A Problems Approach+

Total Page:16

File Type:pdf, Size:1020Kb

A Problems Approach+ SIS_61-75_RZ 16.02.2007 15:39 Uhr Seite 70 Molecular Biology of the Cell* and Molecular Biology of the Cell: A Problems Approach+ *By Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts and Peter Walter +By Tim Hunt and John Wilson Reviewed by Bernhard Haubold, Fachhochschule Weihenstephan, Germany The success of an academic disci- illustrations embedded in clear and natural sciences. pline has a lot to do with the attrac- carefully paced explanatory prose. For this reason, Tim Hunt (2001 tiveness of its founding ideas and dis- This feature makes the book useful Nobel laureate) and John Wilson have coveries. These in turn reach the next for readers with diverse levels of pro- written a companion book to MBoC: generation of practitioners through ficiency. For example, the panels sum- Molecular Biology of the Cell: A Problems textbooks. Three years after the com- marising the chemical constituents of Approach. The book consists of 1,389 pletion of the Human Genome cells are useful for students preparing problems supplementing chapters 1-8 Project, it is safe to say that molecular for university entry exams, whereas and 10-18 of MBoC. In addition, it cell biology is a success story. The the chapter on cancer contains a lot of contains detailed answers to half of fourth edition of its premiere text- material that will be news to all but the problems; the answers to the other book, Molecular Biology of the Cell the experts in the field. half are available to instructors from (MBoC), has been out for some time All of this richness is distributed the publisher without fuss. As Hunt now (it was published in 2002), but it over four parts containing 25 chapters and Wilson write, their problems can is still well worth drawing attention and adds up to a tome comprising be read as a “running commentary on to this marvellous teaching device. substantially more than 1,500 pages. If MBoC”. They range from simple What is your favourite discovery in you find books of this size too heavy true/false questions to concise pre- molecular biology since you last stud- to carry, let alone read, fear not, for sentations of the decisive data con- ied the subject at school or university? you can turn to the abridged version tained in classical research papers. An My list includes the realisation in the of MBoC, published as Essential Cell example of a typical true/false state- late 1990s that non-coding RNA plays Biology by the same team of authors ment is “Since introns are largely a central role in cell regulation, the as the parent volume. genetic ‘junk’, they do not have to be high-resolution 3D structure of ribo- There is a strange paradox about removed precisely.” As to research, somes in 2001, and the first draft of good textbooks, however. The easier the beautiful experiment by Meselson the sequence of the human genome in they make it for the reader to assimi- and Stahl published in 1958, which 2001. All three topics are dealt with in late complex new ideas, the more established the semi-conservative MBoC. In fact, genomics is treated in they distort the process by which the nature of DNA replication, serves as several places, starting on the cover, discoveries presented on their glossy the basis for several problems. In which shows a portion of the human pages were actually made. And it is addition, there are also a large num- genome sequence. this process of discovery, which is ber of problems designed to test the Apart from its comprehensiveness, usually nothing but anarchic, that is reader’s ability to perform the kind of MBoC is crammed with attractive at the heart of the attraction of the order of magnitude estimations 70 Science in School Issue 4 : Spring 2007 www.scienceinschool.org SIS_61-75_RZ 16.02.2007 15:39 Uhr Seite 71 Reviews expected of working cell biologists. Wilson and Hunt’s companion vol- Details For example, how long are the DNA ume that makes MBoC truly special. Molecular Biology of the Cell molecules contained in the nucleus of Whether you are looking for interest- Publisher: Garland Science a single human cell? (Answer: ing class problems or just wish to Publication year: 2002 roughly 2 m.) Such computations are test your own understanding of cell ISBN: 9780815340720 never mathematically challenging, but biology, The Problems Approach is the Molecular Biology of the Cell: always biologically illuminating. closest you can get to experiencing A Problems Approach MBoC is a prime example of what a the excitement of research without Publisher: Garland Science good textbook in the biological sci- exchanging the safety of your arm- Publication year: 2002 ences should be: comprehensive, chair for the vagaries of the ISBN: 9780815335771 vivid and up-to-date. However, it is laboratory. The Third Man of the Double Helix By Maurice Wilkins Reviewed by Friedlinde Krotscheck, Internationale Gesamthochschule Heidelberg, Germany In this autobiographical book, at a much slower pace by leading the cult to work selflessly for the common Maurice Wilkins presents the chrono- reader through the author’s family good. Wilkins’ message is to focus logical story of the discovery of DNA tree. It takes some patience not to skip first on the idealistic advancement of structure in 1953. As The Third Man of this first chapter completely. By chap- science and to put one’s own fame on the Double Helix, Wilkins is well ter two, Wilkins has begun to describe the backburner. Students need to placed to describe the complex scien- his educational background, painstak- learn to work co-operatively in tific background and people involved ingly building up the story to make groups, to gain knowledge from each in the breakthrough that earned him the reader understand why he other and to accept other opinions. and fellow scientists Francis Crick worked for some time on the devel- Creative criticism leads to discussions and James Watson the 1962 Nobel opment of the atomic bomb in and these might lead to solutions. Prize in Physiology or Medicine. Berkeley, California, in the early The Third Man of the Double Helix Since it is an autobiography, 1940s. Finally, he describes the would appeal to teachers and high- Wilkins puts himself in the centre by research team under Professor school students of biology. However, stressing his own point of view. Randall at King’s College, London, to get the full picture of this landmark Disturbed by concerns that Rosalind also called ‘Randall’s Circus’. From discovery, one should also read Jim Franklin was not given the credit she then on, The Third Man evolves and Watson’s book The Discovery of the deserved for her part in the discovery, keeps the reader in suspense. The Double Helix and Brenda Maddox’s he states in the preface that “this book book ends with the very simple con- Rosalind Franklin. is in some way my attempt to clusion that if Wilkins and Rosalind The historic relevance of all three respond to these questions, and to tell Franklin had been a more compatible books is especially important for my side of the story.” And that is pre- team, they would have found the younger teaching faculty who were cisely what Wilkins does, presenting solution to the DNA structure much not contemporary witnesses to this his viewpoint while including his earlier. period of scientific progress. own shortcomings and those of others This historic event is an excellent who worked for decades on the ques- example of the necessity of teamwork Details tion of how the cell copies genetic across science subjects, interdiscipli- Publisher: Oxford University Press information. nary exchanges and group co-opera- Publication year: 2005 The title suggests a rather exciting tion. With today’s competition for ISBN: 9780192806673 detective story, but the book starts off research funding, it is even more diffi- www.scienceinschool.org Science in School Issue 4 : Spring 2007 71.
Recommended publications
  • Biochemistry, Genetics, Molecular and Cell Biology) Hit the Newspaper Headlines on a Weekly Basis
    The Tenovus-Scotland Symposia and Medal Lectures Today medical advances as a result of discoveries in the Life Sciences (Biochemistry, Genetics, Molecular and Cell Biology) hit the newspaper headlines on a weekly basis. This was not the case at the time of the first Tenovus-Scotland Symposium nearly 35 years ago. Since the discovery of the structure of DNA twenty years earlier, great advances had been made in understanding, at the level of molecules, how genes work in the cell. From study of simple bacteria and viruses, it was known that the information for making all the different proteins in the cell was encoded in the sequence of nucleotides, the individual chemical units of DNA, but study of higher organisms seemed impossibly complex. The chromosomes in each human cell have about 23,000 genes in their DNA that contains a total of about three thousand million nucleotides - how would it be possible to study these genes individually? Three staff from the Biochemistry Department and the Beatson Institute planned a two day meeting at Glasgow University in 1974 to bring together scientists to discuss and learn about the new discoveries that were beginning to provide answers to that fundamental question. Sir Charles Illingworth, who had recently founded Tenovus- Scotland, saw the importance of these studies and their potential future application in medicine and agreed a grant towards the cost of the meeting, which we called the Tenovus-Scotland Symposium although the First Meeting was also jointly sponsored by the Nucleotide Group of the
    [Show full text]
  • Cambridge's 92 Nobel Prize Winners Part 2 - 1951 to 1974: from Crick and Watson to Dorothy Hodgkin
    Cambridge's 92 Nobel Prize winners part 2 - 1951 to 1974: from Crick and Watson to Dorothy Hodgkin By Cambridge News | Posted: January 18, 2016 By Adam Care The News has been rounding up all of Cambridge's 92 Nobel Laureates, celebrating over 100 years of scientific and social innovation. ADVERTISING In this installment we move from 1951 to 1974, a period which saw a host of dramatic breakthroughs, in biology, atomic science, the discovery of pulsars and theories of global trade. It's also a period which saw The Eagle pub come to national prominence and the appearance of the first female name in Cambridge University's long Nobel history. The Gender Pay Gap Sale! Shop Online to get 13.9% off From 8 - 11 March, get 13.9% off 1,000s of items, it highlights the pay gap between men & women in the UK. Shop the Gender Pay Gap Sale – now. Promoted by Oxfam 1. 1951 Ernest Walton, Trinity College: Nobel Prize in Physics, for using accelerated particles to study atomic nuclei 2. 1951 John Cockcroft, St John's / Churchill Colleges: Nobel Prize in Physics, for using accelerated particles to study atomic nuclei Walton and Cockcroft shared the 1951 physics prize after they famously 'split the atom' in Cambridge 1932, ushering in the nuclear age with their particle accelerator, the Cockcroft-Walton generator. In later years Walton returned to his native Ireland, as a fellow of Trinity College Dublin, while in 1951 Cockcroft became the first master of Churchill College, where he died 16 years later. 3. 1952 Archer Martin, Peterhouse: Nobel Prize in Chemistry, for developing partition chromatography 4.
    [Show full text]
  • Watson's Way with Words
    books and arts My teeth were set on edge by reference to “the stable form of uranium”,a violation of Kepler’s second law in a description of how the Earth’s orbit would change under various circumstances, and by “the rest mass of the neutrino is 4 eV”. Collins has been well served by his editor and publisher, but not perfectly. There are un-sort-out-able mismatches between text and index, references and figures; acronyms D.WRITING LIFE OF JAMES THE WATSON in the second half of the alphabet go un- decoded; several well-known names are misspelled. And readers are informed that Weber’s death occurred “on September 31, E. C. FRIEDBERG, 2000”. Well, Joe always said he could do things that other people couldn’t, but there are limits. Incidentally, my adviser was partly right: I should not have agreed to review this book. It is very much harder to hear harsh, some- times false, things said about one’s spouse after he can no longer defend himself. I am not alone in this feeling. Carvel Gold, widow of Thomas Gold, whose work was also far from universally accepted (see Nature 430, 415;2004),says the same thing. ■ Virginia Trimble is at the University of California, Irvine, California 92697-4575, USA. She and Joe The write idea? In The Double Helix,James Watson gave Weber were married from 16 March 1972 until his a personal account of the quest for the structure of DNA. death on 30 September 2000. Watson set out to produce a good story that the public would enjoy as much as The Great Gatsby.He started writing in 1962 with the working title “Honest Jim”,which is illumi- Watson’s way nating in itself.
    [Show full text]
  • Cambridge's 92 Nobel Prize Winners Part 4 - 1996 to 2015: from Stem Cell Breakthrough to IVF
    Cambridge's 92 Nobel Prize winners part 4 - 1996 to 2015: from stem cell breakthrough to IVF By Cambridge News | Posted: February 01, 2016 Some of Cambridge's most recent Nobel winners Over the last four weeks the News has been rounding up all of Cambridge's 92 Nobel Laureates, which this week comes right up to the present day. From the early giants of physics like JJ Thomson and Ernest Rutherford to the modern-day biochemists unlocking the secrets of our genome, we've covered the length and breadth of scientific discovery, as well as hugely influential figures in economics, literature and politics. What has stood out is the importance of collaboration; while outstanding individuals have always shone, Cambridge has consistently achieved where experts have come together to bounce their ideas off each other. Key figures like Max Perutz, Alan Hodgkin and Fred Sanger have not only won their own Nobels, but are regularly cited by future winners as their inspiration, as their students went on to push at the boundaries they established. In the final part of our feature we cover the last 20 years, when Cambridge has won an average of a Nobel Prize a year, and shows no sign of slowing down, with ground-breaking research still taking place in our midst today. The Gender Pay Gap Sale! Shop Online to get 13.9% off From 8 - 11 March, get 13.9% off 1,000s of items, it highlights the pay gap between men & women in the UK. Shop the Gender Pay Gap Sale – now. Promoted by Oxfam 1.1996 James Mirrlees, Trinity College: Prize in Economics, for studying behaviour in the absence of complete information As a schoolboy in Galloway, Scotland, Mirrlees was in line for a Cambridge scholarship, but was forced to change his plans when on the weekend of his interview he was rushed to hospital with peritonitis.
    [Show full text]
  • Journal of Science (Including the History & Philosophy of Science)
    St Benedict’s LSC Journal of Science (including the History & Philosophy of Science) Volume 3 ∙ Number 1 ∙ January 2019 Published by the Science Department, St Benedict’s Catholic School LSC, Bury St Edmunds, Suffolk, UK. Editor-in Chief: Mr J Gregory Associate Editors: Mrs F Green, Mr F Sousa, Mrs R Blewitt and Mr C McGraffin EDITOR’S NOTE: Welcome to the first issue of Volume 3 of our Journal of Science. I apologise for the fact that it has been a year since the last issue and hope to make up for it during the Spring and Summer terms this year! This issue features a variety of papers and posters containing many fascinating pieces of information ranging from one author’s ultrasound scan when she was only 12 weeks old and still inside her mother’s womb; biographies of some famous scientists; all about different states of matter; animals that don’t have bones; and three very thoughtful and insightful papers comparing the work of Rosalind Franklin and that of Watson & Crick in the discovery of the structure of DNA – a topic that still causes much debate. We take the celebration of New Year’s Day, January 1st, rather for granted these days but, when you think about it, January 1st is in the middle of Winter and, although the days are getting longer, nothing much else is going to happen for at least another couple of months. Wouldn’t it be better to mark the event on the date of the Winter Solstice, December 21st, which marks the moment when the days actually do start to get longer? Or maybe at the Vernal (Spring) Equinox, 20th March, when days become longer than nights and the first green shoots of growth are appearing in nature? The fact is that, in Western Civilisation, the so-called ‘New Year’ has varied throughout.
    [Show full text]
  • An Interview with Nobel Laureate Maurice Wilkins
    An Interview with Stephanie Johnson is an undergraduatein the Honors College at BallState University,Muncie, IN 47306, where she is completinga Nobel Laureate majorin biology and a minor in social work. She is interested in a careeras a genetic counseling associate. While a student at the Ball State University London Center during the autumn quarter of Maurice Wilkins 1987, Johnson interviewed MauriceWilkins in his Kings College, Londonoffice. The interviewwill serve as the basis for a portionof her senior honors thesis. Thomas R. Mertensis distinguished pro- fessor of biology education at Ball State University. He has a B.S. in biology education from Ball State and a M.S. and Ph.D. in ge- netics from Purdue University. A member of the Ball State faculty for 32 years, he directs NSF-fundedprojects for inservice biology teachers and co-authoredGenetics LaboratoryInvestigations, 8th StephanieJohnson ed. (Macmillan)and Human Genetics, 4th ed. (Scott Foresman). Mertens served as NABT president in 1985 and was named an Thomas R. Mertens HonoraryMember in 1988. Downloaded from http://online.ucpress.edu/abt/article-pdf/51/3/151/43957/4448881.pdf by guest on 24 September 2021 In 1962, three men-Maurice Wilkins, Francis receives an increased number of invitations to speak Crickand James Watson-shared the Nobel Prize in and "more invitations to speak at meetings and con- Medicine and Physiology for what many have called ferences on wider topics than [one's] own field; for "the greatest discovery in modem biology" (Sourkes example, 'Science and the World'.or 'Science and Re- & Stevenson 1966). This discovery, the elucidation of ligion.'" Wilkins believes that the receipt of the the structure of deoxyribonucleic acid (DNA), was Nobel Prize "opens doors" to speak at conferences first published in the April 25, 1953, issue of Nature.
    [Show full text]
  • Cover June 2011
    z NOBEL LAUREATES IN Qui DNA RESEARCH n u SANGRAM KESHARI LENKA & CHINMOYEE MAHARANA F 1. Who got the Nobel Prize in Physiology or Medicine 1933) for discovering the famous concept that says chromosomes carry genes? a. Gregor Johann Mendel b. Thomas Hunt Morgan c. Aristotle d. Charles Darwin 5. Name the Nobel laureate (1959) for his discovery of the mechanisms in the biological 2. The concept of Mutations synthesis of ribonucleic acid and are changes in genetic deoxyribonucleic acid? information” awarded him a. Arthur Kornberg b. Har Gobind Khorana the Nobel Prize in 1946: c. Roger D. Kornberg d. James D. Watson a. Hermann Muller b. M.F. Perutz c. James D. Watson 6. Discovery of the DNA double helix fetched them d. Har Gobind Khorana the Nobel Prize in Physiology or Medicine (1962). a. Francis Crick, James Watson, Rosalind Elsie Franklin b. Francis Crick, James Watson and Maurice Willkins c. James Watson, Maurice Willkins, Rosalind Elsie Franklin 3. Identify the discoverer and d. Maurice Willkins, Rosalind Elsie Franklin and Francis Crick Nobel laureate of 1958 who found DNA in bacteria and viruses. a. Louis Pasteur b. Alexander Fleming c. Joshua Lederberg d. Roger D. Kornberg 4. A direct link between genes and enzymatic reactions, known as the famous “one gene, one enzyme” hypothesis, was put forth by these 7. They developed the theory of genetic regulatory scientists who shared the Nobel Prize in mechanisms, showing how, on a molecular level, Physiology or Medicine, 1958. certain genes are activated and suppressed. Name a. George Wells Beadle and Edward Lawrie Tatum these famous Nobel laureates of 1965.
    [Show full text]
  • Cleavage Stage and Cell Division Kinetics
    Cleavage stage and cell division kinetics Thorir Hardarson, PhD. Possible conflict of interest NO Kinetics? Greek: κίνησις "kinesis", movement or to move i.e. Cleavage rate (of embryos) Cleavage rate then …? Cleavage rate = Cell division rate Cell division is the process by which a parent cell divides into two or more daughter cells, i.e. mitosis. A human being's body experiences about 10,000 trillion cell divisions in a lifetime Before division can occur, the chromosomes must be replicated, and the duplicated genome separated cleanly between cells. The Nobel Prize in Physiology or Medicine 2001 Leland H. Hartwell, Tim Hunt, Sir Paul Nurse For their discoveries of "key regulators of the cell cycle" ”Start -G”Genes” “Checkpoints” “CDK” (Cyclin dependent kinase) “Cyclins, (proteins that regulate CDK) Mitosis Cell cycle control Hundred of genes and macromolecules involved Checkpoints of DNA damage and order of cell cycle events Hundred of genes and macromolecules involved Checkpoints of DNA damage and order of cell cycle events Cell cycle checkpoints So… For all living eukaryotic organisms it is essential that the differen t ph ases o f th e cell cyc le are prec ise ly coordinated. The phases must follow in correct order, and one phase must be completed before the next phase can begin. Errors in this coordination may lead to chromosomal alterations. Chromosomes or parts of chromosomes may be lost, rearranged or distributed unequally between the two daughter cells, often seen in cancer cells. Checkpoints in oocytes High chromosomal aberration rates in the human oocyte/embryo Has evolution favored low fecundity in humans? Fertil.
    [Show full text]
  • Maurice Wilkins Page...28 Satellite Radio in Different Parts of the Country
    CMYK Job No. ISSN : 0972-169X Registered with the Registrar of Newspapers of India: R.N. 70269/98 Postal Registration No. : DL-11360/2002 Monthly Newsletter of Vigyan Prasar February 2003 Vol. 5 No. 5 VP News Inside S&T Popularization Through Satellite Radio Editorial ith an aim to utilize the satellite radio for science and technology popularization, q Fifty years of the Double Helix W Vigyan Prasar has been organizing live demonstrations using the WorldSpace digital Page...42 satellite radio system for the benefit of school students and teachers in various parts of the ❑ 25 Years of In - Vitro Fertilization country. To start with, live demonstrations were organized in Delhi in May 2002. As an Page...37 ongoing exercise, similar demonstrations have been organized recently in the schools of ❑ Francis H C Crick and Bangalore (7 to 10 January,2003) and Chennai (7 to 14 January,2003). The main objective James D Watson Page...34 is to introduce teachers and students to the power of digital satellite transmission. An effort is being made to network various schools and the VIPNET science clubs through ❑ Maurice Wilkins Page...28 satellite radio in different parts of the country. The demonstration programme included a brief introduction to Vigyan Prasar and the ❑ Rosalind Elsie Franklin Satellite Digital Broadcast technology, followed by a Lecture on “Emerging Trends in Page...27 Communication Technology” by Prof. V.S. Ramamurthy, Secretary, Department of Science ❑ Recent Developments in Science & Technology and Technology and Chairman, Governing Body of VP. Duration of the Demonstration Page...29 programme was one hour, which included audio and a synchronized slide show.
    [Show full text]
  • ILAE Historical Wall02.Indd 10 6/12/09 12:04:44 PM
    2000–2009 2001 2002 2003 2005 2006 2007 2008 Tim Hunt Robert Horvitz Sir Peter Mansfi eld Barry Marshall Craig Mello Oliver Smithies Luc Montagnier 2000 2000 2001 2002 2004 2005 2007 2008 Arvid Carlsson Eric Kandel Sir Paul Nurse John Sulston Richard Axel Robin Warren Mario Capecchi Harald zur Hauser Nobel Prizes 2000000 2001001 2002002 2003003 200404 2006006 2007007 2008008 Paul Greengard Leland Hartwell Sydney Brenner Paul Lauterbur Linda Buck Andrew Fire Sir Martin Evans Françoise Barré-Sinoussi in Medicine and Physiology 2000 1st Congress of the Latin American Region – in Santiago 2005 ILAE archives moved to Zurich to become publicly available 2000 Zonismide licensed for epilepsy in the US and indexed 2001 Epilepsia changes publishers – to Blackwell 2005 26th International Epilepsy Congress – 2001 Epilepsia introduces on–line submission and reviewing in Paris with 5060 delegates 2001 24th International Epilepsy Congress – in Buenos Aires 2005 Bangladesh, China, Costa Rica, Cyprus, Kazakhstan, Nicaragua, Pakistan, 2001 Launch of phase 2 of the Global Campaign Against Epilepsy Singapore and the United Arab Emirates join the ILAE in Geneva 2005 Epilepsy Atlas published under the auspices of the Global 2001 Albania, Armenia, Arzerbaijan, Estonia, Honduras, Jamaica, Campaign Against Epilepsy Kyrgyzstan, Iraq, Lebanon, Malta, Malaysia, Nepal , Paraguay, Philippines, Qatar, Senegal, Syria, South Korea and Zimbabwe 2006 1st regional vice–president is elected – from the Asian and join the ILAE, making a total of 81 chapters Oceanian Region
    [Show full text]
  • Pursuing the Impossible: an Interview with Tim Hunt Tim Hunt
    Hunt BMC Biology (2015) 13:64 DOI 10.1186/s12915-015-0164-y INTERVIEW Open Access Pursuing the impossible: an interview with Tim Hunt Tim Hunt synthesis in sea urchin (Fig. 1) and clam eggs at the time Abstract and we began to wonder why it was that — again some- Tim Hunt took an undergraduate degree in Natural thing that had been known for a long time — fertilised Sciences at Cambridge in 1964, and his PhD and sea urchin eggs needed new protein synthesis in order to subsequent work focussed on the control of protein divide: what were these proteins — we assumed there synthesis until 1982, when his adventitious discovery were several proteins — that they needed to divide? We of the central cell cycle regulator cyclin, while he was knew they could synthesise DNA without new protein teaching at the Marine Biological Laboratory in synthesis, but they couldn’t divide. Sometime around Woods Hole, redirected him to the study of cell cycle then a paper was published that showed that there was a regulation. From 1990 to his retirement Tim worked in critical period for each cycle where you had to make the Clare Hall Laboratories of Cancer Research UK. He new proteins in order for the next division to take place. shared the Nobel Prize in Physiology and Medicine That didn’t strike anybody as unusual, because if you with Lee Hartwell and Paul Nurse in 2001, and talked think about normal cells, they have to double in size, to us about the series of coincidences that led him to so of course they need to make new proteins.
    [Show full text]
  • Dnai DVD and the Dnai Teacher Guide Dnai
    DNAi DVD 1 DNAi DVD and the DNAi Teacher Guide The DNA Interactive (DNAi) DVD carries approximately four hours of video interviews with 11 Nobel Laureates and more than 50 other scientists, clinicians, and patients. It also holds the complete set of 3-dimensional animations produced for the DNA TV series and DNAi project. The following pages list video clips and animations from the DVD that would be appropriate to show with specific activities in the DNAi Teacher Guide. The clips and animations are listed under “themes” and “additional animations.” The “themes” listing includes relevant interviews and animations that can be accessed from the “themes” section of the DVD. The “additional animations” are best accessed from “animations” button in the DVD main menu. You can access the DNAi Teacher Guide by registering at www.dnai.org/teacher. Activity 1: DNAi Timeline: a scavenger hunt THEMES • DNA MOLECULE • Discovery of DNA A pre-1953 notion _ biology prior to discovery of the double helix . François Jacob DNA is the genetic material _ the experiment that identified DNA as the genetic material . Maclyn McCarty Chargaff's ratios _ the DNA base ratio rules . Erwin Chargaff The answer _ the X-ray diffraction picture that revealed the helix . Maurice Wilkins DNA: the key to understanding _ why the discovery of DNA's structure was so important . Francis Crick Structure of DNA The correct model _ Meselson and Franklin Stahl's experiment to determine the correct DNA replication mode . Matthew Meselson • DNA IN ACTION • The genetic code Defining the gene _ matching the gene to protein sequence .
    [Show full text]