their oc- eukaryotic proteins with unknown function. The gene has highly cipitofrontal circumference in fact was not significantly increased conserved amino acid sequence and is universally expressed in all – human tissues examined. The high degree of conservation and the (range 3 95%, average 33%) (Table 1 and Table 2). Hypotonia ubiquitous expression pattern in human adult and fetal tissues and poor feeding were found in all newborns. Routine hemato- suggest a critical role for TMCO1. This report shows a TMCO1 logic and metabolic assays were generally within normal ranges. sequence variant being associated with a genetic disorder in hu- The standard karyotype analysis was performed on at least four man. We propose “TMCO1 defect syndrome” as the name of this patients and reported as normal. condition. The craniofacial dysmorphism was noticeable at birth and included brachycephaly, flat face, low hairline, low-set ears, high- Amish | transmembrane and coiled-coil domains 1 gene | genotyping and arched palate, and cleft lip and palate. Other characteristic mapping | homozygosity | SNP arrays dysmorphic features, such as highly arched bushy eyebrows, synophrys, orbital hypertelorism, long eyelashes, wide nose bridge, short nose with anteverted nares, and microdontism of lthough there are a significant number of autosomal primary teeth appeared later, generally before they reached Aphenotypes associated with syndromic and nonsyndromic fi preschool age. Generalized gingival hyperplasia usually mental retardation, the identi cation of these genes has been appeared after the eruption of permanent teeth (Fig. 2, Fig. S1, relatively slow, and the underlying pathophysiology of mental and Table 1). retardation remains unexplained in most cases (1). The use of Skeletal dysmorphism, such as pectus excavatum and club feet, homozygosity mapping in consanguineous families and isolated was noted during early infancy, whereas scoliosis and long, populations is a powerful tool for revealing genetic lesions in hyperextensible fingers developed when the patients reached various recessive conditions (2–6). Yet, this approach, as with puberty. Fusion of the cervical or thoracic spine, rib anomalies conventional linkage mapping, requires that the clinical phe- (including fusion, hypoplasia, or broad or missing ribs), and notype be well defined and easily recognizable. Unfortunately, Sprengel deformity of scapula, were usually incidental findings mental retardation as a clinical descriptor is nonspecific unless during routine imaging studies for other purposes. The actual found in association with other features. Here, we describe a incidence of these abnormalities in TMCO1 defect syndrome unique genetic condition characterized by craniofacial dys- morphism, skeletal anomalies, and mental retardation in the Old Order Amish of northeastern Ohio. Through a genome- Author contributions: H.W. designed research; B.X., E.G.P., S.T., H.T., A.Z., and H.W. per- formed research; B.X., E.G.P., and H.W. analyzed data; B.X. and H.W. wrote the paper; wide mapping study, we localized the disease gene to chromo- and S.T. and H.W. evaluated patients. fi some 1q23.3-q24.1 and identi ed a homozygous frameshift The authors declare no conflict of interest. mutation in the transmembrane and coiled-coil domains 1 gene This article is a PNAS Direct Submission. TMCO1 ( ) as the cause of this autosomal recessive condition, 1To whom correspondence should be addressed: E-mail: [email protected]. “ ” thus we propose TMCO1 defect syndrome as the name for This article contains supporting information online at www.pnas.org/cgi/content/full/ this disease. 0908457107/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.0908457107 PNAS Early Edition | 1of6 Downloaded by guest on September 29, 2021 I II III IV V Fig. 1. Partial pedigree of the family with VI TMCO1 defect syndrome. Filled symbols represent affected individuals, and open VII symbols represent unaffected individuals. Circles and squares denote females and fi VIII ? males, respectively. A double line identi es consanguinity. Arrows indicate affected IX individuals included in genetic mapping study and sequence analysis. might be higher if systematic osseous surveys were performed in erozygous for the c.139_140delAG mutation (estimated carrier all patients (Table 1, Table 2, Fig. 2, and Fig. S1). The skeletal frequency of 0.7%). anomalies found in this condition mostly involve the axial skel- To determine the distribution of the TMCO1 mutation in eton, which embryologically originates from somites. There was other Amish populations, we screened 75 Old Order Amish from significant divergence in patients’ stature, two of them having tall southeastern Pennsylvania for c.139_140delAG mutation. This stature with height >95th percentile, whereas three exhibited sample included normal controls and undiagnosed patients. We short stature with height in less than the 3rd percentile. Global found five c.139_140delAG heterozygotes for an estimated car- developmental delay was found in all affected individuals, al- rier frequency of 6.6%. Surprisingly, among the undiagnosed though regression was not observed. patients, we identified a single mutation homozygote. Review of Neurological examination revealed depressed deep tendon his clinical history revealed a phenotype strikingly similar to the reflexes and unstable gait, and intention tremor developed in affected children from Ohio. Further testing of undiagnosed fi some older patients. Imaging studies demonstrated mild prom- children at the Clinic for Special Children identi ed a total of fi inence of ventricles viewed through CT or MRI (Fig. 2H). ve affected c.139_140delAG homozygotes. Review of the SNP fi Sluggish speech with a loud and hoarse voice was found in all genotype data generated previously showed that all ve patients from Pennsylvania were indeed homozygous for SNPs spanning verbal patients. Anatomical abnormalities of the genito-urinary TMCO1 B system were noted, including renal agenesis, hydronephrosis, the locus, but the haplotypes were different (Fig. 3 ). vesicoureteral reflux, hypoplastic labia minora, hydrocele, and The three homozygotes from the Lancaster County Amish set- undescended testes. Other clinical features with high incidence tlement were homozygous for a different background haplotype than the other two homozygotes, who lived in Somerset County were frequent otitis media, sinusitis, strabismus, and constipation of Pennsylvania. The Somerset County Amish haplotype although
Recommended publications
  • Bio 102 Practice Problems Genetic Code and Mutation
    Bio 102 Practice Problems Genetic Code and Mutation Multiple choice: Unless otherwise directed, circle the one best answer: 1. Choose the one best answer: Beadle and Tatum mutagenized Neurospora to find strains that required arginine to live. Based on the classification of their mutants, they concluded that: A. one gene corresponds to one protein. B. DNA is the genetic material. C. "inborn errors of metabolism" were responsible for many diseases. D. DNA replication is semi-conservative. E. protein cannot be the genetic material. 2. Choose the one best answer. Which one of the following is NOT part of the definition of a gene? A. A physical unit of heredity B. Encodes a protein C. Segement of a chromosome D. Responsible for an inherited characteristic E. May be linked to other genes 3. A mutation converts an AGA codon to a TGA codon (in DNA). This mutation is a: A. Termination mutation B. Missense mutation C. Frameshift mutation D. Nonsense mutation E. Non-coding mutation 4. Beadle and Tatum performed a series of complex experiments that led to the idea that one gene encodes one enzyme. Which one of the following statements does not describe their experiments? A. They deduced the metabolic pathway for the synthesis of an amino acid. B. Many different auxotrophic mutants of Neurospora were isolated. C. Cells unable to make arginine cannot survive on minimal media. D. Some mutant cells could survive on minimal media if they were provided with citrulline or ornithine. E. Homogentisic acid accumulates and is excreted in the urine of diseased individuals. 5.
    [Show full text]
  • Coincident Two Mutations and One Single Nucleotide Polymorphism of the PTCH1 Gene in a Family with Naevoid Basal Cell Carcinoma Syndrome
    Letters to the Editor 635 Coincident Two Mutations and One Single Nucleotide Polymorphism of the PTCH1 Gene in a Family with Naevoid Basal Cell Carcinoma Syndrome Shoko Abe1, Kenji Kabashima1*, Jun-ichi Sakabe1, Takatoshi Shimauchi1, Zhang Yan2, Tetsuji Okamoto2 and Yoshiki Tokura1 1Department of Dermatology, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, and 2Department of Molecular Oral Medicine and Maxillofacial Surgery 1, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan. E-mail: [email protected] Accepted May 7, 2008. Sir, at nucleotide position 667 within exon 3 and an intervening se- Naevoid basal cell carcinoma syndrome (NBCCS, OMIM quence (IVS)16 -3T > C, and a SNP; IVS10 -8T > C, were detected in all three cases. A deletion of AGAC causes a frameshift and a #109400), also called Gorlin’s syndrome, is an autosomal subsequent stop codon in exon 3, which prematurely truncates dominant disease that affects about 1 in 60,000 indivi- the protein (Fig. 1a). In addition, the IVS16 -3T > C could lead duals (1, 2). NBCCS is associated with various skeletal to an aberrant splicing and truncation of PTCH1 (10–12). and neurocutaneous abnormalities. Major manifestations To detect the expression level of PTCH1 protein in the skin, are multiple basal cell carcinomas (BCCs), odontogenic an immunohistochemical study was performed using goat poly- clonal anti-PTCH1 antibody (G-19; Santa Cruz Biotechnology, keratocysts, palmoplantar dyskeratotic pits and intra- Santa Cruz, CA, USA). Enzyme reactions were developed with cranial calcification (3). In addition, rib and vertebral conventional substrates for diamino-benzidine (Sigma, St Louis, malformations, epidermal cysts, macrocephaly, facial MO, USA) (13).
    [Show full text]
  • Antibiotic Resistance by High-Level Intrinsic Suppression of a Frameshift Mutation in an Essential Gene
    Antibiotic resistance by high-level intrinsic suppression of a frameshift mutation in an essential gene Douglas L. Husebya, Gerrit Brandisa, Lisa Praski Alzrigata, and Diarmaid Hughesa,1 aDepartment of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala SE-751 23, Sweden Edited by Sankar Adhya, National Institutes of Health, National Cancer Institute, Bethesda, MD, and approved January 4, 2020 (received for review November 5, 2019) A fundamental feature of life is that ribosomes read the genetic (unlikely if the DNA sequence analysis was done properly), that the code in messenger RNA (mRNA) as triplets of nucleotides in a mutants carry frameshift suppressor mutations (15–17), or that the single reading frame. Mutations that shift the reading frame gen- mRNA contains sequence elements that promote a high level of ri- erally cause gene inactivation and in essential genes cause loss of bosomal shifting into the correct reading frame to support cell viability viability. Here we report and characterize a +1-nt frameshift mutation, (10). Interest in understanding these mutations goes beyond Mtb and centrally located in rpoB, an essential gene encoding the beta-subunit concerns more generally the potential for rescue of mutants that ac- of RNA polymerase. Mutant Escherichia coli carrying this mutation are quire a frameshift mutation in any essential gene. We addressed this viable and highly resistant to rifampicin. Genetic and proteomic exper- by isolating a mutant of Escherichia coli carrying a frameshift mutation iments reveal a very high rate (5%) of spontaneous frameshift suppres- in rpoB and experimentally dissecting its genotype and phenotypes. sion occurring on a heptanucleotide sequence downstream of the mutation.
    [Show full text]
  • Why Are Frameshift Homologs Widespread Within and Across Species?
    bioRxiv preprint doi: https://doi.org/10.1101/067736; this version posted August 25, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The shiftability of the protein coding genes 1 Why are frameshift homologs widespread within and across species? 2 Xiaolong Wang*1, Quanjiang Dong2, Gang Chen1, Jianye Zhang1, Yongqiang Liu1, Jinqiao 3 Zhao1, Haibo Peng1, Yalei Wang1, Yujia Cai1, Xuxiang Wang1, Chao Yang1 4 1. College of Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China 5 2. Qingdao Municipal Hospital, Qingdao, Shandong, 266003, P. R. China 6 Abstract 7 Frameshifted coding genes presumably yield truncated and dysfunctional proteins. 8 We report that frameshift homologs, including frameshift orthologs and frameshift 9 paralogs, are actually widespread within and across species. We proposed that protein 10 coding genes have a ca-0.5 quasi-constant shiftability: given any protein coding 11 sequence, at least 50% of the amino acids remain conserved in a frameshifted protein 12 sequence. In the natural genetic code, amino acid pairs assigned to frameshift codon 13 substitutions are more conserved than those to random codon substitutions, and the 14 frameshift tolerating ability of the natural genetic code ranks among the best 6% of all 15 compatible genetic codes. Hence, the shiftability of protein coding genes was mainly 16 predefined by the standard genetic code, while additional sequence-level shiftability 17 was achieved through biased usages of codons and codon pairs. We concluded that 18 during early evolution the genetic code was symmetrically optimized for tolerate 19 frameshifts, so that protein coding genes were endowed an inherent ability to tolerate 20 frameshifting in both forward and backward directions.
    [Show full text]
  • Point Mutations Underlying NF1 and NF2 and Increased Risk of Malignancy
    Central Annals of Otolaryngology and Rhinology Mini Review *Corresponding author Andrea L.O. Hebb, MSc, PhD, RN, Maritime Lateral Skull Base Clinic, Otolaryngology, Neurosurgery and the Point Mutations Underlying NF1 Stereotactic Radiotherapy Group QEII Health Science Centre, Halifax, Canada; Email: [email protected] and NF2 and Increased Risk of Submitted: 12 February 2020 Accepted: 25 February 2020 Published: 27 February 2020 Malignancy ISSN: 2379-948X Copyright 1 2 3,4 3,4 Myles Davidson , Haupt TS , Morris DP , Shoman NM , © 2020 Davidson M, et al. 2,4 1,2,4 Walling SA , and Hebb ALO * OPEN ACCESS 1Department of Psychology, Saint Mary’s University, Canada 2Division of Neurosurgery, Dalhousie University, Canada Keywords 3 Division of Otolaryngology, Dalhousie University, Canada • Neurofibromatosis 4 Maritime Lateral Skull Base Clinic, Otolaryngology, Neurosurgery and the Stereotactic • Missense mutation Radiotherapy Group QEII Health Science Centre, Canada • Frameshift mutation • Nonsense mutation Abstract • KRAS gene • Colorectal cancer Neurofibromatosis Type-1 and Neurofibromatosis Type-2 are autosomal dominant • Acoustic neuroma tumor suppressor disorders that result from inherited or spontaneous mutations in • Vestibular schwannoma their respective genes. Neurofibromatosis Type-1 has been attributed to a non-sense • Meningioma mutation in chromosome 17 and Neurofibromatosis Type-2 a point mutation in its gene on chromosome 22. The following discussion briefly reviews point and frameshift mutations and explores the relationship between point mutations and development of malignancies in patients with Neurofibromatosis Type-1 and Neurofibromatosis Type-2. INTRODUCTION producing phenylalanine hydroxylase, the majority of which are missense mutations [4]. A point mutation is the change of one base for another in the DNA sequence.
    [Show full text]
  • Human Prostate Cancer Cell Apoptosis
    HUMAN PROSTATE CANCER CELL APOPTOSIS INDUCED BY INTERFERON-γ AND DOUBLE-STRANDED RNA AND STUDIES ON THE BIOLOGICAL ROLES OF TRANSMEMBRANE AND COILED-COIL DOMAINS 1 HAIYAN TAN Bachelor of Science in Medicine Norman Bethune University of Medical Sciences, China July, 1995 Submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY IN CLINICAL AND BIOANALYTICAL CHEMISTRY at the CLEVEALND STATE UNIVERSTIY August, 2010 This dissertation has been approved for the Department of Chemistry and the College of Graduate Studies by Dissertation Committee Chairperson, Dr. Aimin Zhou Department & Date Dr. David Anderson Department & Date Dr. Xue-long Sun Department & Date Dr. Crystal M Weyman Department & Date Dr. Sihe Wang Department & Date ACKNOWLEDGEMENTS First and foremost, I want to heartily thank my advisor, Dr. Aimin Zhou, for his exceptional mentorship and constant support throughout my Ph.D. work. He was always available to listen to and discuss my ideas and questions, and showed me different ways to research problems. Most importantly, he taught me the need to be persistent to accomplish any goal, and his optimistic attitude toward his career and life has deeply affected me. I would like to express my special appreciation to my advisory committee, Dr. David Anderson, Dr. Crystal M Weyman, Dr. Sihe Wang, and Dr. Xue-long Sun, for their advice, encouragement, and support. Dr. Anderson provided me with a lot of encouragement and support. His instruction for my first job interview in the United States really touched me. Dr. Weyman is a model of a successful woman scientist and her instruction is always helpful.
    [Show full text]
  • Homozygous Frameshift Mutation in TMCO1 Causes a Syndrome with Craniofacial Dysmorphism, Skeletal Anomalies, and Mental Retardation
    Homozygous frameshift mutation in TMCO1 causes a syndrome with craniofacial dysmorphism, skeletal anomalies, and mental retardation Baozhong Xina, Erik G. Puffenbergerb,c, Susan Turbena, Haiyan Tand, Aimin Zhoud, and Heng Wanga,e,f,1 aDDC Clinic for Special Needs Children, Middlefield, OH 44062; bThe Clinic for Special Children, Strasburg, PA 17579; cDepartment of Biology, Franklin and Marshall College, Lancaster, PA 17603; dDepartment of Chemistry, Cleveland State University, Cleveland, OH 44115; eDepartment of Pediatrics, Rainbow Babies and Children’s Hospital, Cleveland, OH 44106; and fDepartment of Molecular Cardiology, Cleveland Clinic, Cleveland, OH 44195 Edited by Albert de la Chapelle, Ohio State University Comprehensive Cancer Center, Columbus, OH, and approved November 18, 2009 (received for review July 27, 2009) We identified an autosomal recessive condition in 11 individuals Results in the Old Order Amish of northeastern Ohio. The syndrome was Clinical Phenotype. TMCO1 defect syndrome was diagnosed in 11 characterized by distinctive craniofacial dysmorphism, skeletal individuals (6 males, 5 females) ranging in age from 3 to 39 years. anomalies, and mental retardation. The typical craniofacial dys- All 11 patients demonstrated Old Order Amish ancestry, and morphism included brachycephaly, highly arched bushy eye- genealogical analyses revealed multiple lines of common descent brows, synophrys, long eyelashes, low-set ears, microdontism of between all parents of affected children (Fig. 1). The phenotype primary teeth, and generalized gingival hyperplasia, whereas was not observed in the parents or 23 unaffected siblings. Sprengel deformity of scapula, fusion of spine, rib abnormities, A history of first trimester spontaneous abortions was reported pectus excavatum, and pes planus represented skeletal anomalies.
    [Show full text]
  • DNA Polymorphism and Mutations in CPN1, Including the Genomic Basis of Carboxypeptidase N Deficiency
    4600/20J Hum Genet (2003) 48:20–22 N. Matsuda et al.: © Jpn EGF Soc receptor Hum Genet and osteoblastic and Springer-Verlag differentiation 2003 ORIGINAL ARTICLE Henian Cao · Robert A. Hegele DNA polymorphism and mutations in CPN1, including the genomic basis of carboxypeptidase N deficiency Received: November 5, 2002 / Accepted: November 7, 2002 Abstract Carboxypeptidase N (EC 3.4.17.3) regulates the serum alphaglobulin metalloenzyme, it inactivates comple- activity of peptides such as kinins and anaphylatoxins. ment components C3a, C4a, and C5a, in addition to brady- Although deficiency of carboxypeptidase N (MIM 212070) kinin, kallidin, and fibrinopeptides. Its central role in produces a severe allergic syndrome, no human mutations regulating the biologic activity of peptides such as kinins have ever been described. Therefore, using archival and anaphylatoxins led to such alternate designations as genomic DNA from a subject with documented carbox- kininase-1 and anaphylatoxin inactivator (Mathews 1986). ypeptidase N deficiency, we sequenced CPN1 (MIM Purification of carboxypeptidase N (Skidgel et al. 1988; 603103), which encodes the catalytic subunit of carboxypep- Gebhard et al. 1989) permitted partial peptide sequencing tidase N. In the genomic DNA of the proband, we discov- of the catalytic subunit, resulting in the cloning of CPN1 ered three CPN1 variants: (1) 385fsInsG, a frameshift (MIM 603103), which encodes the 458-amino acid catalytic mutation in exon 1 due to a single G insertion at nucleotide subunit (Gebhard et al. 1989). CPN1 has been mapped to 385; (2) 746GϾA single-nucleotide polymorphism (SNP), a chromosome 10 (Riley et al. 1998). missense mutation in exon 3 that predicted substitution of The only reported family with carboxypeptidase N defi- aspartic acid for the wild-type conserved glycine at amino ciency (MIM 212070) included a 65-year male Caucasian acid 178 (G178D); and (3) IVS1 ϩ6CϾT, an SNP in intron proband with an 11-year history of angioedema that oc- 1.
    [Show full text]
  • Problem Set Questions from Exam 2 Unit – Mutations, Bacterial Genetics, and Bacterial Gene Regulation
    Problem set questions from Exam 2 Unit – Mutations, Bacterial Genetics, and Bacterial Gene Regulation Central Dogma, Mutagens and Mutations 1. The three stop codons in the genetic code are 5’UAG3’, 5’UAA3’, and 5’UGA3’. (a) The sequence of the ochre stop codon is 5’UAA3’. One can isolate bacterial strains that carry mutations in genes encoding tRNAs such that they will encode mutant tRNAs that recognize the ochre stop codon (as opposed to wild-type tRNAs, which recognize one of the 61 non-stop codons). You are trying to isolate single mutations in tRNA genes that will suppress an ochre mutation. To increase the frequency of such mutations, you use a mutagen that produces transition mutations (i.e. C•G to T•A and T•A to C•G base changes). Which tRNA genes could in principle be altered by the mutagen to give the desired suppressor mutation? (b) For each answer you gave in part (a), write out the DNA sequence of the part of the wild-type gene encoding the wild-type tRNA that encodes for the anti-codon portion of that tRNA. (Label the 5’ and 3’ ends of both DNA strands, and indicate which strand is used as the template during transcription of the tRNA). (c) For each answer you gave in part (a), write out the DNA sequence of the part of the mutant gene encoding the ochre-suppressing mutant tRNA that encodes for the anti- codon portion of that tRNA. (Label the 5’ and 3’ ends of both DNA strands, and indicate which strand is used as the template during transcription of the tRNA).
    [Show full text]
  • Brief Genetics Report
    Brief Genetics Report Haplotype Tag Single Nucleotide Polymorphism Analysis of the Human Orthologues of the Rat Type 1 Diabetes Genes Ian4 (Lyp/Iddm1) and Cblb Felicity Payne, Deborah J. Smyth, Rebecca Pask, Bryan J. Barratt, Jason D. Cooper, Rebecca C.J. Twells, Neil M. Walker, Alex C. Lam, Luc J. Smink, Sarah Nutland, Helen E. Rance, and John A. Todd The diabetes-prone BioBreeding (BB) and Komeda dia- animal model is the severe lymphopenia that is essential betes-prone (KDP) rats are both spontaneous animal for the development of the diabetic phenotype and that is models of human autoimmune, T-cell–associated type 1 inherited as a Mendelian trait (3). Life-long and profound diabetes. Both resemble the human disease, and conse- T-cell lymphopenia is characterized by a reduction in quently, susceptibility genes for diabetes found in these peripheral CD4ϩ T-cells, an even greater reduction of two strains can be considered as potential candidate CD8ϩ T-cells (4), and an almost total absence of RT6ϩ genes in humans. Recently, a frameshift deletion in T-cells (5). The lymphopenia gene is involved in the Ian4, a member of the immune-associated nucleotide regulation of apoptosis in the T-cell lineage and is, there- (Ian)-related gene family, has been shown to map to BB fore, responsible for loss of critical T-cells, resulting in rat Iddm1. In the KDP rat, a nonsense mutation in the T-cell regulatory gene, Cblb, has been described as a autoimmunity (6). Recently, two groups have indepen- major susceptibility locus. Following a strategy of ex- dently shown, by positional cloning of Iddm1/lyp, that amining the human orthologues of susceptibility genes lymphopenia is due to a frameshift deletion in Ian4 (also identified in animal models for association with type 1 called Ian5) of the immune-associated nucleotide (Ian)- diabetes, we identified single nucleotide polymorphisms related gene family (6,7), resulting in a truncated protein (SNPs) from each gene by resequencing PCR product product.
    [Show full text]
  • A Systems-Genetics Analyses of Complex Phenotypes
    A systems-genetics analyses of complex phenotypes A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Life Sciences 2015 David Ashbrook Table of contents Table of contents Table of contents ............................................................................................... 1 Tables and figures ........................................................................................... 10 General abstract ............................................................................................... 14 Declaration ....................................................................................................... 15 Copyright statement ........................................................................................ 15 Acknowledgements.......................................................................................... 16 Chapter 1: General introduction ...................................................................... 17 1.1 Overview................................................................................................... 18 1.2 Linkage, association and gene annotations .............................................. 20 1.3 ‘Big data’ and ‘omics’ ................................................................................ 22 1.4 Systems-genetics ..................................................................................... 24 1.5 Recombinant inbred (RI) lines and the BXD .............................................. 25 Figure 1.1:
    [Show full text]
  • Full-Text.Pdf
    Systematic Evaluation of Genes and Genetic Variants Associated with Type 1 Diabetes Susceptibility This information is current as Ramesh Ram, Munish Mehta, Quang T. Nguyen, Irma of September 23, 2021. Larma, Bernhard O. Boehm, Flemming Pociot, Patrick Concannon and Grant Morahan J Immunol 2016; 196:3043-3053; Prepublished online 24 February 2016; doi: 10.4049/jimmunol.1502056 Downloaded from http://www.jimmunol.org/content/196/7/3043 Supplementary http://www.jimmunol.org/content/suppl/2016/02/19/jimmunol.150205 Material 6.DCSupplemental http://www.jimmunol.org/ References This article cites 44 articles, 5 of which you can access for free at: http://www.jimmunol.org/content/196/7/3043.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 23, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Systematic Evaluation of Genes and Genetic Variants Associated with Type 1 Diabetes Susceptibility Ramesh Ram,*,† Munish Mehta,*,† Quang T.
    [Show full text]