Peroxisome Proliferator Activated Receptors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Type 2 Diabetes Mellitus: a Review of Multi-Target Drugs
Molecules 2020, 25, 1987 1 of 20 Review Type 2 Diabetes Mellitus: A Review of Multi-Target Drugs Angelica Artasensi, Alessandro Pedretti, Giulio Vistoli and Laura Fumagalli * Dipartimento di Scienze Farmaceutiche, University Degli Studi di Milano, 20133 Milano, Italy; [email protected] (A.A.); [email protected] (A.P.); [email protected] (G.V.) * Correspondence: [email protected]; Tel.: +39-02-5031-9303 Academic Editor: Massimo Bertinaria, Derek J. McPhee Received: 01 April 2020; Accepted: 21 April 2020; Published: 23 April 2020 Abstract: Diabetes Mellitus (DM) is a multi-factorial chronic health condition that affects a large part of population and according to the World Health Organization (WHO) the number of adults living with diabetes is expected to increase. Since type 2 diabetes mellitus (T2DM) is suffered by the majority of diabetic patients (around 90–95%) and often the mono-target therapy fails in managing blood glucose levels and the other comorbidities, this review focuses on the potential drugs acting on multi-targets involved in the treatment of this type of diabetes. In particular, the review considers the main systems directly involved in T2DM or involved in diabetes comorbidities. Agonists acting on incretin, glucagon systems, as well as on peroxisome proliferation activated receptors are considered. Inhibitors which target either aldose reductase and tyrosine phosphatase 1B or sodium glucose transporters 1 and 2 are taken into account. Moreover, with a view at the multi-target approaches for T2DM some phytocomplexes are also discussed. Keywords: diabetes mellitus; type 2 diabetes mellitus; multi-target compounds; multi-target drugs 1. -
Dualism of Peroxisome Proliferator-Activated Receptor Α/Γ: a Potent Clincher in Insulin Resistance
AEGAEUM JOURNAL ISSN NO: 0776-3808 Dualism of Peroxisome Proliferator-Activated Receptor α/γ: A Potent Clincher in Insulin Resistance Mr. Ravikumar R. Thakar1 and Dr. Nilesh J. Patel1* 1Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Gujarat, India. [email protected] Abstract: Diabetes mellitus is clinical syndrome which is signalised by augmenting level of sugar in blood stream, which produced through lacking of insulin level and defective insulin activity or both. As per worldwide epidemiology data suggested that the numbers of people with T2DM living in developing countries is increasing with 80% of people with T2DM. Peroxisome proliferator-activated receptors are a family of ligand-activated transcription factors; modulate the expression of many genes. PPARs have three isoforms namely PPARα, PPARβ/δ and PPARγ that play a central role in regulating glucose, lipid and cholesterol metabolism where imbalance can lead to obesity, T2DM and CV ailments. It have pathogenic role in diabetes. PPARα is regulates the metabolism of lipids, carbohydrates, and amino acids, activated by ligands such as polyunsaturated fatty acids, and drugs used as Lipid lowering agents. PPAR β/δ could envision as a therapeutic option for the correction of diabetes and a variety of inflammatory conditions. PPARγ is well categorized, an element of the PPARs, also pharmacological effective as an insulin resistance lowering agents, are used as a remedy for insulin resistance integrated with type- 2 diabetes mellitus. There are mechanistic role of PPARα, PPARβ/δ and PPARγ in diabetes mellitus and insulin resistance. From mechanistic way, it revealed that dual PPAR-α/γ agonist play important role in regulating both lipids as well as glycemic levels with essential safety issues. -
Diabetes Mellitus Typ 2 Medikamentöse Therapie
Übersicht AMT Diabetes mellitus Typ 2 Medikamentöse Therapie L. Cornelius Bollheimer, Christiane Girlich, Ulrike Woenckhaus und Roland Büttner, Regensburg Arzneimitteltherapie 2007;25:175–86. Literatur NIDDM subjects. A study of two ethnic groups. Diabetes Care 1993;16: 621–9. 1. Deutsche Diabetes Gesellschaft. Evidenzbasierte Leitlinie: Epidemiologie 24. Akbar DH. Effect of metformin and sulfonylurea on C-reactive protein und Verlauf des Diabetes mellitus in Deutschland. http://www.deutsche- level in well-controlled type 2 diabetics with metabolic syndrome. En- diabetes-gesellschaft.de/redaktion/mitteilungen/leitlinien/EBL_Update_ docrine 2003;20:215–8. Epidemiologie_05_2004_neues_Layout.pdf. Internetdokument. 2004. 25. Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 dia- 2. Seufert J. Kardiovaskuläre Endpunktstudien in der Therapie des Typ-2- betes mellitus. Drugs 2005;65:385–411. Diabetes-mellitus. Dtsch Ärzteblatt 2006;103:A934–42. 26. Parhofer KG, Laubach E, Geiss HC, Otto C. Effect of glucose control on 3. Deutsche Diabetes Gesellschaft. Praxis-Leitlinien der Deutschen Diabe- lipid levels in patients with type 2 diabetes. Dtsch Med Wochenschr tes Gesellschaft. Diabetologie und Stoffwechsel 2006;1:S2. 2002;127:958–62. 4. Häring HU, Matthaei S. Behandlung des Diabetes mellitus Typ 2. Diabe- 27. DeFronzo RA, Barzilai N, Simonson DC. Mechanism of metformin ac- tologie und Stoffwechsel 2006;1:S205–10. tion in obese and lean noninsulin-dependent diabetic subjects. J Clin 5. Brueckel J, Kerner W. Definition, Klassifikation und Diagnostik des Dia- Endocrinol Metab 1991;73:1294–301. betes mellitus. Diabetologie und Stoffwechsel 2006;1:S177–80. 28. Cryer DR, Nicholas SP, Henry DH, Mills DJ, et al. Comparative outcomes 6. -
Comparative Transcriptional Network Modeling of Three PPAR-A/C Co-Agonists Reveals Distinct Metabolic Gene Signatures in Primary Human Hepatocytes
Comparative Transcriptional Network Modeling of Three PPAR-a/c Co-Agonists Reveals Distinct Metabolic Gene Signatures in Primary Human Hepatocytes Rene´e Deehan1, Pia Maerz-Weiss2, Natalie L. Catlett1, Guido Steiner2, Ben Wong1, Matthew B. Wright2*, Gil Blander1¤a, Keith O. Elliston1¤b, William Ladd1, Maria Bobadilla2, Jacques Mizrahi2, Carolina Haefliger2, Alan Edgar{2 1 Selventa, Cambridge, Massachusetts, United States of America, 2 F. Hoffmann-La Roche AG, Basel, Switzerland Abstract Aims: To compare the molecular and biologic signatures of a balanced dual peroxisome proliferator-activated receptor (PPAR)-a/c agonist, aleglitazar, with tesaglitazar (a dual PPAR-a/c agonist) or a combination of pioglitazone (Pio; PPAR-c agonist) and fenofibrate (Feno; PPAR-a agonist) in human hepatocytes. Methods and Results: Gene expression microarray profiles were obtained from primary human hepatocytes treated with EC50-aligned low, medium and high concentrations of the three treatments. A systems biology approach, Causal Network Modeling, was used to model the data to infer upstream molecular mechanisms that may explain the observed changes in gene expression. Aleglitazar, tesaglitazar and Pio/Feno each induced unique transcriptional signatures, despite comparable core PPAR signaling. Although all treatments inferred qualitatively similar PPAR-a signaling, aleglitazar was inferred to have greater effects on high- and low-density lipoprotein cholesterol levels than tesaglitazar and Pio/Feno, due to a greater number of gene expression changes in pathways related to high-density and low-density lipoprotein metabolism. Distinct transcriptional and biologic signatures were also inferred for stress responses, which appeared to be less affected by aleglitazar than the comparators. In particular, Pio/Feno was inferred to increase NFE2L2 activity, a key component of the stress response pathway, while aleglitazar had no significant effect. -
CDR Clinical Review Report for Soliqua
CADTH COMMON DRUG REVIEW Clinical Review Report Insulin glargine and lixisenatide injection (Soliqua) (Sanofi-Aventis) Indication: adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus inadequately controlled on basal insulin (less than 60 units daily) alone or in combination with metformin. Service Line: CADTH Common Drug Review Version: Final (with redactions) Publication Date: January 2019 Report Length: 118 Pages Disclaimer: The information in this document is intended to help Canadian health care decision-makers, health care professionals, health systems leaders, and policy-makers make well-informed decisions and thereby improve the quality of health care services. While patients and others may access this document, the document is made available for informational purposes only and no representations or warranties are made with respect to its fitness for any particular purpose. The information in this document should not be used as a substitute for professional medical advice or as a substitute for the application of clinical judgment in respect of the care of a particular patient or other professional judgment in any decision-making process. The Canadian Agency for Drugs and Technologies in Health (CADTH) does not endorse any information, drugs, therapies, treatments, products, processes, or services. While care has been taken to ensure that the information prepared by CADTH in this document is accurate, complete, and up-to-date as at the applicable date the material was first published by CADTH, CADTH does not make any guarantees to that effect. CADTH does not guarantee and is not responsible for the quality, currency, propriety, accuracy, or reasonableness of any statements, information, or conclusions contained in any third-party materials used in preparing this document. -
Lobeglitazone
2013 International Conference on Diabetes and Metabolism Lobeglitazone, A Novel PPAR-γ agonist with balanced efficacy and safety Kim, Sin Gon. MD, PhD. Professor, Division of Endocrinology and Metabolism Department of Internal Medicine, Korea University College of Medicine. Disclosure of Financial Relationships This symposium is sponsored by Chong Kun Dang Pharmaceutical Corp. I have received lecture and consultation fees from Chong Kun Dang. Pros & Cons of PPAR-γ agonist Pros Cons • Good glucose lowering • Adverse effects • Durability (ADOPT) (edema, weight gain, • Insulin sensitizing CHF, fracture or rare effects (especially in MS, macular edema etc) NAFLD, PCOS etc) • Possible safety issues • Prevention of new- (risk of MI? – Rosi or onset diabetes (DREAM, bladder cancer? - Pio) ACT-NOW) • LessSo, hypoglycemiathere is a need to develop PPAR-γ • Few GI troubles agonist• Outcome with data balanced efficacy and safety (PROactive) Insulin Sensitizers : Several Issues Rosi, Peak sale ($3.3 billion) DREAM Dr. Nissen Dr. Nissen ADOPT META analysis BARI-2D (5,8) Rosi, lipid profiles RECORD 1994 1997 1999 2000 2002 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Tro out d/t FDA, All diabetes hepatotoxicity drug CV safety Rosi (5) FDA, Black box Rosi, Rosi , CV safety warning - REMS in USA = no evidence - Europe out Pio (7) PIO, bladder cancer CKD 501 Lobeglitazone 2000.6-2004.6 2004.11-2007.1 2007.3-2008.10 2009.11-2011.04 Discovery& Preclinical study Phase I Phase II Phase III Developmental Strategy Efficacy • PPAR activity Discovery & Preclinical study • In vitro & vivo efficacy • Potent efficacy 2000.06 - 2004.06 Phase I 2004.11 - 2007.01 • In vitro screening • Repeated dose toxicity • Metabolites • Geno toxicity • Phase II CYP 450 • Reproductive toxicity 2007.03 - 2008.10 • DDI • Carcinogenic toxicity ADME Phase III Safety 2009.11 - 2011.04 CV Safety / (Bladder) Cancer / Liver Toxicity / Bone loss Lobeglitazone (Duvie) 1. -
Us 2018 / 0296525 A1
UN US 20180296525A1 ( 19) United States (12 ) Patent Application Publication (10 ) Pub. No. : US 2018/ 0296525 A1 ROIZMAN et al. ( 43 ) Pub . Date: Oct. 18 , 2018 ( 54 ) TREATMENT OF AGE - RELATED MACULAR A61K 38 /1709 ( 2013 .01 ) ; A61K 38 / 1866 DEGENERATION AND OTHER EYE (2013 . 01 ) ; A61K 31/ 40 ( 2013 .01 ) DISEASES WITH ONE OR MORE THERAPEUTIC AGENTS (71 ) Applicant: MacRegen , Inc ., San Jose , CA (US ) (57 ) ABSTRACT ( 72 ) Inventors : Keith ROIZMAN , San Jose , CA (US ) ; The present disclosure provides therapeutic agents for the Martin RUDOLF , Luebeck (DE ) treatment of age - related macular degeneration ( AMD ) and other eye disorders. One or more therapeutic agents can be (21 ) Appl. No .: 15 /910 , 992 used to treat any stages ( including the early , intermediate ( 22 ) Filed : Mar. 2 , 2018 and advance stages ) of AMD , and any phenotypes of AMD , including geographic atrophy ( including non -central GA and Related U . S . Application Data central GA ) and neovascularization ( including types 1 , 2 and 3 NV ) . In certain embodiments , an anti - dyslipidemic agent ( 60 ) Provisional application No . 62/ 467 ,073 , filed on Mar . ( e . g . , an apolipoprotein mimetic and / or a statin ) is used 3 , 2017 . alone to treat or slow the progression of atrophic AMD Publication Classification ( including early AMD and intermediate AMD ) , and / or to (51 ) Int. CI. prevent or delay the onset of AMD , advanced AMD and /or A61K 31/ 366 ( 2006 . 01 ) neovascular AMD . In further embodiments , two or more A61P 27 /02 ( 2006 .01 ) therapeutic agents ( e . g ., any combinations of an anti - dys A61K 9 / 00 ( 2006 . 01 ) lipidemic agent, an antioxidant, an anti- inflammatory agent, A61K 31 / 40 ( 2006 .01 ) a complement inhibitor, a neuroprotector and an anti - angio A61K 45 / 06 ( 2006 .01 ) genic agent ) that target multiple underlying factors of AMD A61K 38 / 17 ( 2006 .01 ) ( e . -
Comparative Effectiveness, Safety, and Indications of Insulin Analogues in Premixed Formulations for Adults with Type 2 Diabetes
Comparative Effectiveness Review Number 14 Comparative Effectiveness, Safety, and Indications of Insulin Analogues in Premixed Formulations for Adults With Type 2 Diabetes This report is based on research conducted by the Johns Hopkins Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. 290-02-0018). The findings and conclusions in this document are those of the authors, who are responsible for its contents; the findings and conclusions do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of the Agency for Healthcare Research and Quality or of the U.S. Department of Health and Human Services. This report is intended as a reference and not as a substitute for clinical judgment. Anyone who makes decisions concerning the provision of clinical care should consider this report in the same way as any medical reference and in conjunction with all other pertinent information. This report may be used, in whole or in part, as the basis for development of clinical practice guidelines and other quality enhancement tools, or as a basis for reimbursement and coverage policies. AHRQ or U.S. Department of Health and Human Services endorsement of such derivative products may not be stated or implied. Comparative Effectiveness Review Number 14 Comparative Effectiveness, Safety, and Indications of Insulin Analogues in Premixed Formulations for Adults With Type 2 Diabetes Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 540 Gaither Road Rockville, MD 20850 www.ahrq.gov Contract No. -
Synthesis of a Coumarin-Based PPAR Fluorescence Probe for Competitive Binding Assay
International Journal of Molecular Sciences Article Synthesis of a Coumarin-Based PPARγ Fluorescence Probe for Competitive Binding Assay Chisato Yoshikawa, Hiroaki Ishida , Nami Ohashi and Toshimasa Itoh * Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan; [email protected] (C.Y.); [email protected] (H.I.); [email protected] (N.O.) * Correspondence: [email protected] Abstract: Peroxisome proliferator-activated receptor γ (PPARγ) is a molecular target of metabolic syndrome and inflammatory disease. PPARγ is an important nuclear receptor and numerous PPARγ ligands were developed to date; thus, efficient assay methods are important. Here, we investigated the incorporation of 7-diethylamino coumarin into the PPARγ agonist rosiglitazone and used the com- pound in a binding assay for PPARγ. PPARγ-ligand-incorporated 7-methoxycoumarin, 1, showed weak fluorescence intensity in a previous report. We synthesized PPARγ-ligand-incorporating coumarin, 2, in this report, and it enhanced the fluorescence intensity. The PPARγ ligand 2 main- tained the rosiglitazone activity. The obtained partial agonist 6 appeared to act through a novel mechanism. The fluorescence intensity of 2 and 6 increased by binding to the ligand binding domain (LBD) of PPARγ and the affinity of reported PPARγ ligands were evaluated using the probe. Keywords: PPARγ ligand; coumarin; fluorescent ligand; screening; crystal structure Citation: Yoshikawa, C.; Ishida, H.; Ohashi, N.; Itoh, T. Synthesis of a Coumarin-Based PPARγ 1. Introduction Fluorescence Probe for Competitive Binding Assay. Int. J. Mol. Sci. 2021, Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor su- 22, 4034. -
Modifications to the Harmonized Tariff Schedule of the United States To
U.S. International Trade Commission COMMISSIONERS Shara L. Aranoff, Chairman Daniel R. Pearson, Vice Chairman Deanna Tanner Okun Charlotte R. Lane Irving A. Williamson Dean A. Pinkert Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Modifications to the Harmonized Tariff Schedule of the United States to Implement the Dominican Republic- Central America-United States Free Trade Agreement With Respect to Costa Rica Publication 4038 December 2008 (This page is intentionally blank) Pursuant to the letter of request from the United States Trade Representative of December 18, 2008, set forth in the Appendix hereto, and pursuant to section 1207(a) of the Omnibus Trade and Competitiveness Act, the Commission is publishing the following modifications to the Harmonized Tariff Schedule of the United States (HTS) to implement the Dominican Republic- Central America-United States Free Trade Agreement, as approved in the Dominican Republic-Central America- United States Free Trade Agreement Implementation Act, with respect to Costa Rica. (This page is intentionally blank) Annex I Effective with respect to goods that are entered, or withdrawn from warehouse for consumption, on or after January 1, 2009, the Harmonized Tariff Schedule of the United States (HTS) is modified as provided herein, with bracketed matter included to assist in the understanding of proclaimed modifications. The following supersedes matter now in the HTS. (1). General note 4 is modified as follows: (a). by deleting from subdivision (a) the following country from the enumeration of independent beneficiary developing countries: Costa Rica (b). -
NPY1R-Targeted Peptide-Mediated Delivery of a Dual PPAR&Alpha
Original Article NPY1R-targeted peptide-mediated delivery of a dual PPARa/g agonist to adipocytes enhances adipogenesis and prevents diabetes progression Stefanie Wittrisch 1, Nora Klöting 2,**, Karin Mörl 1, Rima Chakaroun 2,3, Matthias Blüher 2,3,***, Annette G. Beck-Sickinger 1,* ABSTRACT Objective: PPARa/g dual agonists have been in clinical development for the treatment of metabolic diseases including type 2 diabetes and dyslipidemia. However, severe adverse side effects led to complications in clinical trials. As most of the beneficial effects rely on the compound activity in adipocytes, the selective targeting of this cell type is a cutting-edge strategy to develop safe anti-diabetic drugs. The goal of this study was to strengthen the adipocyte-specific uptake of the PPARa/g agonist tesaglitazar via NPY1R-mediated internalization. 7 34 Methods: NPY1R-preferring peptide tesaglitazar-[F ,P ]-NPY (tesa-NPY) was synthesized by a combination of automated SPPS and manual couplings. Following molecular and functional analyses for proof of concept, cell culture experiments were conducted to monitor the effects on adipogenesis. Mice treated with peptide drug conjugates or vehicle either by gavage or intraperitoneal injection were characterized phenotypically and metabolically. Histological analysis and transcriptional profiling of the adipose tissue were performed. 7 34 Results: In vitro studies revealed that the tesaglitazar-[F ,P ]-NPY conjugate selectively activates PPARg in NPY1R-expressing cells and enhances adipocyte differentiation and adiponectin expression in adipocyte precursor cells. In vivo studies using db/db mice demonstrated that the anti-diabetic activity of the peptide conjugate is as efficient as that of systemically administered tesaglitazar. -
The Opportunities and Challenges of Peroxisome Proliferator-Activated Receptors Ligands in Clinical Drug Discovery and Development
International Journal of Molecular Sciences Review The Opportunities and Challenges of Peroxisome Proliferator-Activated Receptors Ligands in Clinical Drug Discovery and Development Fan Hong 1,2, Pengfei Xu 1,*,† and Yonggong Zhai 1,2,* 1 Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; [email protected] 2 Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China * Correspondence: [email protected] (P.X.); [email protected] (Y.Z.); Tel.: +86-156-005-60991 (P.X.); +86-10-5880-6656 (Y.Z.) † Current address: Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA. Received: 22 June 2018; Accepted: 24 July 2018; Published: 27 July 2018 Abstract: Peroxisome proliferator-activated receptors (PPARs) are a well-known pharmacological target for the treatment of multiple diseases, including diabetes mellitus, dyslipidemia, cardiovascular diseases and even primary biliary cholangitis, gout, cancer, Alzheimer’s disease and ulcerative colitis. The three PPAR isoforms (α, β/δ and γ) have emerged as integrators of glucose and lipid metabolic signaling networks. Typically, PPARα is activated by fibrates, which are commonly used therapeutic agents in the treatment of dyslipidemia. The pharmacological activators of PPARγ include thiazolidinediones (TZDs), which are insulin sensitizers used in the treatment of type 2 diabetes mellitus (T2DM), despite some drawbacks. In this review, we summarize 84 types of PPAR synthetic ligands introduced to date for the treatment of metabolic and other diseases and provide a comprehensive analysis of the current applications and problems of these ligands in clinical drug discovery and development.