Biological Evaluation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Missouri Bladderpod Rocky, Open Areas
bladderpod were restricted to limestone glades and Missouri Bladderpod rocky, open areas. Encroachment of woody Physaria filiformis vegetation and introduced grasses such as tall fescue into these habitats, along with large fluctuations in bladderpod populations and urban Guidelines for Landowners development were the reasons for the concern and listing of this species. Using Conservation Practices Missouri Department of Conservation Common name ▪ Missouri Bladderpod Scientific name ▪ Physaria filiformis State status ▪ Endangered Federal status ▪ Threatened Ecology Missouri bladderpod is a small yellow-flowered plant Photo Credit: Missouri Department of Conservation in the mustard family found in southwest Missouri and in northern and western Arkansas. It gets its Recommendations name from the spherical fruits or "bladders" that Managing Missouri bladderpod requires protecting contain seeds. Missouri bladderpods live on and restoring glade communities. Promote land limestone glades and rocky outcroppings and can management activities that reduce woody be locally abundant in rocky pastures. Missouri vegetation and reduce competition from invasive bladderpod is a herbaceous, annual plant growing 4 plants. Areas adjacent to existing Missouri to 8 inches tall, producing numerous slender stems bladderpod sites should be managed in such a way from its base. Missouri bladderpods flower from as to prevent the introduction of nonnative species April to May, producing showy, 4-petaled, bright or possible degradation of the native plant yellow blossoms clustered at the tops of the stems. community. Protect glade habitat from ground Distinctive spherical fruiting “pods” form in mid-May disturbing activities such as highway construction and are located near the top of the stem. The seeds and urban development by avoiding glades for drop to the ground in late May and early June, lie these activities. -
Arkansas Species Listed Under the Endangered Species Act and Pending Evaluations of Other Species
U.S. Fish & Wildlife Service December 2012 Arkansas Species listed under the Endangered Species Act and Pending Evaluations of Other Species Taxonomic Species in Multi- Species Other Listed Group District Litigation in Mega- Petitioned Species and Other Candidates Petition Species Mammals - - 4 4 Birds 1 1 1 5 Fishes 1 9 1 5 Amphibians - 1 3 1 Plants - 4 - 5 Reptiles - 1 1 - Mussels/ Snails 2 8 - 14 Ouachita Madtom, by Brian Wagner/ Arkansas Game and Fish Commission Crayfish - 9 - 2 Insects - 2 2 1 Total 4 35 12 37 Note: All numbers are subject to change based on new petitions, litigation and findings. Legal actions brought under the deadlines have been set for those final Endangered Species Act have listing decisions. dramatically increased the workload of the Southeast Region of the U.S. Fish Mega-Petition Caddo Mountain Salamander, by Stan and Wildlife Service. Under the 1973 Act, The Mega-Petition is a large petition Trauth, Arkansas State University any citizen may petition the Service to list filed in 2010 by several advocacy groups species as threatened or endangered. In that requested the Service to list 404 addition, the Service’s decisions may be aquatic and aquatic-dependent species challenged in a court of law. found mostly in the Southeast. In 2011, the Service determined 374 of those Multi-District Litigation species need to be further evaluated. No and Other Candidates deadlines have been set. In 2009 and 2010, two advocacy groups filed lawsuits related to the Service’s Other Petitions missed deadlines under the Act, and The Service continues to receive other the national backlog of 251 species petitions to list species as threatened or categorized as candidates for the Federal endangered under the Act. -
Endangered Species
FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S. -
Field Release of the Gall Mite, Aceria Drabae
United States Department of Field release of the gall mite, Agriculture Aceria drabae (Acari: Marketing and Regulatory Eriophyidae), for classical Programs biological control of hoary Animal and Plant Health Inspection cress (Lepidium draba L., Service Lepidium chalapense L., and Lepidium appelianum Al- Shehbaz) (Brassicaceae), in the contiguous United States. Environmental Assessment, January 2018 Field release of the gall mite, Aceria drabae (Acari: Eriophyidae), for classical biological control of hoary cress (Lepidium draba L., Lepidium chalapense L., and Lepidium appelianum Al-Shehbaz) (Brassicaceae), in the contiguous United States. Environmental Assessment, January 2018 Agency Contact: Colin D. Stewart, Assistant Director Pests, Pathogens, and Biocontrol Permits Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Rd., Unit 133 Riverdale, MD 20737 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action. -
Aquatic Fish Report
Aquatic Fish Report Acipenser fulvescens Lake St urgeon Class: Actinopterygii Order: Acipenseriformes Family: Acipenseridae Priority Score: 27 out of 100 Population Trend: Unknown Gobal Rank: G3G4 — Vulnerable (uncertain rank) State Rank: S2 — Imperiled in Arkansas Distribution Occurrence Records Ecoregions where the species occurs: Ozark Highlands Boston Mountains Ouachita Mountains Arkansas Valley South Central Plains Mississippi Alluvial Plain Mississippi Valley Loess Plains Acipenser fulvescens Lake Sturgeon 362 Aquatic Fish Report Ecobasins Mississippi River Alluvial Plain - Arkansas River Mississippi River Alluvial Plain - St. Francis River Mississippi River Alluvial Plain - White River Mississippi River Alluvial Plain (Lake Chicot) - Mississippi River Habitats Weight Natural Littoral: - Large Suitable Natural Pool: - Medium - Large Optimal Natural Shoal: - Medium - Large Obligate Problems Faced Threat: Biological alteration Source: Commercial harvest Threat: Biological alteration Source: Exotic species Threat: Biological alteration Source: Incidental take Threat: Habitat destruction Source: Channel alteration Threat: Hydrological alteration Source: Dam Data Gaps/Research Needs Continue to track incidental catches. Conservation Actions Importance Category Restore fish passage in dammed rivers. High Habitat Restoration/Improvement Restrict commercial harvest (Mississippi River High Population Management closed to harvest). Monitoring Strategies Monitor population distribution and abundance in large river faunal surveys in cooperation -
Five Fish Species Proposed As Endangered
DEPARTMENT of the INTERIOR FISH AND WILDLIFE SERVICE news release For Release December 30, 1977 Levitt 202/343-5634 FIVE FISH SPECIES PROPOSEDAS ENDANGERED Five species of fish found in North Carolina, Arkansas, and Tennessee have been proposed for the endangered list by the Interior Department’s U.S. Fish and Wildlife Service, .Keith M. Schreiner, Associate Director, announced today. The proposal, published in the December 30, 1977, Federal Register, also lists critical habitat for the Waccamaw darter, Waccamaw killifish. Waccamaw silverside, Ouachita madtom, and Barrens topminnow. Interested persons have until February 28, 1978, to comment on this rulemaking. North Carolina’s Lake Waccamaw, where three of the species occur, is a shallow, mostly sandy bottomed, coastal plain lake that is spring-fed. Its clear water is in contrast to the bog-stained “black water” that is characteristic of most lakes and ponds in the area. The three species depend upon the water quality of the lake which is being threatened by a rapidly growing seasonal tourist and resident population. The area is without a modern waste disposal system, and much of the domestic waste seeps into the lake. Run-off from fertilizer applied to gardens and lawns along the developed northern lake shore creates additional problems in the lake. Excavation of drainage canals for real estate development also jeopardizes these species by increasing siltation. Herbicides used for vegetation control in canals which drain into the lake have also severely depleted fish populations. The Ouachita madtom, which is found in south-central Arkansas, is threatened by stream alteration projects and construction activities. -
DISTRIBUTION, ECOLOGY, and REPRODUCTIVE BIOLOGY of the ORANGEFIN MADTOM (NOTURUS GILBERTI) by Timothy Dale Simonson
DISTRIBUTION, ECOLOGY, AND REPRODUCTIVE BIOLOGY OF THE ORANGEFIN MADTOM (NOTURUS GILBERTI) by Timothy Dale Simonson Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Fisheries and Wildlife Sciences APPROVED: Richard J. Neves, Chair Dona:;[d J. Orth Johm J. Ney Louis A. Hel:frich April 1987 Blacksburg, Virginia DISTRIBUTION, ECOLOGY, AND REPRODUCTIVE BIOLOGY OF THE ORANGEFIN MADTOM (NOTURUS GILBERTI) by Timothy Dale Simonson Richard J. Neves, Chair Fisheries and Wildlife Sciences (ABSTRACT) Distribution of the orangefin madtom (Noturus gilberti) was determined from 347 sites sampled in Virginia and North Carolina. This species inhabited 264 stream kilometers, over twice the reported range, in the following systems: Craig Creek, Roanoke River, Dan River, Big Chestnut Creek, South Mayo River, Pigg River, and Smith River. The orangefin madtom was somewhat common; 33% (Dan River) to 70% (Craig Creek) of the sites sampled were occupied. Negative interspecific associates of orangefin madtoms included chubs, mountain redbelly dace, rosyside dace, crescent shiners, and crayfish; only Roanoke darters were considered positive associates. Sand and silt levels were significantly lower at sites with !L. gilberti, while per- centage of small cobble, local gradient, and depth were sig- nificantly higher. Discriminant function analysis identified large gravel, local gradient, silt, and occurrence of rosyside dace and crayfish, as significant predictors of the occurrence of the orangefin madtom. Seasonal samples from Craig Creek consisted of three age groups. The smallest individual captured was 33 mm total length (TL) and the largest was 111 mm TL. -
Learning Networks Field Guide
LEARNING NETWORKS January 2015 FIELD GUIDE Fire Learning Network Fire Adapted Communities Learning Network Prescribed Fire Training Exchanges Scaling-up to Promote Ecosystem Resiliency Copyright 2015 The Nature Conservancy The Fire Learning Network is part of the “Promoting Ecosystem Resilience and Fire Adapted Communities Together: Collaborative Engagement, Collective Action and Co- Ownership of Fire” cooperative agreement among The Nature Conservancy, USDA Forest Service and agencies of the Department of the Interior (Bureau of Indian Affairs, Bureau of Land Management, Fish & Wildlife Service, National Park Service). In addition to the network of landscape collaboratives, it includes prescribed fire training exchanges and targeted treatments under Scaling-up to Promote Ecosystem Resiliency. For more information, please visit www.conservationgateway.org/fln Network Contacts FLN Director Lynn Decker [email protected] (801) 320-0524 USDA Forest Service Tim Melchert [email protected] (208) 387-5512 Dept. of the Interior Richard Bahr [email protected] (208) 334-1550 The Fire Learning Network Team The Nature Conservancy Fire Team: Jeremy Bailey, Lynn Decker, Guy Duffner, Wendy Fulks, Blane Heumann, Mary Huffman, Heather Montanye, Liz Rank and Chris Topik. The FLN Field Guide is compiled and produced by Liz Rank ([email protected]). Thanks to the numerous landscape and community leaders and partners who provided text, photos and review for this document, and for the valuable work they do in the field. Photo Credits Front cover (top to bottom): Riley Bergseng, Coalition for the Upper South Platte, Robert B. Clontz/TNC; (center) Jeffrey Kane. This page: Jeffrey Kane. Back cover (left to right): Liz Rank/TNC, Katherine Medlock/TNC, Chris Topik/TNC, Mary Huffman/TNC. -
Standardization and Quality Control in Data Collection and Assessment of Threatened Plant Species
data Review Standardization and Quality Control in Data Collection and Assessment of Threatened Plant Species Lloyd W. Morrison 1,2,* and Craig C. Young 1 1 National Park Service, Heartland Inventory and Monitoring Program, 6424 W. Farm Road 182, Republic, MO 65738, USA; [email protected] 2 Department of Biology, Missouri State University, Springfield, MO 65897, USA * Correspondence: [email protected]; Tel.: +1-417-836-3119 Academic Editor: Martin M. Gossner Received: 10 May 2016; Accepted: 9 December 2016; Published: 14 December 2016 Abstract: Informative data collection is important in the identification and conservation of rare plant species. Data sets generated by many small-scale studies may be integrated into large, distributed databases, and statistical tools are being developed to extract meaningful information from such databases. A diversity of field methodologies may be employed across smaller studies, however, resulting in a lack of standardization and quality control, which makes integration more difficult. Here, we present a case study of the population-level monitoring of two threatened plant species with contrasting life history traits that require different field sampling methodologies: the limestone glade bladderpod, Physaria filiformis, and the western prairie fringed orchid, Plantanthera praeclara. Although different data collection methodologies are necessary for these species based on population sizes and plant morphology, the resulting data allow for similar inferences. Different sample designs may frequently be necessary for rare plant sampling, yet still provide comparable data. Various sources of uncertainty may be associated with data collection (e.g., random sampling error, methodological imprecision, observer error), and should always be quantified if possible and included in data sets, and described in metadata. -
Ouachita Mountains Ecoregional Assessment December 2003
Ouachita Mountains Ecoregional Assessment December 2003 Ouachita Ecoregional Assessment Team Arkansas Field Office 601 North University Ave. Little Rock, AR 72205 Oklahoma Field Office 2727 East 21st Street Tulsa, OK 74114 Ouachita Mountains Ecoregional Assessment ii 12/2003 Table of Contents Ouachita Mountains Ecoregional Assessment............................................................................................................................i Table of Contents ........................................................................................................................................................................iii EXECUTIVE SUMMARY..............................................................................................................1 INTRODUCTION..........................................................................................................................3 BACKGROUND ...........................................................................................................................4 Ecoregional Boundary Delineation.............................................................................................................................................4 Geology..........................................................................................................................................................................................5 Soils................................................................................................................................................................................................6 -
Checklist of Arkansas Fishes Thomas M
Journal of the Arkansas Academy of Science Volume 27 Article 11 1973 Checklist of Arkansas Fishes Thomas M. Buchanan University of Arkansas – Fort Smith Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Population Biology Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Buchanan, Thomas M. (1973) "Checklist of Arkansas Fishes," Journal of the Arkansas Academy of Science: Vol. 27 , Article 11. Available at: http://scholarworks.uark.edu/jaas/vol27/iss1/11 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 27 [1973], Art. 11 Checklist of Arkansas Fishes THOMAS M.BUCHANAN Department ot Natural Science, Westark Community College, Fort Smith, Arkansas 72901 ABSTRACT Arkansas has a large, diverse fish fauna consisting of 193 species known to have been collected from the state's waters. The checklist is an up-to-date listing of both native and introduced species, and is intended to correct some of the longstanding and more recent erroneous Arkansas records. -
Fishtraits: a Database on Ecological and Life-History Traits of Freshwater
FishTraits database Traits References Allen, D. M., W. S. Johnson, and V. Ogburn-Matthews. 1995. Trophic relationships and seasonal utilization of saltmarsh creeks by zooplanktivorous fishes. Environmental Biology of Fishes 42(1)37-50. [multiple species] Anderson, K. A., P. M. Rosenblum, and B. G. Whiteside. 1998. Controlled spawning of Longnose darters. The Progressive Fish-Culturist 60:137-145. [678] Barber, W. E., D. C. Williams, and W. L. Minckley. 1970. Biology of the Gila Spikedace, Meda fulgida, in Arizona. Copeia 1970(1):9-18. [485] Becker, G. C. 1983. Fishes of Wisconsin. University of Wisconsin Press, Madison, WI. Belk, M. C., J. B. Johnson, K. W. Wilson, M. E. Smith, and D. D. Houston. 2005. Variation in intrinsic individual growth rate among populations of leatherside chub (Snyderichthys copei Jordan & Gilbert): adaptation to temperature or length of growing season? Ecology of Freshwater Fish 14:177-184. [349] Bonner, T. H., J. M. Watson, and C. S. Williams. 2006. Threatened fishes of the world: Cyprinella proserpina Girard, 1857 (Cyprinidae). Environmental Biology of Fishes. In Press. [133] Bonnevier, K., K. Lindstrom, and C. St. Mary. 2003. Parental care and mate attraction in the Florida flagfish, Jordanella floridae. Behavorial Ecology and Sociobiology 53:358-363. [410] Bortone, S. A. 1989. Notropis melanostomus, a new speices of Cyprinid fish from the Blackwater-Yellow River drainage of northwest Florida. Copeia 1989(3):737-741. [575] Boschung, H.T., and R. L. Mayden. 2004. Fishes of Alabama. Smithsonian Books, Washington. [multiple species] 1 FishTraits database Breder, C. M., and D. E. Rosen. 1966. Modes of reproduction in fishes.