Mixed Conduction and Defect Chemistry of Manganese and Molybdenum Substituted Gadolinium Titanate Pyrochlore

Total Page:16

File Type:pdf, Size:1020Kb

Mixed Conduction and Defect Chemistry of Manganese and Molybdenum Substituted Gadolinium Titanate Pyrochlore Mixed Conduction and Defect Chemistry of Manganese and Molybdenum Substituted Gadolinium Titanate Pyrochlore By John Jason Sprague B.S. Materials Science and Engineering, Johns Hopkins University, Baltimore (1993) Submitted to the Department of Materials Science and Engineering in Partial Fulfillment of the Requirements for the Degree of Doctor Of Philosophy in Electronic Materials at the Massachusetts Institute of Technology February 1999 @ Massachusetts Institute of Technology 1999 Signature of Author [J Department of Materials Science and Engineering January 8, 1999 Certified by Harry L. Tuller Professor of Ceramics and Electronic Materials Thesis Supervisor Accepted by_ Linn W. Hobbs .1 John F. Elliott Professor of Materials MASSCHUSETT Chair, Departmental Committee on Graduate Students MAR LIBRARIES I 2 Mixed Conduction and Defect Chemistry of Manganese and Molybdenum Substituted Gadolinium Titanate Pyrochlore by John Jason Sprague Submitted to the Department of Materials Science and Engineering on January 8th, 1999 in Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy in Electronic Materials Abstract The Solid Oxide Fuel Cell (SOFC) is an electrochemical device that converts chemical energy directly to electrical energy. This device by passes the pollution problems and relatively low efficiencies of conventional fossil fuels generators. The main drawback to SOFC utilization has been the need for high operating temperatures (1000 'C) to provide adequate efficiencies. The primary goal of SOFC research has been the reduction in this temperature. As operating temperatures around 700 - 800 0C have been achieved, it has become clear that the primary efficiency loss comes from the slow kinetics of the electrode reactions. This thesis will pursue mixed ionic and electronic conducting oxide ceramics that could be used to enhance the slow kinetics. Electrical conductivity measurements were made on the pyrochlore Gd2 ((MoIyMny)xTi1-) 2 07- (GMMT) as a function of oxygen partial pressure (P0 2 ) (1025 0C T 1000 0C), and composition (x,y). Particular < P0 2 < 1 atm), temperature (600 emphasis was placed on the materials value as a mixed ionic and electronic conductor (MIEC). Previous work on the Gd2 (Ti1 xMox) 2 0 7 system has shown it to have high electronic conductivity (102 S/cm) with a high minority ionic conductivity (up to 101 S/cm) for high Mo values under anodic conditions. However, the material decomposes at higher P0 2, due to a sharp increase in oxygen interstitial concentration accompanying the oxidation of Mo4 + to Mo6 +. In this study, we investigated the ability of variable valent Mn to compensate the oxidation of Mo and thereby stabilizing the material to much higher P0 2 while retaining the high conductivity. The conductivity of GMMT was found to increase by over 4 orders of magnitude by increasing x from 0.01 to 0.3 with y = 0.66. The peak value in air of 0.2 S/cm was obtained at 1000 C for the x = 0.33, y = 0.66 material. The conductivity was weakly dependent on y, increasing by about 2 order of magnitude under oxidizing conditions when increasing y from 0.33 to 0.66 (x = 0.1). The activation energy for the conduction in the characteristic P0 2 independent plateau decreased systematically with x from nearly 1.5 eV at x = 0.01, y = 0.66 to 0.64 eV at x = 0.3, y = 0.66. All of the compositions were found to be stable pyrochlore up to 1000 'C, the highest temperature used in this study. 3 A detailed defect model was developed to model and explain the electrical conductivity of GMMT. Our analysis indicates that the material is primarily electronic at all x,y, with some potential ionic conduction under reducing conditions. The conductivity conforms well to a dilute defect model for x 0.05, while at x > 0.1, the material is suspected to experience defect band hopping conduction within the Mo and Mn levels. The incorporation of defect bands into the defect model is necessary to explain the large jump in conductivity and decrease in activation energy with increasing x. Modeling of the conductivity data for x = 0.01 and 0.05 (y = 0.66) materials yields an estimate for the Mn ionization energy of- 2.6 eV as well as expressions for the reduction 1 2 9 constant, K= / cm )exp(-6.4eV/kT), and Frenkel constant, Kf = 10(cm-6 )exp(-2.9eV/kT). Similar modeling for the x = 0.3, y = 0.66 material yields defect band hopping energies in the Mn and Mo defect bands of 0.19 eV and 0.22 eV respectively. Independent measurements utilizing an electronic blocking cell to separate the ionic and electronic contributions to the conductivity were made for the x = 0.1, y = 0.66 composition. The measurements confirm that the material is electronic with a transference number of 0.9 - 0.95 under oxidizing environments. The level of the ionic conductivity is on the order of 10-2 - 10-3 S/cm at 900 C. The electrode impedance of Pt electrodes on Ca doped GT was monitored as a function of P0 2 and temperature for both 2% and 10% Ca levles in order to provide a reference for later studies with mixed conducting electrodes. The magnitude of the electrode conductance (I/Reectrode) is maximized under oxidizing regimes (Po 2 = 0.21 atm) and high temperatures (1000 0C) with a value of 0.1 S/cm. The conductance decreases in oxidizing environments as P0 2 decreases, reaching a minimum of 4 approximately 10- S/cm at intermediate Po 2 (~ 10 10 atm), which coincides with a switch from 0 2/Ar gas mixtures to CO/CO 2 gas mixtures. Under reducing conditions, the conductance increases as P0 2 decreases (CO concentration increases). The slopes of log-log plots of the electrode conductance vs. P0 2 were compared to those predicted by theoretical models of the electrode reaction for the purpose of identifying a likely microscopic rate limiting mechanism. In oxidizing environments, both materials are modeled as being largely limited by surface diffusion of adsorbed oxygen on the Pt surface, with a shift to control by dissociative adsorption of 02 on the Pt at lower temperatures for the 10% Ca material (not exhibited by the 2% Ca material). The mechanism under reducing environments is unclear, but seems likely to involve the reaction of CO on the Pt surface with oxygen to form CO 2. Thesis Supervisor: Harry L. Tuller Title: Professor of Ceramics and Electronic Materials 4 TABLE OF CONTENTS TITLE..............................................................................................................................................................1 ABSTRA CT..................................................................................................................................................3 TABLE O F CO N TEN TS...............................................................................................................................5 LIST O F FIG URE S........................................................................................................................................7 LIST O F TABLES........................................................................................................................................12 A CK N O WLED GM ENTS............................................................................................................................13 1 INTR O D U CTION ............................................................................................................................. 14 2 BA CK GR O UN D ................................................................................................................................ 19 2.1 APPLICATIONS UTILIZING M IXED CONDUCTORS........................................................................... 19 2.1.1 Solid Oxide Fuel Cell ............................................................................................................ 20 2 .1. 1.1 B asic P rin cip les ............................................................................................................................... 2 2 2.1.1.2 M aterials Requirements and Choices........................................................................................... 28 2.1.1.3 The M onolithic Pyrochlore SOFC............................................................................................... 32 2.1.2 Oxygen Separation Membranes ....................................................................................... 35 2.2 CONDUCTION IN OXIDES..................................................................................................................36 2.2.1 Ionic Conduction...................................................................................................................37 2.2.2 Electronic Conduction...........................................................................................................41 2.2.3 Mixed Ionic and Electronic Conduction............................................................................ 45 2.3 THE PYROCHLORE SYSTEM ........................................................................................................... 47 2.3.1 Crystal Structure ................................................................................................................... 48 2.3.2 Phase Stability.......................................................................................................................51 2.3.3 Conductive Properties...........................................................................................................56 2.3.3.1 The Gd 2Ti2O 7 - Gd 2Zr 2O7 System ...............................................................................................
Recommended publications
  • Preparation of Barium Strontium Titanate Powder from Citrate
    APPLIED ORGANOMETALLIC CHEMISTRY Appl. Organometal. Chem. 13, 383–397 (1999) Preparation of Barium Strontium Titanate Powder from Citrate Precursor Chen-Feng Kao* and Wein-Duo Yang Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan TiCl4 or titanium isopropoxide reacted with INTRODUCTION citric acid to form a titanyl citrate precipitate. Barium strontium citrate solutions were then BaTiO3 is ferroelectric and piezoelectric and has added to the titanyl citrate reaction to form gels. extensive applications as an electronic material. It These gels were dried and calcined to (Ba,Sr)- can be used as a capacitor, thermistor, transducer, TiO3 powders. The gels and powders were accelerometer or degausser of colour television. characterized by DSC/TGA, IR, SEM and BaTiO3 doped with strontium retains its original XRD analyses. These results showed that, at characteristics but has a lower Curie temperature 500 °C, the gels decomposed to Ba,Sr carbonate for positive temperature coefficient devices under and TiO2, followed by the formation of (Ba,Sr)- various conditions. TiO3. The onset of perovskite formation oc- Besides solid-state reactions, chemical reactions curred at 600 °C, and was nearly complete at have also been used to prepare BaTiO3 powder. 1 1000 °C. Traces of SrCO3 were still present. Among them the hydrolysis of metal alkoxide , The cation ratios of the titanate powder oxalate precipitation in ethanol2, and alcoholic prepared in the pH range 5–6 were closest to dehydration of citrate solution3 are among the more the original stoichiometry. Only 0.1 mol% of the attractive methods. In 1956 Clabaugh et al.4 free cations remained in solution.
    [Show full text]
  • Resistive States in Strontium Titanate Thin Films: Bias Effects and Mechanisms at High and Low Temperature
    J Electroceram DOI 10.1007/s10832-017-0081-2 Resistive states in strontium titanate thin films: Bias effects and mechanisms at high and low temperature M. Kubicek1 & S. Taibl1 & E. Navickas1 & H. Hutter1 & G. Fafilek1 & J. Fleig1 Received: 11 November 2016 /Accepted: 15 March 2017 # The Author(s) 2017. This article is published with open access at Springerlink.com Abstract A study on charge transport properties of thin film 1 Introduction Fe-doped SrTiO3 epitaxially grown on Nb-doped SrTiO3 is reported. Electric measurements between 350 °C and 750 °C Strontium titanate is a model electroceramic and among the show a transition from predominant ionic to electronic con- best investigated oxide materials [1, 2]. It adopts the cubic duction and lower conductivity of the thin films compared to perovskite structure ABO3 and crystallizes in space group the bulk of polycrystalline samples. Defect chemical changes Pm3m. Nominally undoped SrTiO3 behaves like a slightly at elevated temperature were investigated by applying a bias p-doped material, but by varying temperature and oxygen par- voltage. A model is described which successfully predicts tial pressure, its electric conductivity can be changed between additional features such as inductive loops or extra semicircles predominantly electronic via either electrons or electron holes measureable by impedance spectroscopy as well as the com- or predominantly ionic via oxygen vacancies [3–7]. The oxy- plicated time dependence of electric DC-measurements. With gen exchange reaction at the surface and a resulting change in this model it is also possible to calculate the negligibly small oxygen non-stoichiometry δ in SrTiO3-δ governs these transi- ionic conductivity next to the dominating electronic conduc- tions at intermediate temperatures [4].
    [Show full text]
  • Structural and Electrical Characterization of a Novel Mixed Conductor: Ceo<Sub>2</Sub>
    University of South Carolina Scholar Commons Faculty Publications Mechanical Engineering, Department of 2000 Structural and Electrical Characterization of a Novel Mixed Conductor: CeO2 - Sm2O3 - ZrO2 Solid Solution W. Huang P. Shuk M. Greenblatt M. Croft Fanglin Chen University of South Carolina - Columbia, [email protected] See next page for additional authors Follow this and additional works at: https://scholarcommons.sc.edu/emec_facpub Part of the Applied Mechanics Commons, Materials Chemistry Commons, and the Other Mechanical Engineering Commons Publication Info Published in Journal of The Electrochemical Society, Volume 147, Issue 11, 2000, pages 4196-4202. ©Journal of The Electrochemical Society 200, The Electrochemical Society. © The Electrochemical Society, Inc. [year]. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The ra chival version of this work was published in Journal of The Electrochemical Society. Publisher’s Version: http://dx.doi.org/10.1149/1.1394040 Huang, W., Shuk, P., Greenblatt, M., Croft, M., Chen, F., & Liu, M. (2000). Structural and Electrical Characterization of a Novel Mixed Conductor: CeO2 - Sm2O3 - ZrO2 Solid Solution. Journal of The Electrochemical Society, 147 (11), 4196 – 4202. http://dx.doi.org/ 10.1149/1.1394040 This Article is brought to you by the Mechanical Engineering, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Author(s) W. Huang, P. Shuk, M. Greenblatt, M. Croft, Fanglin Chen, and M.
    [Show full text]
  • Oxide Ion Conductors, Mixed Conductors and Their Solid Oxide Fuel Cell Applications
    Oxide ion conductors, mixed conductors and their solid oxide fuel cell applications facciones adsorbente-adsorbato tienen lugar en cualquier parte de BIBLIOGRAFÍA la superficie y con una frecuencia parecida (según la zona de ener­ gías). Mientras que los materiales ortorrómbicos y fundamental­ 1. SAINT FLOUR, C. y PAPIER, E.: Gas-solid chromatography. A method mente aquél que es muy rico en oxígeno presenta una superficie of measuring surface free energy characteristics of short glass fibers. muy heterogénea ya que todos los centros de adsorción se encuen­ 1. Through Adsorption Isoterms. Ind. Eng. Chem. Prod. Res. Dev., tran en un intervalo muy estrecho de energías a la vez que la fre­ 21 (1982), 337-341. cuencia de dichas interacciones es bastante elevada. 2. LIGNER, G., SDQI, M., JAGIELLO, J., BALARD, H. y PAPIER, E.: Cha­ racterization of specific interactions capacity of solid surfaces by ad­ sorption of alkanes and alkanes. Part II. Adsorption on crystalline sili­ ca laser surfaces. Chromatographia, 29 (1990), 35-38. 4. CONCLUSIONES 3. TARTAJ, J., MOURE, C, DURAN, P., GARCÍA-FIERRO, J. L. y COLINO, J.: Processing and properties of superconducting YBa2Cu307_j^ pow­ Estos resultados de la CIGS permite caracterizar las superficies ders by single-step calcining in air. J. Mater. Sei., 26 (1991), 6135-6143. de polvos YBaCuO. 4. HoBSON, J. P.: Analysis of physical adsorption isotherms on hetero­ Los calores de adsorción indican una débil interacción entre los geneous surfaces at very low pressures. Can. J. Phys., 43 (1965), 1941-1949. aléanos y las superficies de los polvos YBaCuO. 5. RuDZiNSKi, W., NAKSMUNDZKI, A., LEBODA, E.
    [Show full text]
  • Hydrothermal Synthesis of Titanate Nanotubes Followed by Electrodeposition Process
    Korean J. Chem. Eng., 23(6), 1037-1045 (2006) SHORT COMMUNICATION Hydrothermal synthesis of titanate nanotubes followed by electrodeposition process Gil-Sung Kim, Young-Soon Kim, Hyung-Kee Seo and Hyung-Shik Shin† Thin Film Technology Laboratory, School of Chemical Engineering, Chonbuk National University, Jeonju 561-756, Korea (Received 27 January 2006 • accepted 4 July 2006) Abstract−Titanate nanotubes were synthesized by hydrothermal process using commercial titania nanoparticles. The experiments were carried out as a function of reaction time, temperature, and NaOH concentration. Furthermore, the titanate nanotube film was fabricated on the Si substrate using electrodeposition method with 60 V and at room tem- perature. The specimens were investigated by using various techniques such as field-emission scanning electron micro- scopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman Spectroscopy, and X- ray photoelectron spectroscopy (XPS). The formation of sodium titanate nanotubes was affected strongly by the varia- tion in all parameters. The best conditions for the titanate nanotubes were found to be a reaction temperature of 150 oC, 10 M NaOH concentration, and reaction time of 48 hr. Under the best conditions, the resulting titanate nanotubes did not contain any remains of starting material, namely P25 nanoparticles, and also the resulting nanotubes had very smooth morphology with a diameter of ~10 nm and length extending up to several micrometers without presence of any bundle- like structures. The washing of sodium titanate nanotubes with HCl solution leads to conversion into protonic titanate nanotubes via ion exchange reaction. The subsequent sintering of the titanate nanotubes renders dehydration of inter- layered OH groups, thereby leading to precipitation of anatase phase.
    [Show full text]
  • Electrolytic Behavior of Yttria and Yttria Stabilized Hafnia Jon David Schieltz Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1970 Electrolytic behavior of yttria and yttria stabilized hafnia Jon David Schieltz Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Ceramic Materials Commons, and the Chemical Engineering Commons Recommended Citation Schieltz, Jon David, "Electrolytic behavior of yttria and yttria stabilized hafnia" (1970). Retrospective Theses and Dissertations. 4263. https://lib.dr.iastate.edu/rtd/4263 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. 70-25,820 SCHIELTZ, Jon David, 1938- ELECTROLYTIC BEHAVIOR OF YTTRIA AND YTTRIA STABILIZED HAFNIA. Iowa State University, Ph.D., 1970 Engineering, chemical University Microfilms, A XEROXCompany, Ann Arbor, Michigan THTq r^^qPRTATTON HAS RRPN MTPRnFTT.MPn PXACTT.Y AP RPrCTVCn ELECTROLYTIC BEHAVIOR OF YTTRIA AND YTTRIA STABILIZED HAFNIA by Jon David Schieltz A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject; Ceramic Engineering Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Head
    [Show full text]
  • Nanoparticulate Cathode Films for Low Temperature Solid Oxide Fuel Cells
    Nanoparticulate Cathode Films for Low Temperature Solid Oxide Fuel Cells Vom Fachbereich Material- und Geowissenschaften der Technischen Universität Darmstadt zur Erlangung des akademischen Titels Doktor-Ingenieur (Dr.-Ing.) genehmigte Dissertation von MSc. Azad Jaberi Darbandi aus Teheran Referent: Prof. Dr.-Ing. Horst Hahn Koreferent: Prof. Dr. Christina Roth Tag der Einreichung: 27. März 2012 Tag der mündlichen Prüfung: 29. Mai 2012 Darmstadt 2012 D17 CONTENTS 1 Introduction.................................................................................................................................1 2 Basics ..........................................................................................................................................3 2.1 Fuel Cells............................................................................................................................3 2.2 Fuel Cell Generalities.........................................................................................................5 Advantages of fuel cells..............................................................................................................5 Disadvantages of fuel cells .........................................................................................................5 Fuel Cell Types...........................................................................................................................5 Solid Oxide Fuel Cell (SOFC)....................................................................................................6
    [Show full text]
  • Synthesis and Evaluation of Ni Catalysts Supported on Bace0
    catalysts Article Synthesis and Evaluation of Ni Catalysts Supported on BaCe0.5Zr0.3−xY0.2NixO3−δ with Fused-Aggregate Network Structure for the Hydrogen Electrode of Solid Oxide Electrolysis Cell Ryosuke Nishikawa 1, Katsuyoshi Kakinuma 2,* ID , Hanako Nishino 2, Manuel E. Brito 3, Srikanth Gopalan 4 and Hiroyuki Uchida 2,3,* ID 1 Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37, Takeda, Kofu 400-8510, Japan; [email protected] 2 Fuel Cell Nanomaterials Center, University of Yamanashi, Miyamae 6-43, Kofu 400-0021, Japan; [email protected] 3 Clean Energy Research Center, University of Yamanashi, Takeda 4-4-37, Kofu 400-8510, Japan; [email protected] 4 Department of Mechanical Engineering & Division of Materials Science and Engineering, Boston University, 15 St. Mary’s Street, Boston, MA 02215, USA; [email protected] * Correspondence: [email protected] (K.K.); [email protected] (H.U.); Tel.: +81-55-254-7143 (K.K); +81-55-220-8619 (H.U.) Received: 16 June 2017; Accepted: 18 July 2017; Published: 24 July 2017 Abstract: Nickel nanoparticles loaded on the electron–proton mixed conductor BaCe0.5Zr0.3−xY0.2NixO3−δ (Ni/BCZYN, x = 0 and 0.03) were synthesized for use in the hydrogen electrode of a proton-conducting solid oxide electrolysis cell (SOEC). The Ni nanoparticles, synthesized by an impregnation method, were from 45.8 nm to 84.1 nm in diameter, and were highly dispersed on the BCZYN. The BCZYN nanoparticles, fabricated by the flame oxide synthesis method, constructed a unique microstructure, the so-called “fused-aggregate network structure”.
    [Show full text]
  • Mixed Electronic and Ionic Conduction Properties of Lithium Lanthanum Titanate
    Mixed Electronic and Ionic Conduction Properties of Lithium Lanthanum Titanate Michael J. Wang, Jeffrey B. Wolfenstine and Jeff Sakamoto* M. Wang, Prof. J. Sakamoto Department of Materials Science & Engineering University of Michigan Ann Arbor, MI 48109, USA E-mail: [email protected] Prof. J. Sakamoto Department of Mechanical Engineering University of Michigan Ann Arbor, MI 48109, USA Dr. J. Wolfenstine Solid Ionic Consulting Seattle, WA 98115 Keywords: batteries, electroceramics, electrolytes, conductivity, LLTO With the continued increase in Li-metal anode rate capability, there is an equally important need to develop high-rate cathode architectures that are compatible with solid-state electrolytes. A proposed method of improving charge transport in the cathode is introducing a mixed electronic and ionic conductor (MEIC) which can eliminate the need for conductive additives that occlude electrolyte-electrode interfaces and lower the net additive required in the cathode. This study takes This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/adfm.201909140. This article is protected by copyright. All rights reserved. advantage of a reduced perovskite electrolyte, Li0.33La0.57TiO3 (LLTO), to act as a model MEIC. It was -3 -4 found that the ionic conductivity of reduced LLTO is comparable to oxidized LLTO (σbulk=10 -10 S -1 -5 -6 -1 -1 cm , σGB=10 -10 S cm ) and the electronic conductivity is 1mS cm . The ionic transference numbers were calculated to be 0.9995 and 0.0095 in the oxidized and reduced state respectively.
    [Show full text]
  • Pilot-Scale Demonstration of Ilmenite Processing Technology UMD NRRI
    Pilot-Scale Demonstration of Ilmenite Processing Technology Submitted by: Matthew Mlinar, Program Manager, Mineral Processing Shashi Rao, Metallurgical Engineer Tom Petersen, Technical Manager, Mineral Processing May 2017 May Date: May 24, 2017 – Collaborator: Process Research Ortech (PRO) Mississauga, Ontario, Canada Funders: Iron Range Resources and Rehabilitation Board (IRRRB) University of Minnesota Duluth Vice Chancellor for Academic Affairs (UMD EVCAA) University of Minnesota Office of the Vice President for Research (UM OVPR) Technical Report Report Technical NRRI Duluth Laboratories & Administration 5013 Miller Trunk Highway Duluth, Minnesota 55811 Coleraine Laboratories One Gayley Avenue P.O. Box 188 Coleraine, Minnesota 55722 Pilot-Scale Demonstration of Ilmenite Processing Technology UMD NRRI By: ________________________________________________________________ Matthew Mlinar – UMD NRRI Program Manager, Mineral Processing By: ________________________________________________________________ Shashi Rao – UMD NRRI Metallurgical Engineer By: ________________________________________________________________ Tom Petersen – UMD NRRI Technical Manager, Mineral Processing Approved By: ________________________________________________________________ Richard Kiesel – UMD NRRI Asst. Director Minerals, Metallurgy, and Mining Approved By: ________________________________________________________________ George Hudak, Ph. D. – UMD NRRI Director Minerals, Metallurgy, and Mining Peer Reviewed By: Harvey Thorleifson Ph.D., P.Geo., D.Sc., Director,
    [Show full text]
  • Tin Titanate – the Hunt for a New Ferroelectric Perovskite
    Tin Titanate – the hunt for a new ferroelectric perovskite J. Gardner,1 Atul Thakre,2,3 Ashok Kumar,2,3 J. F. Scott,1,4 1 School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, United Kingdom 2 CSIR-National Physical Laboratory (CSIR-NPL), Dr. K. S. Krishnan Road, Delhi 110012, India 3 Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K. S. Krishnan Road, Delhi 110012, India 4 School of Physics and Astronomy, University of St. Andrews, St. Andrews, Fife KY16 9SS, United Kingdom Email: [email protected] and [email protected] Abstract We review all the published literature and show that there is no experimental evidence for homogeneous tin titanate SnTiO3 in bulk or thin-film form. Instead a combination of unrelated artefacts are easily misinterpreted. The X-ray Bragg data are contaminated by double scattering from the Si substrate, giving a strong line at the 2-theta angle exactly where perovskite SnTiO3 should appear. The strong dielectric divergence near 560K is irreversible and arises from oxygen site detrapping, accompanied by Warburg/Randles interfacial anomalies. The small (4 uC/cm2) apparent ferroelectric hysteresis remains in samples shown in pure (Sn,Ti)O2 rutile/cassiterite, in which ferroelectricity is forbidden. Only very recent German work reveals real bulk SnTiO3, but this is completely inhomogeneous, consisting of an elaborate array of stacking faults, not suitable for ferroelectric devices. Unpublished TEM data reveal an inhomogeneous SnO layered structured thin films, related to shell-core structures. The harsh conclusion is that there is a combination of unrelated artefacts masquerading as ferroelectricity in powders and ALD films; and only a trace of a second phase in Cambridge PLD data suggests any perovskite content at all.
    [Show full text]
  • 22345.Pdf (6.55
    Processing and Properties of Nanocomposite Thin Films for Microfabricated Solid Oxide Fuel Cells A Dissertation submitted to the Graduate School Of the University of Cincinnati In partial fulfillment on the Requirements for the degree of Doctor of Philosophy In the Materials Science and Engineering program Of the College of Engineering and Applied Science By Michael A. Rottmayer M.S., University of Dayton, 2007 Committee Chair: Dr. Raj Singh 1 Abstract Microfabricated solid oxide fuel cells (mSOFCs) have recently gained attention as a promising technology, with the potential to offer a low temperature (as low as 300°C), reduced start-up time, and improved energy density for portable power applications. At present, porous Pt is the most common cathode being investigated for mSOFCs. However, there are significant technical challenges for utilizing pure metallic electrodes at the operating temperatures of interest due to their tendency towards Ostwald ripening, as well as no bulk ionic conductivity. Nanocomposite materials (e.g. Pt/YSZ) are a promising alternative approach for providing both microstructural and electrochemical stability to the electrode layer. The overall objective of this research was to explore the processing of nanocomposite metal / metal oxide materials (i.e. Pt/YSZ) for use as a high performance cathode electrode for mSOFCs. The Pt/YSZ nanocomposite cathodes were deposited through a co-sputtering process and found to be stable up to 600°C in air for extended periods of time through an exhaustive materials and electrochemical study. A percolation theory model was utilized to guide the design of the Pt/YSZ composition, allowing for a networked connection of ionic- and electron-conduction through the membrane, leading to an extension of the triple phase boundary (TPB).
    [Show full text]