Network Forensics

Total Page:16

File Type:pdf, Size:1020Kb

Network Forensics Network Forensics Michael Sonntag Institute of Networks and Security What is it? Evidence taken from the “network” In practice this means today the Internet (or LAN) In special cases: Telecommunication networks (as long as they are not yet changed to VoIP!) Typically not available “after the fact” Requires suspicions and preparation in advance Copying the communication content At the source (=within the suspects computer): “Online search” This could also be a webserver, e.g. if it contains illegal content “Source” does NOT mean that this is the client/initiator of communication/… At the destination: See some part of the traffic Only if unavoidable or the only interesting part Somewhere on the way of the (all?) traffic: ISP, physically tapping the wires, home routers etc. Network Forensics 2 Problems of network forensics “So you have copied some Internet traffic – but how is it linked to the suspect?” The IP addresses involved must be tied to individual persons This might be easy (location of copying) or very hard “When did it take place?” Packet captures typically have only relative timestamps But there may be lots of timestamps in the actual traffic! As supporting evidence to some external documentation “Is it unchanged?” These are merely packets; their content can be changed Although it is possible to check e.g. checksums, this is a lot of work and normally not done Treat as any other digital evidence Hash value + Chain of Custody; work on copies only Network Forensics 3 Scenario Suspect: Mallory Malison; released from jail on bail Suspicion of attempted corporate espionage There is some suspicion that he may try to flee But we currently have no hard evidence at all Released Soon after he disappears… What happened forensically: Copying all traffic outgoing from his computer Your task: Find out all about his activities, specifically: Any (attempted) communication with others Including all “names” and “aliases” used (his and counterparts) Including all content (text, files etc) if possible Any hints to locations All other information you can find For our example only! Network Forensics 4 Source Packet capture “scenario.pcap” Contains the actual packet capture Hash value (SHA256): sha256sum -b scenario.pcap f2bccff18f4966fc352d032df834c818e4da052bfd32494bd729 ff5c0c8a93f4 *scenario.pcap Time: 21.4.2015, approx. 9:19 Created with tcpdump on a Linux system tcpdump –ni enp0s3 -s 65535 -w scenario.pcap Program for inspection/evaluation: Wireshark Can be used for capturing packets, but also for displaying/investigating traces from other sources Network Forensics 5 So brief only because activity was “condensed” General overview - and to finish the lesson in time! Load the capture in wireshark and get an overview Packets: 1389; Total time: 227.53… seconds ( 4 min.) Statistics - Summary: Network Forensics 6 Statistics - Protocol hierarchy Overview on what was going on Take care: Numbers are not necessarily reliable Packets can contain several/no protocols E.g. IMAP: Server response might be “TCP” and not counted under IMAP If not dissected as such Network Forensics 7 Arp Could show us what other computers were present in the subnet (Right-click - Apply as filter - Selected) Asking for 169.254.10.120: APIPA Not interesting Asking for 192.168.10.1 See later with DHCP! Asking for 192.168.10.254 One more computer! In this case: Default gateway of this subnet/server Other information: MAC addresses Can be used for identification of devices (later or when known for filtering) 08:60:6e:42:d2:4f: Client computer (=suspect) ASUSTek Computer Inc. 08:00:27:7f:a8:b4: Default gateway/server CADMUS COMPUTER SYSTEMS; actually: Virtualbox uses these For MAC/OUI identification see https://regauth.standards.ieee.org/standards-ra-web/pub/view.html#registries Network Forensics 8 DHCP (“Bootstrap Protocol”) Discover, Offer, Request and Ack This computer received a new IP address It has presumably not been in this subnet before But: Discover contains option 50: “Request IP address” So it has been in this subnet (or one very similar to it!) and it had then (=the last time) 192.168.10.1 Add ICMP to it: (bootp and udp and ip and eth and frame) or icmp Server tests with Ping whether the requested (or selected by him) address is free Hostname (Request option 12): “malmals-laptop” Some hint that it is indeed “Mallory Malisons” Laptop Requests lots of things; and gets them (Offer/Ack) DNS: 192.168.10.254; Network: 192.168.10.254/24 Domain name is “provider.com” Network Forensics 9 DNS Take care: DNS alone is often misleading/strange DNS is almost always the first step for something else Whatever this is, it will be invisible if showing DNS only! Querying for its own name: “malmals-laptop” Active Directory: _ldap._tcp.dc._msdcs.provider.com Win. checking network connectivity: dns.msftncsi.com “Network Connectivity Status Indicator” Autoconfiguration: wpad.provider.com, wpad 404 hijack identification: engcqdycrtvlgej.provider.com En-us.appex-rf.msn.com Response: redirect to Akamai webhosting foodanddrink.tile.appex.bing.com; finance.*, weather.* Windows 8.1 tile live data Network Forensics 10 DNS irc.gamesurge.com: See later (IRC)! r00t.cf: See later (NTP)! mail.provider.com: See later (SMTP)! Thunderbird welcome page: live.mozillamessaging.com, www.mozilla.org ocsp.digicert.com: Certificate revocation check for this connection, which uses https mozorg.cdn.mozilla.net: Welcome page content Network Forensics 11 Netbios, WS-Discovery Again we get the computer name: MALMALS-LAPTOP But now we also get the “normal” Domain/Workgroup the computer belongs to In this case: Workgroup “WORKGROUP” (=standard value) Web Services Discovery Protocol (UDP “data” protocol) Discovering other devices via a multicast (239.255.255.250) Works through SOAP on port 3702 E.g. network printers, “people near me” Provides a new ID (unclear how permanent!) Network Forensics 12 SSDP Simple Service Discovery Protocol; SSDP Identified as HTTP Discovering other devices via a multicast (239.255.255.250) Works through HTTP-formed-content on port 1900 Basis for UPnP Interesting: No answers; no one else is there or they are (specifically!) configured to not use these protocols UPnP is typically switched on by default in consumer devices Network Forensics 13 NTP We have two time synchronizations (packets 163-166) (Client + Server ) * 2 ☺ Interesting: Windows is typically configured with a Microsoft time server, but here 188.40.92.202 is used What’s this? Check it manually! Or better: Switch back to “full view” (“Clear”) and see the DNS request immediately before asking for “r00t.cf” Note: Filtering in wireshark e.g. “ip.addr==188.40.92.202” will not be useful, as this is message content in DNS, not part of the packet metadata! The DNS server does have a completely different IP address Note: “frame contains "188.40.92.202"” doesn’t work either, as this would only match string content! But: “frame contains "\xbc\x28\x5c\xca"” works! (hex representation of IP address; but you might also want to check for other byte orders too!) Network Forensics 14 OCSP Certificate validation is present So obviously some secure connection was tried, successfully initiated, and then the certificate was checked for validity Which one? We don’t know from the request! It only contains hashes of the issuer, the key and the serial number of the certificate Hashes are relatively useless… If we had some concrete suspicion, we could check it! frame contains "\x03\x37\xb9\x28" (start of the serial number of the certificate) leads to packet 342; following this TCP stream we find it stems from a https connection to 63.245.215.20 Which immediately before has a DNS response for this IP with the name mozorg.dynect.mozilla.net It is the parent certificate of the certificate www.mozilla.org (packet 344) Issued by DigiCert High Assurance EV Root CA So now we know from what connection it stems and what certificate “initiated” the request Network Forensics 15 SMTP We see two sessions (tcp.port==25 and tcp.flags.syn==1) Starting at packets 677 and 1067 Session 1: 677 Plain authentication (see later) Message from “[email protected]” Message to “[email protected]” Simple text content + attachment The text we can easily read/copy out: “Follow TCP stream” + mark + Ctrl-C But the attachment? We can copy it out, but it is “encrypted”! Filename: “Meeting.docx”, Transfer-encoding: base64 So copy text, save as file, decode from base64 (d=decode, i=ignore garbage the linebreaks), view it base64 –d –i attachment.txt >Recovered.docx Use e.g. Cygwin or a Linux system Network Forensics 16 Message 1: Text Hi Trudy! I urgently need the data you "obtained" from ACME; my client is getting restless!! Meet me at the point shown in teh attachment! Only then our common future will be sure! See you soon, hottie Mallory Doesn’t look too good for our suspect… Network Forensics 17 Message 1: Attachment Time + Location Nice! Network Forensics 18 “Carving” image from document Extracting the image might be helpful: We can compare it easily to other images on a computer We can calculate a hash value to search for it How to do it: Trivial, because it is a docx! This means, it is actually a ZIP file with XML (and other) content Make copy, rename to ZIP, extract, look for image Look in subdirectory “word/media” image1.png Note: If you are observant you can identify a mistake of the person creating
Recommended publications
  • Implementing Cisco Cyber Security Operations
    2019 CLUS Implementing Cisco Cyber Security Operations Paul Ostrowski / Patrick Lao / James Risler Cisco Security Content Development Engineers LTRCRT-2222 2019 CLUS Cisco Webex Teams Questions? Use Cisco Webex Teams to chat with the speaker after the session How 1 Find this session in the Cisco Live Mobile App 2 Click “Join the Discussion” 3 Install Webex Teams or go directly to the team space 4 Enter messages/questions in the team space Webex Teams will be moderated cs.co/ciscolivebot#LTRCRT-2222 by the speaker until June 16, 2019. 2019 CLUS © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 3 Agenda • Goals and Objectives • Prerequisite Knowledge & Skills (PKS) • Introduction to Security Onion • SECOPS Labs and Topologies • Access SECFND / SECOPS eLearning Lab Training Environment • Lab Evaluation • Cisco Cybersecurity Certification and Education Offerings 2019 CLUS LTRCRT-2222 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 4 Goals and Objectives: • Today's organizations are challenged with rapidly detecting cybersecurity breaches in order to effectively respond to security incidents. Cybersecurity provides the critical foundation organizations require to protect themselves, enable trust, move faster, add greater value and grow. • Teams of cybersecurity analysts within Security Operations Centers (SOC) keep a vigilant eye on network security monitoring systems designed to protect their organizations by detecting and responding to cybersecurity threats. • The goal of Cisco’s CCNA Cyber OPS (SECFND / SECOPS) courses is to teach the fundamental skills required to begin a career working as an associate/entry-level cybersecurity analyst within a threat centric security operations center. • This session will provide the student with an understanding of Security Onion as an open source network security monitoring tool (NSM).
    [Show full text]
  • Hands-On Network Forensics, FIRST 2015
    2015-04-30 WWW.FORSVARSMAKTEN.SE Hands-on Network Forensics Workshop Preparations: 1. Unzip the virtual machine from NetworkForensics_ VirtualBox.zip on your EXTENSIVE USE OF USB thumb drive to your local hard drive COMMAND LINE 2. Start VirtualBox and run the Security Onion VM IN THIS WORKSHOP 3. Log in with: user/password 1 FM CERT 2015-04-30 WWW.FORSVARSMAKTEN.SE Hands-on Network Forensics Erik Hjelmvik, Swedish Armed Forces CERT FIRST 2015, Berlin 2 FM CERT 2015-04-30 WWW.FORSVARSMAKTEN.SE Hands-on Network Forensics Workshop Preparations: 1. Unzip the virtual machine from NetworkForensics_ VirtualBox.zip on your EXTENSIVE USE OF USB thumb drive to your local hard drive COMMAND LINE 2. Start VirtualBox and run the Security Onion VM IN THIS WORKSHOP 3. Log in with: user/password 3 FM CERT 2015-04-30 WWW.FORSVARSMAKTEN.SE ”Password” Ned 4 FM CERT 2015-04-30 WWW.FORSVARSMAKTEN.SE SysAdmin: Homer 5 FM CERT 2015-04-30 WWW.FORSVARSMAKTEN.SE PR /Marketing: Krusty the Clown 6 FM CERT 2015-04-30 WWW.FORSVARSMAKTEN.SE Password Ned AB = pwned.se 7 FM CERT 2015-04-30 WWW.FORSVARSMAKTEN.SE pwned.se Network [INTERNET] | Default Gateway 192.168.0.1 PASSWORD-NED-XP www.pwned.se | 192.168.0.53 192.168.0.2 [TAP]--->Security- | | | Onion -----+------+---------+---------+----------------+------- | | Homer-xubuntu Krustys-PC 192.168.0.51 192.168.0.54 8 FM CERT 2015-04-30 WWW.FORSVARSMAKTEN.SE Security Onion 9 FM CERT 2015-04-30 WWW.FORSVARSMAKTEN.SE Paths (also on Cheat Sheet) • PCAP files: /nsm/sensor_data/securityonion_eth1/dailylogs/ • Argus files:
    [Show full text]
  • CIT 485: Network Forensics
    CIT 485/585 Network Forensics The primary objective of this assignment is to learn a process for investigating security incidents and to give students practice analyzing such an incident using captured network data. 1S TUDENT LEARNING OUTCOMES 1. Describe digital evidence and how the type of legal dispute affects evidence used to resolve it. 2. Describe the steps of the OSCAR network forensics methodology. 3. Identify and decode protocols used on non-standard ports. 4. Investigate suspicious network data for malicious activity. 2D IGITAL EVIDENCE Digital evidence refers to any data collected in digital form from any computer, whether that computer is a desktop, mobile device, game console, printer, or IoT device. A primary goal of digital forensics is ensuring evidence integrity, the preservation of evidence in its original form. Evidence integrity is supported by a chain of custody, a set of documentation that describes the acquisition, copying, and analysis of digital evidence. As analysis of digital data often changes that data (reading a file will not modify the file itself but will change the last accessed time on the file), cryptographic checksums such as SHA-256 are often used to ensure that copies of digital evidence match the original evidence. Details of digital evidence handling are discussed in CIT 430: Computer Forensics. Digital evidence in a criminal case is returned through an inventory of items take through a search warrant. Any devices that may contain an embedded computer can contain digital evidence. Defense attorneys can request an invetory of items and obtain forensic copies of the data from those devices.
    [Show full text]
  • Passive Asset Discovery and Operating System Fingerprinting in Industrial Control System Networks
    Eindhoven University of Technology MASTER Passive asset discovery and operating system fingerprinting in industrial control system networks Mavrakis, C. Award date: 2015 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain Department of Mathematics and Computer Science Passive Asset Discovery and Operating System Fingerprinting in Industrial Control System Networks Master Thesis Chris Mavrakis Supervisors: prof.dr. S. Etalle dr. T. Oz¸celebi¨ dr. E. Costante Eindhoven, October 2015 Abstract Maintaining situational awareness in networks of industrial control systems is challenging due to the sheer number of devices involved, complex connections between subnetworks and the delicate nature of industrial processes. While current solutions for automatic discovery of devices and their operating system are lacking, plant operators need to have accurate information about the systems to be able to manage them effectively and detect, prevent and mitigate security and safety incidents.
    [Show full text]
  • PROGRAMMING ESSENTIALS in PYTHON | PCAP Certification
    PROGRAMMING ESSENTIALS IN PYTHON | PCAP Certification Programming Essentials in Python course covers all the basics of programming in Python, as well as general computer programming concepts and techniques. The course also familiarizes the student with the object-oriented approach. The course will prepare the student for jobs/careers connected with widely understood software development, which includes not only creating the code itself as a junior developer, but also computer system design and software testing. It could be a stepping-stone to learning any other programming language, and to explore technologies using Python as a foundation (e.g., Django, SciPy). This course is distinguished by its affordability, friendliness, and openness to the student. It starts from the absolute basics, guiding the student step by step to complex problems, making her/him a responsible software creator able to take on different challenges in many positions in the IT industry. TARGET AUDIENCE Programming Essentials in Python curriculum is designed for students with little or no prior knowledge of programming. TARGET CERTIFICATION Programming Essentials in Python curriculum helps students prepare for the PCAP | Python Certified Associate Programmer certification exam. PCAP is a professional certification that measures the student’s ability to accomplish coding tasks related to the basics of programming in the Python language, and the fundamental notions and techniques used in object-oriented programming. PCAP – COURSE MODULES & OBJECTIVES Module 1: Familiarize the student with the basic methods offered by Python of formatting and outputting data, together with the primary kinds of data and numerical operators, their mutual relations and bindings. Introduce the concept of variables and variable naming conventions.
    [Show full text]
  • Guide to Computer Forensics and Investigations Fourth Edition
    Guide to Computer Forensics and Investigations Fourth Edition Chapter 11 Virtual Machines, Network Forensics, and Live Acquisitions Objectives • Describe primary concerns in conducting forensic examinations of virtual machines • Describe the importance of network forensics • Explain standard procedures for performing a live acquisition • Explain standard procedures for network forensics • Describe the use of network tools Guide to Computer Forensics and Investigations 2 Virtual Machines Overview • Virtual machines are important in today’s networks. • Investigators must know how to detect a virtual machine installed on a host, acquire an image of a virtual machine, and use virtual machines to examine malware. Virtual Machines Overview (cont.) • Check whether virtual machines are loaded on a host computer. • Check Registry for clues that virtual machines have been installed or uninstalled. Network Forensics Overview • Network forensics – Systematic tracking of incoming and outgoing traffic • To ascertain how an attack was carried out or how an event occurred on a network • Intruders leave trail behind • Determine the cause of the abnormal traffic – Internal bug – Attackers Guide to Computer Forensics and Investigations 5 Securing a Network • Layered network defense strategy – Sets up layers of protection to hide the most valuable data at the innermost part of the network • Defense in depth (DiD) – Similar approach developed by the NSA – Modes of protection • People • Technology • Operations Guide to Computer Forensics and Investigations
    [Show full text]
  • Packet Capture Procedures on Cisco Firepower Device
    Packet Capture Procedures on Cisco Firepower Device Contents Introduction Prerequisites Requirements Components Used Steps to Capture Packets Copy a Pcap File Introduction This document describes how to use the tcpdump command in order to capture packets that are seen by a network interface of your Firepower device. It uses Berkeley Packet Filter (BPF) syntax. Prerequisites Requirements Cisco recommends that you have knowledge of the Cisco Firepower device and the virtual device models. Components Used This document is not restricted to specific software and hardware versions. The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command. Warning: If you run tcpdump command on a production system, it can impact network performance. Steps to Capture Packets Log in to the CLI of your Firepower device. In versions 6.1 and later, enter capture-traffic. For example, > capture-traffic Please choose domain to capture traffic from: 0 - eth0 1 - Default Inline Set (Interfaces s2p1, s2p2) In versions 6.0.x.x and earlier, enter system support capture-traffic. For example, > system support capture-traffic Please choose domain to capture traffic from: 0 - eth0 1 - Default Inline Set (Interfaces s2p1, s2p2) After you make a selection, you will be prompted for options: Please specify tcpdump options desired. (or enter '?' for a list of supported options) Options: In order to capture sufficient data from the packets, it is necessary to use the -s option in order to set the snaplength correctly.
    [Show full text]
  • Innovative High-Speed Packet Capture Solutions
    Innovative High-Speed Packet Capture Solutions With the rapid increase in IP-based communications, are often limited by inadequate storage the inability to enterprises and telecommunications providers are struggling offload your data to new open-source analysis tools. to keep pace with numerous network-related tasks, including Continuum PCAP is a powerful, enterprise-class packet cyber security/incident response, network performance capture engine available in innovative portable and rack- monitoring, and corporate/government compliance. There mount systems. It is designed from the ground up to provide are a number of highly sophisticated network analysis tools you with full line-rate packet capture without the limitations available for addressing network issues, such as NetFlow of previous capture solutions. analysis or intrusion detection, but without reliable, high- speed packet capture you’re not getting all the information Continuum PCAP is built for companies who want deep you need. visibility into their network activity as well as OEMs who need a reliable capture engine for developing their own monitoring Low-end or home-grown packet capture solutions often don’t tools. This lossless, high-speed capture solution can be have the performance needed to quickly index the data, integrated into your existing infrastructure and combined query while recording, or provide reliable capture under peak with your preferred analysis tools. network load conditions. Even expensive custom solutions Features Benefits • Capture network traffic at line rates up to 40Gbps to industry- • Pre-configured appliance tuned for packet capture standard PCAP files with zero packet loss • OEM platform for building sophisticated network analysis • Each capture port is a separate stream with time stamping of appliances - let Continuum PCAP handle the capture and every packet.
    [Show full text]
  • Contents in Detail
    CONTENTS IN DETAIL ACKNOWLEDGMENTS xv INTRODUCTION xvii Why This Book? .....................................................................................................xvii Concepts and Approach ........................................................................................xviii How to Use This Book ............................................................................................. xix About the Sample Capture Files ................................................................................ xx The Rural Technology Fund ....................................................................................... xx Contacting Me ........................................................................................................ xx 1 PACKET ANALYSIS AND NETWORK BASICS 1 Packet Analysis and Packet Sniffers ............................................................................. 2 Evaluating a Packet Sniffer ............................................................................ 2 How Packet Sniffers Work............................................................................. 3 How Computers Communicate.................................................................................... 4 Protocols ..................................................................................................... 4 The Seven-Layer OSI Model .......................................................................... 5 Data Encapsulation .....................................................................................
    [Show full text]
  • Project 3: Networking Due: Parts 1–3: May 18 11:59 PM PT Part 4: May 25 11:59 PM PT
    CS155: Computer Security Spring 2021 Project 3: Networking Due: Parts 1{3: May 18 11:59 PM PT Part 4: May 25 11:59 PM PT Introduction This project is all about network security. You will both use existing software to examine remote machines and local traffic as well as play the part of a powerful network attacker. Parts one and two show you how a simple port scan can reveal a large amount of information about a remote server, as well as teach you how to use Wireshark to closely monitor and understand network traffic observable by your machine. Part three will focus on a dump of network traffic in a local network, and will teach you how to identify different types of anomalies. Finally, in part four, you will get to implement a DNS spoofer that hijacks a HTTP connection. This project will solidify your understanding of the mechanics and shortfalls of the DNS and HTTP protocols. Go Language. This project will be implemented in Go, a programming language most of you have not used before. As such, part of this project will be spent learning how to use Go. Why? As you saw in Project 1, C and C++ are riddled with memory safety pitfalls, especially when it comes to writing network code. It's practically impossible to write perfectly secure C/C++ code|even experienced programmers make errors. For example, just this week, Qualys uncovered 21 exploits in Exim, a popular open source mail server. The security community has largely agreed that future systems need to be built in safe languages.
    [Show full text]
  • Linux Networking Cookbook.Pdf
    Linux Networking Cookbook ™ Carla Schroder Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo Linux Networking Cookbook™ by Carla Schroder Copyright © 2008 O’Reilly Media, Inc. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or [email protected]. Editor: Mike Loukides Indexer: John Bickelhaupt Production Editor: Sumita Mukherji Cover Designer: Karen Montgomery Copyeditor: Derek Di Matteo Interior Designer: David Futato Proofreader: Sumita Mukherji Illustrator: Jessamyn Read Printing History: November 2007: First Edition. Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. The Cookbook series designations, Linux Networking Cookbook, the image of a female blacksmith, and related trade dress are trademarks of O’Reilly Media, Inc. Java™ is a trademark of Sun Microsystems, Inc. .NET is a registered trademark of Microsoft Corporation. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the designations have been printed in caps or initial caps. While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.
    [Show full text]
  • Ten Strategies of a World-Class Cybersecurity Operations Center Conveys MITRE’S Expertise on Accumulated Expertise on Enterprise-Grade Computer Network Defense
    Bleed rule--remove from file Bleed rule--remove from file MITRE’s accumulated Ten Strategies of a World-Class Cybersecurity Operations Center conveys MITRE’s expertise on accumulated expertise on enterprise-grade computer network defense. It covers ten key qualities enterprise- grade of leading Cybersecurity Operations Centers (CSOCs), ranging from their structure and organization, computer MITRE network to processes that best enable effective and efficient operations, to approaches that extract maximum defense Ten Strategies of a World-Class value from CSOC technology investments. This book offers perspective and context for key decision Cybersecurity Operations Center points in structuring a CSOC and shows how to: • Find the right size and structure for the CSOC team Cybersecurity Operations Center a World-Class of Strategies Ten The MITRE Corporation is • Achieve effective placement within a larger organization that a not-for-profit organization enables CSOC operations that operates federally funded • Attract, retain, and grow the right staff and skills research and development • Prepare the CSOC team, technologies, and processes for agile, centers (FFRDCs). FFRDCs threat-based response are unique organizations that • Architect for large-scale data collection and analysis with a assist the U.S. government with limited budget scientific research and analysis, • Prioritize sensor placement and data feed choices across development and acquisition, enteprise systems, enclaves, networks, and perimeters and systems engineering and integration. We’re proud to have If you manage, work in, or are standing up a CSOC, this book is for you. served the public interest for It is also available on MITRE’s website, www.mitre.org. more than 50 years.
    [Show full text]