Efficient Pricing of Barrier Options on High Volatility Assets using Subset Simulation∗ Keegan Mendonca,y Vasileios E. Kontosakos,z Athanasios A. Pantelous,x Konstantin M. Zuev{ March 29, 2018 Abstract Barrier options are one of the most widely traded exotic options on stock ex- changes. In this paper, we develop a new stochastic simulation method for pricing barrier options and estimating the corresponding execution probabilities. We show that the proposed method always outperforms the standard Monte Carlo approach and becomes substantially more efficient when the underlying asset has high volatil- ity, while it performs better than multilevel Monte Carlo for special cases of barrier options and underlying assets. These theoretical findings are confirmed by numer- ous simulation results. JEL classification: G13, C15 Keywords: Simulation; Barrier Options Pricing; Path{Dependent Derivatives; Monte Carlo; Discretely Monitored ∗The authors would like to thank Siu-Kui (Ivan) Au, James Beck, Damiano Brigo, Gianluca Fusai, Steven Kou, Ioannis Kyriakou, Zili Zhu, and the participants at Caltech, University of Liverpool, and Monash University seminars for helpful comments. Any remaining errors are ours. yDepartment of Computing and Mathematical Sciences, California Institute of Technology, E. Cali- arXiv:1803.03364v2 [q-fin.PR] 28 Mar 2018 fornia Blvd., Pasadena, CA 91125 USA. Email:
[email protected] zDepartment of Econometrics and Business Statistics, Monash University, Wellington Rd, Clayton, Victoria 3800, Australia. Email:
[email protected] xDepartment of Econometrics and Business Statistics, Monash University, Wellington Rd, Clayton, Victoria 3800, Australia. Email:
[email protected]. {Corresponding author. Department of Computing and Mathematical Sciences, California Institute of Technology, E. California Blvd., Pasadena, CA 91125 USA.