Quantum Dynamics on Potential Energy Surfaces

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Dynamics on Potential Energy Surfaces Technische Universität München Zentrum Mathematik Wissenschaftliches Rechnen Quantum Dynamics on Potential Energy Surfaces Simpler States and Simpler Dynamics Johannes Friedrich Keller Vollständiger Abdruck der von der Fakultät für Mathematik der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Herbert Spohn Prüfer der Dissertation: 1. Univ.-Prof. Dr. Caroline Lasser 2. Prof. George A. Hagedorn, Ph.D., Virginia Polytechnic Institute and State University, USA (nur schriftliche Beurteilung) 3. Univ.-Prof. Dr. Christian Lubich, Eberhard Karls Universität Tübingen Die Dissertation wurde am 14.07.2015 bei der Technischen Universität München eingereicht und durch die Fakultät für Mathematik am 25.09.2015 angenommen. ii Abstract In this dissertation we analyze and simplify wave functions and observables in the context of quantum molecular dynamics. The two main topics we discuss are the structure of Hagedorn wave packets in position and phase space, and semiclassical approximations for the propagation of quantum expectations with nonnegative phase space densities. We provide algorithmic discretizations for these approximations and illustrate their validity and applicability by means of numerical experiments. Zusammenfassung In dieser Dissertation analysieren und vereinfachen wir Wellen- funktionen und Observablen im Kontext der molekularen Quan- tendynamik. Die zwei zentralen, von uns diskutierten Themen sind die Struktur der Hagedornschen Wellenpakete im Orts- und Phasenraum sowie semiklassische Approximationen für die Evolu- tion von Erwartungswerten mit nichtnegativen Phasenraumdichten. Wir präsentieren algorithmische Diskretisierungen für diese Ap- proximationen und illustrieren deren Anwendbarkeit anhand von numerischen Experimenten. iii iv Contents Acknowledgments 1 Introduction 3 I Foundations 9 1 Quantum Systems . .9 2 Hamiltonian Dynamics . 18 3 Potential Energy Surfaces . 28 4 Hellmann-Feynman Theory . 41 5 Weyl Correspondence . 49 Interlude – Simpler States and Simpler Dynamics 59 II Wave Packet Analysis 61 6 Multivariate Polynomials of Hermite Type . 62 7 Hagedorn Wave Packets . 80 8 Wigner-Hagedorn Formula . 94 9 Excursus: The Hagedorn Semigroup . 110 10 Anti-Wick Operators and Spectrograms . 114 III Semiclassical Propagation 133 11 Egorov’s Theorem . 135 12 Propagation with Nonnegative Densities . 141 13 Wave Packet Dynamics . 150 v Contents 14 Ehrenfest Time Scales . 159 15 Localization of Wigner Functions . 165 IV Algorithms and Applications 177 16 Discretization . 178 17 Numerical Experiments . 191 Summary and Outlook 203 Appendix 207 A Notation . 207 B Symbol Classes . 209 C Fundamental Subsets . 210 D L1 Estimates for Hermite cross-Wigner Functions . 215 E Reference Solutions . 218 Bibliography 221 vi Acknowledgments First and foremost, I want to thank my advisor Caroline Lasser for her constant support and strong advice over the last years. With her guidance and encouragement she helped me to become an active member of the mathematical research community. I am grateful to George Hagedorn for sharing his mathematical insights with me on many occasions. It is a great pleasure to thank him and Christian Lubich for the interest they show in my work by writing a report for this thesis. Special thanks go to Helge Dietert, Tomoki Ohsawa, and Stephanie Troppmann for collaborating with me on the analysis of wave pack- ets and the spectrogram approximation, and for many fruitful discussions. I would like to thank Folkmar Bornemann for introducing me to the world of mathematical physics, and Brynjulf Owren for his constant interest in my work as well as for guiding me towards geometric integration. During my work for this dissertation I greatly benefitted from valuable discussions with Dario Bambusi, Semyon Dyatlov, Maurice de Gosson, Lysianne Hari, Roman Schu- bert, Giulio Trigila, and many others. I particularly enjoyed the continuing exchange with my collegues and friends Wolfgang Gaim, Ilja Klebanov, David Sattlegger, Stephanie Troppmann, and Thomas Weiß. I am very grateful to them, and to all members of M3 for creating such a great working atmosphere. In the spring of 2013 I spent three months at the University of California in Berkeley. I would like to express my gratitude towards Maciej Zworski for his warm hospitality and many inspiring con- versations. He made my stay not only scientifically beneficial, but 1 also great fun. During my work on this thesis I have been employed by the SFB Transregio 109 “Discretization in Geometry and Dynamics” of the Deutsche Forschungsgemeinschaft (DFG). I would like to thank the DFG, the TopMath program at the Elite Network of Bavaria, and the TopMath graduate center of the TUM Graduate School for their support. Last but not least, I am very grateful to my parents for their encouragement and unconditional support. 2 Introduction “The underlying physical laws necessary for the mathematical theory of large parts of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complex to be solved. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be de- veloped, which can lead to an explanation of the main features of complex atomic systems without too much computation.” Paul A. M. Dirac in [Dir29] As the above quotation of Dirac from 1929 shows, scientists were already very aware of the immense complexity of quantum mechanical systems well before the advent of computers and the corresponding possibility to run numerical simulations. Since those very first days of modern quantum mechanics, constructing approx- imations that can be used for simulating the dynamics of actual molecules is one of the prevailing aims of chemical physics, com- putational chemistry, and mathematical quantum dynamics. The central equation of quantum molecular dynamics in the Born- Oppenheimer approximation is the time-dependent semiclassical Schrödinger equation # #2 # # # 2 d i#¶ty (t) = − 2 D + V y (t), y (0) = y0 2 L (R ). 3 Introduction It governs the evolution of a wave function y#(t) that represents the state of the molecule’s nuclei on the potential energy surface V : Rd ! R. The small parameter 0 < # 1 arises due to the fact that nuclei are heavy in comparison with electrons, and causes solu- tions y#(t) : Rd ! C to be highly oscillatory in both space and time. This property, together with the high dimensionality of the nuclear configuration space Rd, imposes severe difficulties for computa- tions, and makes it clear that the semiclassical Schrödinger equation is in general “too complex to be solved”. If one even wants to simu- late realistic model systems “without too much computation”, the development of powerful approximations is indispensable. The central aim of this thesis is to pursue and interrelate two lines of simplifications for molecular quantum systems in the spirit of the agenda suggested by Dirac. Firstly, we investigate the structure of Hagedorn wave packets in position and phase space by making a detailed analysis of their polynomial prefactors. The Hagedorn wave packets form a particu- larly simple yet versatile class of highly localized wave functions. They have proven to be well-suited for the semiclassical analysis of quantum systems as well as for the construction of numerical methods for the time-dependent Schrödinger equation. Our main contribution to the analysis of Hagedorn wave packets is to show that their phase space representation via Wigner functions is natural in the sense that it again yields a Hagedorn wave packet in doubled dimension. Moreover, we are able to provide an explanation for the uniform factorization of their Wigner functions in phase space, which has recently been discovered. Secondly, we discuss various semiclassical approximations for the quantum evolution of expectation values and wave functions. Our focus lies on approximate methods for quantum expectations that simultaneously allow for both rigorous error estimates and ap- plicable algorithmic discretizations. We present novel phase space methods for the computation of quantum expectations that utilize 4 Quantum Dynamics on Potential Energy Surfaces smooth probability densities for the representation of the initial state. One of the main approaches we would like to promote with this thesis is the simultaneous semiclassical approximation of states and observables. An example for this beneficial combination of approximations is provided by our proof of a local Egorov theorem for long Ehrenfest times. The two main themes of this dissertation are supported and enframed by a number of side stages. For instance, we present a rigorous proof for the Hellmann-Feynman theorem which is widely applied in chemistry in order to compute gradients of potential energy surfaces. Evaluating these gradients, in turn, is necessary for the computation of the classical trajectories utilized by semiclassical approximations. Outline of the dissertation The main corpus of the dissertation consists of 17 chapters that are arranged into four parts. Many of the chapters come along with their own introductory remarks that include a placement of their contents within the literature. The first part §I is dedicated to a review and exploration of the foundations of molecular quantum dynamics and potential energy surfaces. It motivates the investigations in
Recommended publications
  • On the Linear Stability of Plane Couette Flow for an Oldroyd-B Fluid and Its
    J. Non-Newtonian Fluid Mech. 127 (2005) 169–190 On the linear stability of plane Couette flow for an Oldroyd-B fluid and its numerical approximation Raz Kupferman Institute of Mathematics, The Hebrew University, Jerusalem, 91904, Israel Received 14 December 2004; received in revised form 10 February 2005; accepted 7 March 2005 Abstract It is well known that plane Couette flow for an Oldroyd-B fluid is linearly stable, yet, most numerical methods predict spurious instabilities at sufficiently high Weissenberg number. In this paper we examine the reasons which cause this qualitative discrepancy. We identify a family of distribution-valued eigenfunctions, which have been overlooked by previous analyses. These singular eigenfunctions span a family of non- modal stress perturbations which are divergence-free, and therefore do not couple back into the velocity field. Although these perturbations decay eventually, they exhibit transient amplification during which their “passive" transport by shearing streamlines generates large cross- stream gradients. This filamentation process produces numerical under-resolution, accompanied with a growth of truncation errors. We believe that the unphysical behavior has to be addressed by fine-scale modelling, such as artificial stress diffusivity, or other non-local couplings. © 2005 Elsevier B.V. All rights reserved. Keywords: Couette flow; Oldroyd-B model; Linear stability; Generalized functions; Non-normal operators; Stress diffusion 1. Introduction divided into two main groups: (i) numerical solutions of the boundary value problem defined by the linearized system The linear stability of Couette flow for viscoelastic fluids (e.g. [2,3]) and (ii) stability analysis of numerical methods is a classical problem whose study originated with the pi- for time-dependent flows, with the objective of understand- oneering work of Gorodtsov and Leonov (GL) back in the ing how spurious solutions emerge in computations.
    [Show full text]
  • A Highly Efficient Spectral-Galerkin Method Based on Tensor Product for Fourth-Order Steklov Equation with Boundary Eigenvalue
    An et al. Journal of Inequalities and Applications (2016)2016:211 DOI 10.1186/s13660-016-1158-1 R E S E A R C H Open Access A highly efficient spectral-Galerkin method based on tensor product for fourth-order Steklov equation with boundary eigenvalue Jing An1,HaiBi1 and Zhendong Luo2* *Correspondence: [email protected] Abstract 2School of Mathematics and Physics, North China Electric Power In this study, a highly efficient spectral-Galerkin method is posed for the fourth-order University, No. 2, Bei Nong Road, Steklov equation with boundary eigenvalue. By making use of the spectral theory of Changping District, Beijing, 102206, compact operators and the error formulas of projective operators, we first obtain the China Full list of author information is error estimates of approximative eigenvalues and eigenfunctions. Then we build a 1 ∩ 2 available at the end of the article suitable set of basis functions included in H0() H () and establish the matrix model for the discrete spectral-Galerkin scheme by adopting the tensor product. Finally, we use some numerical experiments to verify the correctness of the theoretical results. MSC: 65N35; 65N30 Keywords: fourth-order Steklov equation with boundary eigenvalue; spectral-Galerkin method; error estimates; tensor product 1 Introduction Increasing attention has recently been paid to numerical approximations for Steklov equa- tions with boundary eigenvalue, arising in fluid mechanics, electromagnetism, etc. (see, e.g.,[–]). However, most existing work usually treated the second-order Steklov equa- tions with boundary eigenvalue and there are relatively few articles treating fourth-order ones. The fourth-order Steklov equations with boundary eigenvalue also have been used in both mathematics and physics, for example, the main eigenvalues play a very key role in the positivity-preserving properties for the biharmonic-operator under the border conditions w = w – χwν =on∂ (see []).
    [Show full text]
  • Chebyshev and Fourier Spectral Methods 2000
    Chebyshev and Fourier Spectral Methods Second Edition John P. Boyd University of Michigan Ann Arbor, Michigan 48109-2143 email: [email protected] http://www-personal.engin.umich.edu/jpboyd/ 2000 DOVER Publications, Inc. 31 East 2nd Street Mineola, New York 11501 1 Dedication To Marilyn, Ian, and Emma “A computation is a temptation that should be resisted as long as possible.” — J. P. Boyd, paraphrasing T. S. Eliot i Contents PREFACE x Acknowledgments xiv Errata and Extended-Bibliography xvi 1 Introduction 1 1.1 Series expansions .................................. 1 1.2 First Example .................................... 2 1.3 Comparison with finite element methods .................... 4 1.4 Comparisons with Finite Differences ....................... 6 1.5 Parallel Computers ................................. 9 1.6 Choice of basis functions .............................. 9 1.7 Boundary conditions ................................ 10 1.8 Non-Interpolating and Pseudospectral ...................... 12 1.9 Nonlinearity ..................................... 13 1.10 Time-dependent problems ............................. 15 1.11 FAQ: Frequently Asked Questions ........................ 16 1.12 The Chrysalis .................................... 17 2 Chebyshev & Fourier Series 19 2.1 Introduction ..................................... 19 2.2 Fourier series .................................... 20 2.3 Orders of Convergence ............................... 25 2.4 Convergence Order ................................. 27 2.5 Assumption of Equal Errors ...........................
    [Show full text]
  • Isospectral Families of High-Order Systems∗
    Isospectral Families of High-order Systems∗ Peter Lancaster† Department of Mathematics and Statistics University of Calgary Calgary T2N 1N4, Alberta, Canada and Uwe Prells School of Mechanical, Materials, Manufacturing Engineering & Management University of Nottingham Nottingham NG7 2RD United Kingdom November 28, 2006 Keywords: Matrix Polynomials, Isospectral Systems, Structure Preserving Transformations, Palindromic Symmetries. Abstract Earlier work of the authors concerning the generation of isospectral families of second or- der (vibrating) systems is generalized to higher-order systems (with no spectrum at infinity). Results and techniques are developed first for systems without symmetries, then with Hermi- tian symmetry and, finally, with palindromic symmetry. The construction of linearizations which retain such symmetries is discussed. In both cases, the notion of strictly isospectral families of systems is introduced - implying that properties of both the spectrum and the sign-characteristic are preserved. Open questions remain in the case of strictly isospectral families of palindromic systems. Intimate connections between Hermitian and unitary sys- tems are discussed in an Appendix. ∗The authors are grateful to an anonymous reviewer for perceptive comments which led to significant improve- ments in exposition. †The research of Peter Lancaster was partly supported by a grant from the Natural Sciences and Engineering Research Council of Canada 1 1 Introduction ` By a high-order system we mean an n × n matrix polynomial L(λ) = A`λ + ··· + A1λ + A0 n×n with coefficients in C . Such a polynomial with A` 6= 0 is said to have degree `, (sometimes referred to as “order” `) and “high-order” implies that ` ≥ 2. It will be assumed throughout that the leading coefficient A` is nonsingular.
    [Show full text]
  • Complete Integrability of the Benjamin-Ono Equation on the Multi-Soliton Manifolds Ruoci Sun
    Complete integrability of the Benjamin-Ono equation on the multi-soliton manifolds Ruoci Sun To cite this version: Ruoci Sun. Complete integrability of the Benjamin-Ono equation on the multi-soliton manifolds. 2020. hal-02548712 HAL Id: hal-02548712 https://hal.archives-ouvertes.fr/hal-02548712 Preprint submitted on 20 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Complete integrability of the Benjamin{Ono equation on the multi-soliton manifolds Ruoci Sun∗y April 20, 2020 Abstract This paper is dedicated to proving the complete integrability of the Benjamin{Ono (BO) equation on the line when restricted to every N-soliton manifold, denoted by UN . We construct gener- alized action{angle coordinates which establish a real analytic symplectomorphism from UN onto some open convex subset of R2N and allow to solve the equation by quadrature for any such initial datum. As a consequence, UN is the universal covering of the manifold of N-gap potentials for the BO equation on the torus as described by G´erard{Kappeler [19]. The global well-posedness of the BO equation in UN is given by a polynomial characterization and a spectral characterization of the manifold UN .
    [Show full text]
  • Spectral Edge Properties of Periodic Elliptic Operators
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Texas A&amp;M Repository SPECTRAL EDGE PROPERTIES OF PERIODIC ELLIPTIC OPERATORS A Dissertation by MINH TUAN KHA Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Peter Kuchment Committee Members, Gregory Berkolaiko Kenneth Dykema Valery Pokrovsky Head of Department, Emil Straube August 2017 Major Subject: Mathematics Copyright 2017 Minh Tuan Kha ABSTRACT In this dissertation, we study some spectral problems for periodic elliptic operators arising in solid state physics, material sciences, and differential geometry. More precisely, we are interested in dealing with various effects near and at spectral edges of such opera- tors. We use the name “threshold effects” for the features that depend only on the infinites- imal structure (e.g., a finite number of Taylor coefficients) of the dispersion relation at a spectral edge. We begin with an example of a threshold effect by describing explicitly the asymp- totics of the Green’s function near a spectral edge of an internal gap of the spectrum of a periodic elliptic operator of second-order on Euclidean spaces, as long as the disper- sion relation of this operator has a non-degenerate parabolic extremum there. This result confirms the expectation that the asymptotics of such operators resemble the case of the Laplace operator. Then we generalize these results by establishing Green’s function asymptotics near and at gap edges of periodic elliptic operators on abelian coverings of compact Riemannian manifolds.
    [Show full text]
  • Introduction to Spectral Methods
    Introduction to spectral methods Eric Gourgoulhon Laboratoire de l’Univers et de ses Th´eories (LUTH) CNRS / Observatoire de Paris Meudon, France Based on a collaboration with Silvano Bonazzola, Philippe Grandcl´ement,Jean-Alain Marck & J´eromeNovak [email protected] http://www.luth.obspm.fr 4th EU Network Meeting, Palma de Mallorca, Sept. 2002 1 Plan 1. Basic principles 2. Legendre and Chebyshev expansions 3. An illustrative example 4. Spectral methods in numerical relativity 2 1 Basic principles 3 Solving a partial differential equation Consider the PDE with boundary condition Lu(x) = s(x); x 2 U ½ IRd (1) Bu(y) = 0; y 2 @U; (2) where L and B are linear differential operators. Question: What is a numerical solution of (1)-(2)? Answer: It is a function u¯ which satisfies (2) and makes the residual R := Lu¯ ¡ s small. 4 What do you mean by “small” ? Answer in the framework of Method of Weighted Residuals (MWR): Search for solutions u¯ in a finite-dimensional sub-space PN of some Hilbert space W (typically a L2 space). Expansion functions = trial functions : basis of PN : (Á0;:::;ÁN ) XN u¯ is expanded in terms of the trial functions: u¯(x) = u˜n Án(x) n=0 Test functions : family of functions (Â0;:::;ÂN ) to define the smallness of the residual R, by means of the Hilbert space scalar product: 8 n 2 f0;:::;Ng; (Ân;R) = 0 5 Various numerical methods Classification according to the trial functions Án: Finite difference: trial functions = overlapping local polynomials of low order Finite element: trial functions = local smooth functions (polynomial
    [Show full text]
  • Math 660-Lecture 15: Spectral Methods: Fourier Pseduo-Spectral Method
    Math 660-Lecture 15: Spectral methods: Fourier pseduo-spectral method The topics here will be in the book `Spectral methods in Matlab' (Chap- ter 3); Another reference book is `Spectral methods in chemistry and physics.' 1 Spectral methods v.s. pseudo-spectral methods 1.1 Spectral method A spectral method is to represent the solution of a differential equation in terms of a basis of some vector space and then reduce the differential equations to an ODE system for the coefficients. In this sense, the (contin- uous) Fourier Transform and the Finite Element methods are all spectral methods. In particular, suppose we have some equation T (u) = f(x) where T is some temporal-spatial operator for the differential equation. Then, under the basis we have the error: X X R(x) = T ( ci(t)φi(x)) − f~iφi i i Pick test functions fχjg, which is the dual basis of fφi(x)g (if the space is a Hilbert space like in FEM, these two are identical) and we require hχj;Ri = 0: This then gives a system of equations for cj. • Advantages: Reduce differential operators to multiplications, and solv- ing ODEs might be easier. • Disadvatange: The multiplication in the spatial variable becomes con- volution. Then, we may have a big matrix-vector multiplication. 1.2 Pseudo-spectral method Here, represent the solution in terms of the basis but impose the equa- tion only at discrete points. As we can see, the pseudo-spectral method in some sense is a spectral method in discrete space. There are some typical pseudo-spectral methods 1 • Fourier Pseudo-spectral method with trigonometric basis • Chebyshev pseudo-spectral method with Chebyshev polynomial basis • Collocation methods with polynomial basis (especially for ODEs solvers); (Some people also call the pseudo-spectral method the collocation method.) For discrete points, we often choose χj = δ(x − xj), so that we require R(xj) = 0: The pseudo-spectral method may have efficient algorithms, which makes solving PDEs fast.
    [Show full text]
  • Validated and Numerically Efficient Chebyshev Spectral Methods For
    Validated and numerically efficient Chebyshev spectral methods for linear ordinary differential equations Florent Bréhard, Nicolas Brisebarre, Mioara Joldes To cite this version: Florent Bréhard, Nicolas Brisebarre, Mioara Joldes. Validated and numerically efficient Chebyshev spectral methods for linear ordinary differential equations. ACM Transactions on Mathematical Soft- ware, Association for Computing Machinery, 2018, 44 (4), pp.44:1-44:42. 10.1145/3208103. hal- 01526272v3 HAL Id: hal-01526272 https://hal.archives-ouvertes.fr/hal-01526272v3 Submitted on 5 Jun 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Validated and numerically efficient Chebyshev spectral methods for linear ordinary differential equations Florent Bréhard∗ Nicolas Brisebarrey Mioara Joldeşz Abstract In this work we develop a validated numerics method for the solu- tion of linear ordinary differential equations (LODEs). A wide range of algorithms (i.e., Runge-Kutta, collocation, spectral methods) exist for nu- merically computing approximations of the solutions. Most of these come with proofs of asymptotic convergence, but usually, provided error bounds are non-constructive. However, in some domains like critical systems and computer-aided mathematical proofs, one needs validated effective error bounds. We focus on both the theoretical and practical complexity anal- ysis of a so-called a posteriori quasi-Newton validation method, which mainly relies on a fixed-point argument of a contracting map.
    [Show full text]
  • Applying an Iterative Method Numerically to Solve N × N Matrix
    Applying an iterative method numerically to solve n × n rsta.royalsocietypublishing.org matrix Wiener–Hopf equations with exponential factors Research Matthew J. Priddin1, Anastasia V. Kisil2 Article submitted to journal and Lorna J. Ayton1 1DAMTP, University of Cambridge, Cambridge, CB3 Subject Areas: 0WA, UK 2Department of Mathematics, The University wave motion, applied mathematics, of Manchester, Manchester, M13 9PL, UK differential equations Keywords: This paper presents a generalisation of a recent iterative approach to solving a class of 2 2 Wiener–Hopf equations, × matrix Wiener–Hopf equations involving exponential Riemann-Hilbert problem, iterative factors. We extend the method to square matrices of methods, scattering, n-part arbitrary dimension n, as arise in mixed boundary boundaries value problems with n junctions. To demonstrate the method we consider the classical problem of Author for correspondence: scattering a plane wave by a set of collinear plates. The results are compared to other known Matthew Priddin methods. We describe an effective implementation e-mail: [email protected] using a spectral method to compute the required Cauchy transforms. The approach is ideally suited to obtaining far-field directivity patterns of utility to applications. Convergence in iteration is fastest for large wavenumbers, but remains practical at modest wavenumbers to achieve a high degree of accuracy. 1. Introduction The Wiener–Hopf technique [1] provides a powerful tool to approach varied problems such as the solution of integral equations and random processes. Applications may so be found in such diverse fields as aeroacoustics [2], metamaterials [3], geophysics [4], crack propagation [5] and financial mathematics [6]. The mathematical problem underlying the Wiener– Hopf technique may be simply stated: find functions that are analytic in adjacent (or overlapping) regions of a complex manifold that satisfy a prescribed jump condition at their common boundary.
    [Show full text]
  • Msc in Applied Mathematics
    MSc in Applied Mathematics Title: Mathematical and Technological Aspects of Quantum Information Processing Author: Jordi Tura i Brugués Advisor: Sebastià Xambó i Descamps Co-Advisor: Antonio Acín dal Maschio Department: Departament de Matemàtica Aplicada II Academic year: 2010-2011 Universitat Polit`ecnicade Catalunya Facultat de Matem`atiquesi Estad´ıstica Master's Degree Thesis Mathematical and Technological Aspects of Quantum Information Processing Jordi Tura i Brugu´es Advisor: Sebasti`aXamb´oi Descamps Co-Advisor: Antonio Ac´ındal Maschio Departament de Matem`aticaAplicada II Abstract Keywords: Quantum, information, processing, computation, coding, cryptography, entanglement, field theory, entropy, key distribution, protocols. Since its genesis, quantum mechanics has proved to be a very accurate model for predicting the behavior of the world below the nanoscale. However, crucial breakthroughs in technology were needed in order to be able to effectively access and manipulate such small magnitudes. During the last twenty years, the field of quantum information processing has experienced a growing interest, in its many variants, both theoretically and practically. Despite being still at a very basic stage, expectations are high. The uniqueness of quantum phenomena (superposition of states, creation of entanglement, etc.) have no classical analogue and allow novelties such as another paradigm of computation, more secure com- munications, quantum teleportation, quantum dense coding, etc. which are presented and analyzed here. The aim of this Thesis is to present in a unified way the main mathematical methods used in quantum information processing, as well as the state of the art of their corresponding technological implementa- tions. Our contributions are based in making a self-contained presentation; seeking completeness, that is, treating the most relevant fields of research involved, focusing on their relations; and picking the most relevant, insightful references, given the quantity of literature produced in this field.
    [Show full text]
  • Linear Operators and Their Essential Pseudospectra
    Linear Operators and Their Essential Pseudospectra Linear Operators and Their Essential Pseudospectra Aref Jeribi, PhD Department of Mathematics, University of Sfax, Tunisia E-mail: [email protected] Apple Academic Press Inc. Apple Academic Press Inc. 3333 Mistwell Crescent 9 Spinnaker Way Oakville, ON L6L 0A2 Canada Waretown, NJ 08758 USA © 2018 by Apple Academic Press, Inc. Exclusive worldwide distribution by CRC Press, a member of Taylor & Francis Group No claim to original U.S. Government works Printed in the United States of America on acid-free paper International Standard Book Number-13: 978-1-77188-699-4 (Hardcover) International Standard Book Number-13: 978-1-351-04627-5 (eBook) All rights reserved. No part of this work may be reprinted or reproduced or utilized in any form or by any electric, mechanical or other means, now known or hereafter invented, including photocopying and re- cording, or in any information storage or retrieval system, without permission in writing from the publish- er or its distributor, except in the case of brief excerpts or quotations for use in reviews or critical articles. This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission and sources are indicated. Copyright for individual articles remains with the authors as indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the authors, editors, and the publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors, editors, and the publisher have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained.
    [Show full text]