Genetic Susceptibility to Alopecia

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Susceptibility to Alopecia Thomas Jefferson University Jefferson Digital Commons Department of Dermatology and Cutaneous Department of Dermatology and Cutaneous Biology Faculty Papers Biology 2-28-2019 Genetic Susceptibility to Alopecia. Jouni Uitto Thomas Jefferson University Follow this and additional works at: https://jdc.jefferson.edu/dcbfp Part of the Dermatology Commons Let us know how access to this document benefits ouy Recommended Citation Uitto, Jouni, "Genetic Susceptibility to Alopecia." (2019). Department of Dermatology and Cutaneous Biology Faculty Papers. Paper 111. https://jdc.jefferson.edu/dcbfp/111 This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Dermatology and Cutaneous Biology Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: [email protected]. Editorials tomy for advanced ovarian cancer — therapeutic advance or sur- 6. Rungruang BJ, Miller A, Krivak TC, et al. What is the role of gical folly? Gynecol Oncol 1995; 56: 325-7. retroperitoneal exploration in optimally debulked stage IIIC 3. Aletti GD, Dowdy S, Podratz KC, Cliby WA. Role of lymphad- epithelial ovarian cancer? An NRG Oncology/Gynecologic On- enectomy in the management of grossly apparent advanced cology Group ancillary data study. Cancer 2017; 123: 985-93. stage epithelial ovarian cancer. Am J Obstet Gynecol 2006; 195: 7. Panici PB, Maggioni A, Hacker N, et al. Systematic aortic and 1862-8. pelvic lymphadenectomy versus resection of bulky nodes only in 4. Chan JK, Urban R, Hu JM, et al. The potential therapeutic optimally debulked advanced ovarian cancer: a randomized role of lymph node resection in epithelial ovarian cancer: a study clinical trial. J Natl Cancer Inst 2005; 97: 560-6. of 13918 patients. Br J Cancer 2007; 96: 1817-22. 8. Harter P, Sehouli J, Lorusso D, et al. A randomized trial of 5. du Bois A, Reuss A, Harter P, Pujade-Lauraine E, Ray-Co- lymphadenectomy in patients with advanced ovarian neoplasms. quard I, Pfisterer J. Potential role of lymphadenectomy in ad- N Engl J Med 2019; 380: 822-32. vanced ovarian cancer: a combined exploratory analysis of three prospectively randomized phase III multicenter trials. J Clin DOI: 10.1056/NEJMe1900044 Oncol 2010; 28: 1733-9. Copyright © 2019 Massachusetts Medical Society. Genetic Susceptibility to Alopecia Jouni Uitto, M.D., Ph.D. The hair unit is composed of specialized com- very common (mainly polygenic). The more com- partments that are coordinately responsible for mon, polygenic conditions have been attributed synthesis of the hair fiber. The principal signaling to a number of distinct pathomechanisms. Age- center of the hair follicle resides in the dermal associated thinning and loss of hair can be papilla, which consists of a specialized fibro- explained in part by hormonally influenced blast population that is responsible for regenera- miniaturization of the follicle, which is often tion and cycling of the follicle. The dermal pa- associated with androgenetic alopecia or pattern pilla interacts with the overlying epithelial cells, hair loss. Immune factors, such as lymphocyte- known as the hair matrix, to generate the hair mediated destruction of the lower part of the shaft.1 The size of the dermal papilla niche is follicle, are a hallmark feature of autoimmune dynamic and actively regulated, and a reduction forms of hair loss, such as alopecia areata in the number of cells that make up the dermal (patchy hair loss). Genetic factors also play a papilla is believed to contribute to the loss or role, as is the case in rare, mendelian forms of thinning of hair. The hair shaft itself contains a hair loss and hair fragility syndromes. For exam- complex configuration of structural proteins, in- ple, hair-shaft abnormalities, known as trichor- cluding many different hair keratins with asso- rhexis invaginata (also called bamboo hair), are ciated proteins, which are responsible for the associated with a keratinization phenotype of proper formation and growth of the hair shaft. dry and scaly skin in the Netherton syndrome, Distinct differences have been documented in caused by mutations in the gene SPINK5, which the hair morphology in human populations of encodes a serine protease inhibitor. different ancestries, which are believed to be Finally, there are other forms of alopecia for genetically determined.2 The hair of persons of which the cause has not yet been described. African ancestry has a flattened cross-sectional These include the group of primary cicatricial appearance, and the hair is usually coiled. The alopecias, including lichen planopilaris, frontal hair of persons of European ancestry has an oval fibrosing alopecia, and until now, central centrif- cross section, and the hair of persons of Asian ugal cicatricial alopecia (CCCA). In these disor- ancestry has a rounder, more circular perimeter, ders, hair loss is associated with rapid, progres- resulting in straighter hair. sive, and permanent destruction of follicles, Considering the complexity of hair biology, followed by replacement with fibrotic connective it is perhaps not unexpected that hair growth is tissue, which leads to irreversible hair loss.3 affected in several disorders, ranging from ex- CCCA is a common and progressive form of tremely rare (usually single-gene disorders) to scarring alopecia, in which histopathological n engl j med 380;9 nejm.org February 28, 2019 873 The New England Journal of Medicine Downloaded from nejm.org at THOMAS JEFFERSON UNIVERSITY on March 20, 2019. For personal use only. No other uses without permission. Copyright © 2019 Massachusetts Medical Society. All rights reserved. The new england journal of medicine examination of the skin reveals the presence of collagen types I and III, and various matrix lymphocytes early on in the proximity of hair metalloproteinases, are overexpressed in the fi- follicles, eventually resulting in the destruction brotic stage of the disease.9 of the follicle and deposition of extracellular In the second phase of their work, the authors matrix.4 CCCA is seen predominantly in women provided replication of the findings in a cohort of African ancestry, with a reported prevalence of 42 patients with CCCA and identified muta- of 2.7% among women in South Africa and 5.6% tions (including two novel mutations) in PADI3 among women of African descent in North in 9 of them. In total, six distinct mutations America.5 This condition, which is also some- were found in 14 of 58 patients (24%) with times described as hot comb alopecia because it CCCA. It is unclear whether the remaining three is often associated with traction-inducing hair- quarters of the patients have a type of CCCA that styling practices and use of hair chemicals, has is phenotypically indistinguishable from those a late onset, usually in the fourth decade of life.6 with PADI3. Given the complex physiology of The disorder sometimes runs in families in a CCCA and the results reported by Malki et al., perceived autosomal dominant pattern, although it is unlikely that PADI3 variants are solely respon- styling preferences within households may also sible for the disease. Variants in other genes contribute to the clustering of cases within probably contribute to pathogenesis. families. The majority of cases of CCCA appear It is interesting to note that another hair dis- to be sporadic. order, uncombable hair syndrome, has also been Malki et al., an international group of inves- shown in some cases to involve mutations in tigators, now report in the Journal 7 the results of PADI3, whereas in others the gene TCHH, which a study of the genetics of CCCA, including mo- encodes trichohyalin, is mutated.8 The uncomb- lecular analyses of a series of 58 patients with able hair syndrome is a rare disorder involving CCCA. First, the exomes of a discovery set com- hair-shaft abnormality, which is characterized by prising 16 women with CCCA who were of Afri- a frizzy appearance of difficult-to-manage hair can ancestry and living in the United States and (Fig. 1).10 The manifestation of this disorder dif- South Africa, were sequenced; analyses of the fers entirely from that of CCCA and is not as- sequence data yielded four mutations in PADI3 in sociated with alopecia or scarring. The uncomb- 5 women (each woman was heterozygous for the able hair syndrome occurs in children, usually mutation). Characterization of mutant proteins resolves with age, and shows no association led the authors to conclude that some of these with ancestral origin. Mutations in PADI3 in chil- mutations cause the encoded protein, peptidyl dren with the uncombable hair syndrome occur arginine deiminase 3 (PADI3), to misfold and in either a homozygous or a compound heterozy- form intracellular aggregates. PADI3 catalyzes the gous pattern, which suggests an autosomal re- post-translational modification of proteins by cessive inheritance pattern,8 in contrast to CCCA, converting arginine into citrulline — a modifi- in which the mutations were heterozygous. The cation that changes the charge of PADI3 and mutations in PADI3 in these two conditions are therefore results in physicochemical differences distinct, which suggests different pathogenic in the substrate proteins, such as trichohyalin, consequences of specific PADI3 variants on hair that can be modified by PADI3 (Fig. 1). Tricho- development. The observation that the heterozy- hyalin is critical to the formation and shaping of gous parents of children with uncombable hair the hair shaft. syndrome are apparently unaffected supports Further analyses showed that genes that are this hypothesis.
Recommended publications
  • Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-Like Mouse Models: Tracking the Role of the Hairless Gene
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2006 Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene Yutao Liu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Liu, Yutao, "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino- like Mouse Models: Tracking the Role of the Hairless Gene. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1824 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yutao Liu entitled "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Brynn H. Voy, Major Professor We have read this dissertation and recommend its acceptance: Naima Moustaid-Moussa, Yisong Wang, Rogert Hettich Accepted for the Council: Carolyn R.
    [Show full text]
  • Loss-Of-Function Mutations in the Gene Encoding Filaggrin Cause Ichthyosis
    LETTERS Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris Frances J D Smith1, Alan D Irvine2, Ana Terron-Kwiatkowski1, Aileen Sandilands1, Linda E Campbell1, Yiwei Zhao1, Haihui Liao1, Alan T Evans3, David R Goudie4, Sue Lewis-Jones5, Gehan Arseculeratne5, Colin S Munro6, Ann Sergeant6, Gra´inne O’Regan2, Sherri J Bale7, John G Compton7, John J DiGiovanna8,9, Richard B Presland10,11, Philip Fleckman11 & W H Irwin McLean1 Ichthyosis vulgaris (OMIM 146700) is the most common composed of the 400-kDa protein profilaggrin. Following a short, inherited disorder of keratinization and one of the most unique N-terminal domain, most of the profilaggrin molecule consists frequent single-gene disorders in humans. The most widely of 10–12 repeats of the 324-residue filaggrin sequence6. Upon terminal cited incidence figure is 1 in 250 based on a survey of differentiation of granular cells, profilaggrin is proteolytically cleaved 1 B http://www.nature.com/naturegenetics 6,051 healthy English schoolchildren . We have identified into 37-kDa filaggrin peptides and the N-terminal domain contain- homozygous or compound heterozygous mutations R501X and ing an S100-like calcium binding domain. Filaggrin rapidly aggregates 2282del4 in the gene encoding filaggrin (FLG) as the cause of the keratin cytoskeleton, causing collapse of the granular cells into moderate or severe ichthyosis vulgaris in 15 kindreds. In flattened anuclear squames. This condensed cytoskeleton is cross- addition, these mutations are semidominant; heterozygotes linked by transglutaminases during formation of the cornified cell show a very mild phenotype with incomplete penetrance. envelope (CCE). The CCE is the outermost barrier layer of the skin The mutations show a combined allele frequency of B4% which not only prevents water loss but also impedes the entry of in populations of European ancestry, explaining the high allergens and infectious agents7.
    [Show full text]
  • An Abridged Compendium of Words. a Discussion of Them and Opinions About Them
    DERMATOLOGY PRACTICAL & CONCEPTUAL www.derm101.com Dermatopathology: An abridged compendium of words. A discussion of them and opinions about them. Part 6 (I-L) Bruce J. Hookerman1 1 Dermatology Specialists, Bridgeton, Missouri, USA Citation: Hookerman BJ. Dermatopathology: An abridged compendium of words. A discussion of them and opinions about them. Part 6 (I-L). Dermatol Pract Concept. 2014;4(4):1. http://dx.doi.org/10.5826/dpc.0404a01 Copyright: ©2014 Hookerman. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Corresponding author: Bruce J. Hookerman, M.D., 12105 Bridgeton Square Drive, St. Louis, MO 63044, USA. Email: [email protected] – I – term “id reaction” only for a spongiotic dermatitis manifested by tiny vesicles on the hands of patients with florid dermato- ICHTHYOSIS: a generic term for skin conditions character- phytosis at another site, usually the feet, or for an analogue ized by what are said to be fishlike scales, i.e., scales that are of that phenomenon such as widespread vesicles that appear broad and polygonal with free edges, as are seen in ichthyosis subsequent to injudicious treatment, i.e., with Gentian violet vulgaris (and its look-alike, acquired ichthyosis), X-linked (known sardonically in times past as “Gentian violent”) of ichthyosis, and lamellar ichthyosis. Conditions reputed to be an exuberant spongiotic dermatitis, usually on the feet, such ichthyosis, such as ichthyosis hystrix and ichthyosis linearis as an allergic contact dermatitis. A time-honored explana- circumflexa, do not qualify because they are not associated tion for an “id” reaction is hematogenous dissemination of with broad polygonal scales.
    [Show full text]
  • Deimination, Intermediate Filaments and Associated Proteins
    International Journal of Molecular Sciences Review Deimination, Intermediate Filaments and Associated Proteins Julie Briot, Michel Simon and Marie-Claire Méchin * UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Université Fédérale de Toulouse Midi-Pyrénées, U1056, 31059 Toulouse, France; [email protected] (J.B.); [email protected] (M.S.) * Correspondence: [email protected]; Tel.: +33-5-6115-8425 Received: 27 October 2020; Accepted: 16 November 2020; Published: 19 November 2020 Abstract: Deimination (or citrullination) is a post-translational modification catalyzed by a calcium-dependent enzyme family of five peptidylarginine deiminases (PADs). Deimination is involved in physiological processes (cell differentiation, embryogenesis, innate and adaptive immunity, etc.) and in autoimmune diseases (rheumatoid arthritis, multiple sclerosis and lupus), cancers and neurodegenerative diseases. Intermediate filaments (IF) and associated proteins (IFAP) are major substrates of PADs. Here, we focus on the effects of deimination on the polymerization and solubility properties of IF proteins and on the proteolysis and cross-linking of IFAP, to finally expose some features of interest and some limitations of citrullinomes. Keywords: citrullination; post-translational modification; cytoskeleton; keratin; filaggrin; peptidylarginine deiminase 1. Introduction Intermediate filaments (IF) constitute a unique macromolecular structure with a diameter (10 nm) intermediate between those of actin microfilaments (6 nm) and microtubules (25 nm). In humans, IF are found in all cell types and organize themselves into a complex network. They play an important role in the morphology of a cell (including the nucleus), are essential to its plasticity, its mobility, its adhesion and thus to its function.
    [Show full text]
  • Prevalence and Incidence of Rare Diseases: Bibliographic Data
    Number 1 | January 2019 Prevalence and incidence of rare diseases: Bibliographic data Prevalence, incidence or number of published cases listed by diseases (in alphabetical order) www.orpha.net www.orphadata.org If a range of national data is available, the average is Methodology calculated to estimate the worldwide or European prevalence or incidence. When a range of data sources is available, the most Orphanet carries out a systematic survey of literature in recent data source that meets a certain number of quality order to estimate the prevalence and incidence of rare criteria is favoured (registries, meta-analyses, diseases. This study aims to collect new data regarding population-based studies, large cohorts studies). point prevalence, birth prevalence and incidence, and to update already published data according to new For congenital diseases, the prevalence is estimated, so scientific studies or other available data. that: Prevalence = birth prevalence x (patient life This data is presented in the following reports published expectancy/general population life expectancy). biannually: When only incidence data is documented, the prevalence is estimated when possible, so that : • Prevalence, incidence or number of published cases listed by diseases (in alphabetical order); Prevalence = incidence x disease mean duration. • Diseases listed by decreasing prevalence, incidence When neither prevalence nor incidence data is available, or number of published cases; which is the case for very rare diseases, the number of cases or families documented in the medical literature is Data collection provided. A number of different sources are used : Limitations of the study • Registries (RARECARE, EUROCAT, etc) ; The prevalence and incidence data presented in this report are only estimations and cannot be considered to • National/international health institutes and agencies be absolutely correct.
    [Show full text]
  • Is the Loose Anagen Hair Syndrome a Keratin Disorder? a Clinical and Molecular Study
    STUDY Is the Loose Anagen Hair Syndrome a Keratin Disorder? A Clinical and Molecular Study Vale´rie Chapalain, MD; Hermelita Winter, PhD; Lutz Langbein, PhD; Jean-Michel Le Roy, MD; Christine Labre`ze, MD; Milos Nikolic, MD; Ju¨rgen Schweizer, PhD; Alain Taı¨eb, MD Objectives: To report the clinical features of the loose seldom cut their hair, and 4 had unmanageable hair. One anagen hair syndrome and to test the hypothesis that the patient had hypodontia. Two patients had an additional typical gap between the hair and the inner root sheath clinical phenotype of diffuse partial woolly hair. The fam- may result from hereditary defects in the inner root sheath ily history was positive for loose anagen hair syndrome or the apposed companion layer. in 5 patients. Marked improvement was noted after treat- ment with 5% minoxidil lotion in 7 of the 11 patients Design: Case series. treated. Polymerase chain reaction analysis of the gene segments encoding the ␣-helical 1A and 2B subdomains Setting: A pediatric dermatology unit (referral center). of K6hf, the type II cytokeratin exclusively expressed in the companion layer, was performed in 9 families. In Patients: A consecutive sample of 17 children (13 girls). 3 of these 9 families, a heterozygous glutamic acid and For 9 of them and their first-degree relatives, molecular lysine mutation, E337K, was identified in the L2 linker analyses were performed in the K6HF gene with 50 ap- region of K6HF. propriate controls. Conclusions: Diffuse partial woolly hair can be associ- Intervention: Minoxidil therapy (5% lotion) in 11 pa- ated with loose anagen hair syndrome.
    [Show full text]
  • Identification of Trichoplein, a Novel Keratin Filament- Binding Protein
    Research Article 1081 Identification of trichoplein, a novel keratin filament- binding protein Miwako Nishizawa1,*, Ichiro Izawa1,*, Akihito Inoko1,*, Yuko Hayashi1, Koh-ichi Nagata1, Tomoya Yokoyama1,2, Jiro Usukura3 and Masaki Inagaki1,‡ 1Division of Biochemistry, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan 2Department of Dermatology, Mie University Faculty of Medicine, 2-174 Edobashi, Tsu 514-8507, Japan 3Department of Anatomy and Cell Biology, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan *These authors contributed equally to this work ‡Author for correspondence (e-mail: [email protected]) Accepted 29 November 2004 Journal of Cell Science 118, 1081-1090 Published by The Company of Biologists 2005 doi:10.1242/jcs.01667 Summary Keratins 8 and 18 (K8/18) are major components of the antibody in a complex with K8/18 and immunostaining intermediate filaments (IFs) of simple epithelia. We report revealed that trichoplein colocalized with K8/18 filaments here the identification of a novel protein termed in HeLa cells. In polarized Caco-2 cells, trichoplein trichoplein. This protein shows a low degree of sequence colocalized not only with K8/18 filaments in the apical similarity to trichohyalin, plectin and myosin heavy chain, region but also with desmoplakin, a constituent of and is a K8/18-binding protein. Among interactions desmosomes. In the absorptive cells of the small intestine, between trichoplein and various IF proteins that we trichoplein colocalized with K8/18 filaments at the apical tested using two-hybrid methods, trichoplein interacted cortical region, and was also concentrated at desmosomes.
    [Show full text]
  • Hair Loss in Infancy
    SCIENCE CITATIONINDEXINDEXED MEDICUS INDEX BY (MEDLINE) EXPANDED (ISI) OFFICIAL JOURNAL OF THE SOCIETÀ ITALIANA DI DERMATOLOGIA MEDICA, CHIRURGICA, ESTETICA E DELLE MALATTIE SESSUALMENTE TRASMESSE (SIDeMaST) VOLUME 149 - No. 1 - FEBRUARY 2014 Anno: 2014 Lavoro: 4731-MD Mese: Febraury titolo breve: Hair loss in infancy Volume: 149 primo autore: MORENO-ROMERO No: 1 pagine: 55-78 Rivista: GIORNALE ITALIANO DI DERMATOLOGIA E VENEREOLOGIA Cod Rivista: G ITAL DERMATOL VENEREOL G ITAL DERMATOL VENEREOL 2014;149:55-78 Hair loss in infancy J. A. MORENO-ROMERO 1, R. GRIMALT 2 Hair diseases represent a signifcant portion of cases seen 1Department of Dermatology by pediatric dermatologists although hair has always been Hospital General de Catalunya, Barcelona, Spain a secondary aspect in pediatricians and dermatologists 2Universitat de Barcelona training, on the erroneous basis that there is not much in- Universitat Internacional de Catalunya, Barcelona, Spain formation extractable from it. Dermatologists are in the enviable situation of being able to study many disorders with simple diagnostic techniques. The hair is easily ac- cessible to examination but, paradoxically, this approach is often disregarded by non-dermatologist. This paper has Embryology and normal hair development been written on the purpose of trying to serve in the diag- nostic process of daily practice, and trying to help, for ex- ample, to distinguish between certain acquired and some The full complement of hair follicles is present genetically determined hair diseases. We will focus on all at birth and no new hair follicles develop thereafter. the data that can be obtained from our patients’ hair and Each follicle is capable of producing three different try to help on using the messages given by hair for each types of hair: lanugo, vellus and terminal.
    [Show full text]
  • Keratinization and Its Disorders
    Oman Medical Journal (2012) Vol. 27, No. 5: 348-357 DOI 10. 5001/omj.2012.90 Review Article Keratinization and its Disorders Shibani Shetty, Gokul S. Received: 03 May 2012 / Accepted: 08 July 2012 © OMSB, 2012 Abstract Keratins are a diverse group of structural proteins that form the epithelium (buccal mucosa, labial mucosa) and specialized intermediate filament network responsible for maintaining the mucosa (dorsal surface of the tongue).2 An important aspect structural integrity of keratinocytes. In humans, there are around of stratified squamous epithelia is that the cells undergo a 30 keratin families divided into two groups, namely, acidic and terminal differentiation program that results in the formation basic keratins, which are arranged in pairs. They are expressed in of a mechanically resistant and toughened surface composed of a highly specific pattern related to the epithelial type and stage of cornified cells that are filled with keratin filaments and lack nuclei cellular differentiation. A total of 54 functional genes exist which and cytoplasmic organelles. In these squames, the cell membrane codes for these keratin families. The expression of specific keratin is replaced by a proteinaceous cornified envelope that is covalently genes is regulated by the differentiation of epithelial cells within cross linked to the keratin filaments, providing a highly insoluble the stratifying squamous epithelium. Mutations in most of these yet flexible structure that protects the underlying epithelial cells.1 genes are now associated with specific tissue fragility disorders Keratinization, also termed as cornification, is a process which may manifest both in skin and mucosa depending on the of cytodifferentiation which the keratinocytes undergo when expression pattern.
    [Show full text]
  • R‑Spondin Family Members As Novel Biomarkers and Prognostic Factors in Lung Cancer
    4008 ONCOLOGY LETTERS 18: 4008-4015, 2019 R‑spondin family members as novel biomarkers and prognostic factors in lung cancer LINGZHI WU1*, WEILI ZHANG2*, JINXIAN QIAN3, JIAN WU3, LIYANG JIANG3 and CHUNHUA LING4 1Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006; 2Department of Gastroenterology, Xiangcheng People's Hospital, Suzhou, Jiangsu 215131; 3Department of Intensive Care Unit, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008; 4Department of Respiratory Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China Received November 29, 2018; Accepted May 15, 2019 DOI: 10.3892/ol.2019.10778 Abstract. The R-spondin (RSPO) family of secreted proteins Introduction consists of four members that have critical roles in embryonic development and organogenesis. However, the expression Lung cancer is one of the most fatal types of cancer in developed patterns and the exact roles of the individual RSPO family countries, and remains the leading cause of cancer-associated members in tumorigenesis and progression of lung cancer are mortality (1), with a higher mortality rate than prostate, breast unknown, particularly in non-small cell lung cancer, which and colon cancer combined, and with >1 million deaths expected accounts for 85% of all lung cancer cases. In the present study, per year worldwide (2). Although treatments for lung cancer data from the ONCOMINE database was used to compare the have improved in recent years, including surgery, chemotherapy, RNA expression levels of RSPOs in multiple different types radiation therapy, local treatment and targeted therapy, >50% of of cancer with normal controls.
    [Show full text]
  • Uncombable Hair Syndrome
    Uncombable hair syndrome Author: Professor Ralph Trüeb1 Creation date: September 2003 Scientific editor: Professor Antonella Tosti 1 Leitender Arzt, Dermatologische Klinik, UniversitätsSpital Zürich, Gloriastrasse 31, 8091 Zürich, Switzerland. [email protected] Abstract Disease name and synonyms Definition Differential diagnosis Frequency Clinical description Management including treatment Etiology Diagnostic methods Genetic counseling Unresolved questions References Abstract Uncombable hair syndrome is a rare structural anomaly of the hair shaft with variable penetrance (MIM 191480). It may become first apparent from 3 months to 12 years of age. The hair is normal in quantity and is usually silvery-blond or straw-colored. It is disorderly, it stands out from the scalp, and cannot be combed flat. The underlying structural anomaly is longitudinal grooving of the hair shaft, which appears triangular or kidney-shaped in cross section. Affected individuals often have a negative family history, though the characteristic hair shaft anomaly can be demonstrated in asymptomatic family members by scanning electron microscopy. To be clinically apparent, 50 % of hairs must be affected by the structural abnormality. Spontaneous improvement often occurs in later childhood. Pili canaliculi have also been described associated with features of ectodermal dysplasia, and are a constant, though less pronounced finding, in the loose anagen hair syndrome. Autosomal-dominant inheritance is likely. The stiffness of the uncombable hair has been explained by the triangular form of the hair shaft in cross section. It has been suggested that the condition may result from premature keratinization of the inner root sheath. Diagnosis is suspected at clinical examination and confirmed through visualization of the hair shaft anomaly.
    [Show full text]
  • Trichohyalin-Like 1 Protein Plays a Crucial Role in Proliferation and Anti
    Makino et al. Cell Death Discovery (2020) 6:109 https://doi.org/10.1038/s41420-020-00344-5 Cell Death Discovery ARTICLE Open Access Trichohyalin-like 1 protein plays a crucial role in proliferation and anti-apoptosis of normal human keratinocytes and squamous cell carcinoma cells Teruhiko Makino 1,MegumiMizawa1, Yoko Yoshihisa1, Seiji Yamamoto2, Yoshiaki Tabuchi 3, Masashi Miyai4, Toshihiko Hibino4, Masakiyo Sasahara2 and Tadamichi Shimizu1 Abstract Epidermal differentiation is a complex process that requires the regulated and sequential expression of various genes. Most fused-type S100 proteins are expressed in the granular layer and it is hypothesized that these proteins may be associated with cornification and barrier formation. We previously identified a member of the fused-type S100 proteins, Trichohyalin-like 1 (TCHHL1) protein. TCHHL1 is distributed in the basal layer of the normal epidermis. Furthermore, the expression is markedly increased in cancerous/non-cancerous skin samples with the hyperproliferation of keratinocytes. We herein examined the role of TCHHL1 in normal human keratinocytes (NHKs) and squamous cell carcinoma (SCC). The knockdown of TCHHL1 by transfection with TCHHL1 siRNA significantly inhibited proliferation and induced the early apoptosis of NHKs. In TCHHL1-knockdown NHKs, the level of extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation was markedly decreased. In addition, the slight inhibition of v-akt murine thymoma viral oncogene homolog (AKT) phosphorylation and upregulation of forkhead box-containing protein O1(FOXO1), B-cell lymphoma2 (BCL2) and Bcl2-like protein 11 (BCL2L11) was observed. Skin-equivalent models fi 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; built by TCHHL1-knockdown NHKs showed a markedly hypoplastic epidermis.
    [Show full text]