Assessing the Chiral Switch: Approval and Use of Single-Enantiomer Drugs, 2001 to 2011

Total Page:16

File Type:pdf, Size:1020Kb

Assessing the Chiral Switch: Approval and Use of Single-Enantiomer Drugs, 2001 to 2011 n POLICY n Assessing the Chiral Switch: Approval and Use of Single-Enantiomer Drugs, 2001 to 2011 Walid F. Gellad, MD, MPH; Phillip Choi, BS; Margaret Mizah, PharmD; Chester B. Good, MD, MPH; and Aaron S. Kesselheim, MD, JD, MPH ost physicians, and certainly most patients, have never Objectives: A “chiral switch” occurs in the 1 pharmaceutical market when a drug made up of heard of the “chiral switch.” A chiral drug is a single 2 enantiomer forms is replaced with a purified molecule product that exists in 2 mirror image forms, single-enantiomer version, often in the context of M called enantiomers.2 Despite their similar chemical structures, enan- a patent expiration. We studied the prevalence of chiral switching in the United States over the past tiomers can have different biological properties.3 For example, some decade, including trends in use of, and expendi- enzymatic processes can distinguish between the R- (from the Latin tures on, these products in Medicaid. Study Design: Retrospective analysis. rectus for “right”) and S- (from the Latin sinister for “left”) enantio- 4,5 Methods: We used US Adopted Names pre- mers, such that 1 enantiomer may be responsible for much of the fixes (lev/levo/ar/es/dex/dextro) to identify all pharmaceutical benefit while the other is inactive or even harmful.1,6-9 single-enantiomer drugs approved from 2001 to 2011. From publicly available US Food and Drug The phrase “chiral switch” was coined to refer to the substitution in Administration (FDA) approval documents, we ex- the marketplace of a racemic drug (the name for a 50:50 mixture of 2 tracted the characteristics of the pivotal premarket trials for the single enantiomers. Specifically, we enantiomers) with a single-enantiomer© Managed Care version. & evaluated whether the single enantiomer was One prominentHealthcare example Communications,of a chiral switch occurred LL Cin 2001, when directly compared with the precursor racemic the US Food and Drug Administration (FDA) approved AstraZeneca’s drug and whether there was evidence of superior efficacy. We used quarterly drug expenditure data esomeprazole (Nexium), a proton pump inhibitor (PPI) used to treat from each state Medicaid program to chart trends gastroesophageal reflux disease and erosive esophagitis. At that point, in use of, and spending on, the single-enantiomer products and their racemic precursors during the the PPI marketplace was dominated by AstraZeneca’s omeprazole (Pri- study period. losec), which had been approved in 1989. Marketed as “the purple pill,” Results: From 2001 to 2011, the FDA approved omeprazole earned over $6 billion per year in the United States by 9 single-enantiomer products: dexlansoprazole, levoleucovorin, levocetirizine, armodafinil, arfor- 2000, although the key patents protecting its market exclusivity ended moterol, eszopiclone, escitalopram, dexmethyl- in 2001, opening the door to generic competition.10 Omeprazole is a phenidate, and esomeprazole. Of those 9 drugs, 3 had at least 1 pre-approval randomized trial racemic mixture of R-omeprazole and S-omeprazole, while esomepra- that included the racemic precursor as a direct zole, as its name implies, is isolated S-omeprazole. The S-omeprazole comparator, but there was no evidence of supe- riority of the single enantiomer over the racemic enantiomer was responsible for the drug’s clinical properties while the at comparable doses. Between 2001 and 2011, US R-omeprazole enantiomer was inactive. After FDA approval, esomepra- Medicaid programs spent approximately $6.3 bil- lion on these 9 single-enantiomer drugs. zole was marketed as “the new purple pill” to be used in place of generic Conclusions: Recently approved single-enan- omeprazole. tiomer drugs showed no evidence of superior Chiral switching is a controversial practice. Some claim that single- efficacy over the older racemic precursors in the pivotal trials leading to their approval, and enantiomer drugs offer little clinical advantage and are used by pharma- in a majority of cases, they were not directly ceutical manufacturers to perpetuate revenues as the original racemic compared. pill approaches the end of its market exclusivity. The case of esome- Am J Manag Care. 2014;20(3):e90-e97 prazole, in fact, has been cited as an example of “corporate waste” of healthcare resources.11 However, in some cases, single enantiomers may offer benefit to patients, particularly if the inactive enantiomer may also be responsible for unwanted side effects; manufacturers may pursue single-enantiomer development In this article For author information and disclosures, Take-Away Points / e91 see end of text. because of this potential for im- Published as a Web exclusive proved safety or efficacy. Indeed, www.ajmc.com e90 n www.ajmc.com n MARCH 2014 Single-Enantiomer Drugs in guidance originally issued in 1992, and Take-Away Points most recently updated in 2011, the FDA From 2001 to 2011, the US Food and Drug Administration approved 9 single-enantio- identified examples of drug toxicity associat- mer drugs with racemic precursors. Only 3 had pre-approval studies that compared the single-enantiomer with its precursor, and none showed evidence of improved ed with 1 member of a pair of enantiomers.12 patient outcomes. Regardless of the motivation for develop- n US Medicaid programs spent approximately $6.3 billion on these 9 single-enan- ment of a single-enantiomer drug, the FDA tiomer drugs during this period. review and approval process is the same. New n Well-designed comparative trials are needed to clarify, soon after approval, whether a single-enantiomer drug represents a measurable, cost-effective improve- medications are generally approved by the ment over current racemic therapy. FDA on the basis of effectiveness in reaching n Large healthcare organizations that bear the brunt of these costs should use a particular outcome, and an improvement their position to educate prescribers about appropriate use of single-enantiomer products. over placebo is commonly accepted.13 Since the FDA cannot by law require active com- parators in clinical trials leading to drug approvals,14,15 single- mixture were reported on the approved drug label. Since no enantiomer products can reach the market by demonstrating pre-approval studies were powered to assess comparative safe- improvement over placebo, not their closely related racemic ty, we focused on efficacy. precursors. How prevalent is chiral switching in the United States? Medicaid Use and Expenditure To address that question, we identified all single-enantiomer For a more detailed investigation of chiral switching, we medications approved from 2001 to 2011 with racemic mixtures focused on esomeprazole (Nexium) and escitalopram (Lexa- already on the market. We examined FDA documents from the pro), the 2 single-isomer drugs identified in our search with approval of these medications, focusing on their pivotal clini- the largest revenue in the past decade. These drugs were also cal trials and identifying whether the single-enantiomer version approved early in our study period, giving us adequate time to was formally compared with the racemic drug in the course of examine trends in prescription use. Our data source was the FDA approval. Finally, we use national data on prescription Centers for Medicare & Medicaid Services (CMS), which use and expenditures in Medicaid to illustrate the costs associ- provides aggregated quarterly drug expenditure data from each ated with their entry and trends in their use. state Medicaid program categorized by National Drug Code (NDC).16 We used the NDC code to link the drugs and their racemic counterparts to the National Drug Data File (NDDF) METHODS (First Data Bank, National Drug Data File, San Bruno, CA: Data Sources Hearst Corporation, 2012). For each drug, we identified the We used the FDA database of drug approvals to identify total number of prescriptions filled and the amount spent on all new single-enantiomer products approved for use be- the drug by state Medicaid programs in each calendar quarter. tween 2001 and 2011 that originated from an already FDA- For 49 states and the District of Columbia (Arizona data were approved racemic mixture. We systematically searched for not available), we analyzed data from 1999 through the most all United States Adopted Names (USAN) prefixes assigned recent quarter of Medicaid data available at the time of the to drugs with a single-enantiomer formulation: lev-/levo- for analysis. the levorotatory, S-isomer form; ar- for the levorotatory, R- isomer form; es- for the dextrorotatory, S-isomer form; and dex-/dextro- for the dextrorotatory, R-isomer form. RESULTS From 2001 through 2011, the FDA approved 9 single- Data Extraction enantiomer versions of racemic products (Table 1). Eight We extracted the manufacturer name and approval year of the drugs had racemic precursors available in the United for each identified drug. We then examined the FDA approval States. The lone exception was eszopiclone (Lunesta), whose letter(s), summary review, and medical review(s) for each of precursor zopiclone (Imovane, Zimovane) was only com- the single-enantiomer drugs, along with the approved label, mercially available outside the United States. Three of the 9 and collected reports of the pivotal trials leading to FDA ap- drugs—levoleucovorin (Fusilev), levocetirizine (Xyzal), and proval. From these reports, we extracted whether the single arformoterol (Brovana)—came from manufacturers other enantiomer was compared with the racemic mixture in those than
Recommended publications
  • Schistosoma Mansoni
    Pharmacological and pharmacokinetic studies on trematocidal drugs : praziquantel and two synthetic peroxide lead candidates INAUGURALDISSERTATION zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Isabel Meister aus Neuchâtel (NE) Basel, 2017 Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel edoc.unibas.ch This work is licensed under a Creative Commons Attribution 4.0 International License. Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Prof. Dr. Jennifer Keiser Prof. Dr. Piero Olliaro Basel, den 23. Juni 2015 Prof. Dr. Jörg Schibler Dekan Table of Contents Acknowledgements ................................................................................................................................ III Summary ................................................................................................................................................. V List of abbreviations ............................................................................................................................ VII Chapter 1. General introduction ..............................................................................................1 1.1 Trematode biology and life cycle ...............................................................................................2 1.2 Epidemiology and clinical aspects .............................................................................................5
    [Show full text]
  • Seminar on Drug Chirality
    Drug chirality: Stereoselectivity in the action and disposition of anaesthetic agents Isomerism Isomers: Drugs with the same chemical composition and molecular formula. Isomers Structural Stereoisomers isomers •Constitutional / Structural isomerism: Same molecular formula but different chemical structure as the arrangement of atoms is different. Stereoisomerism: Same molecular formula and chemical structure but a different configuration (i.e. different three dimensional spatial arrangement of their atoms) Two types: 1. Optical isomers 2. Geometrical isomers Optical isomerism Enantiomers: A pair of stereoisomers that are non-superimposable mirror images of each other. Cause of enantiomerism: presence of a chiral centre. Physiochemical properties ( solubility, melting and boiling points, ionization constant) are identical. Separation is difficult. Diastereomers: Stereoisomers that are not mirror images of each other and are not enantiomeric. Physiochemical properties are different. Separation is easy. What is chirality? Chiral - derived from a Greek word chiros, meaning handedness. A molecule or object that is not superimposable on its mirror image is said to be chiral. Chiral centre / asymmetric carbon / stereogenic centre – A carbon atom attached to four different substituents. • Achiral molecules usually contain a plane of symmetry but chiral molecules do not. • A plane of symmetry is a mirror plane that cuts the molecule in half, so that one half of the molecule is a reflection of the other half. • With chiral compounds, the plane of the polarized light is rotated through an angle . A compound that rotates polarized light is said to be optically active. •With achiral compounds, the light that passes through the compound remains unchanged. A compound that does not change the plane of polarized light is said to be optically inactive.
    [Show full text]
  • Chiral Drugs for You and Me
    Teaching Chemistry Through The Jigsaw Strategy Example 1 Topic Thalidomide: A Controversial Chiral Drug Subtopics 1. Why is drug chirality important? 2. What caused the thalidomide tragedy? 3. Why has thalidomide been approved for sale again? Level Secondary 6-7 Curriculum Links Stereoisomerism Enantiomerism Chiral carbon compounds Medium of instruction English Copyright © 2007 by Quality Education Fund, Hong Kong All rights reserved. Prepared by Professor Derek Cheung, The Department of Curriculum and Instruction, The Chinese University of Hong Kong. No part of this document may be reproduced in any manner whatsoever without written permission, except in the case of use as instructional material in a school by a teacher. 1 1. Why is drug chirality important? Enantiomers are optical isomers which are nonsuperimposable mirror-image structures. The property of nonsuperimposability is called chirality. A molecule is chiral if and only if it is not superimposable on its mirror image. The most common chiral centre is carbon. When four nonidentical atoms or groups are attached to a tetravalent carbon, the tetrahedral arrangement of the bonds in space results in two enantiomers. Enantiomers can be distinguished by experiments because they have different ability to rotate a beam of plane-polarized light: to the clockwise direction as a dextrorotatory (+)-enantiomer and to the counterclockwise direction as a levorotatory (-)-enantiomer. A mixture of equal portions (50/50) of the (+) and (-) enantiomers is called a racemic mixture. In 1957, a pharmaceutical company in West Germany introduced a new drug to the market. It was called thalidomide with molecular formula C13H10N2O4. The drug was sold in 46 countries under at least 37 brand names.
    [Show full text]
  • Abstract CHIRALITY and ENANTIOMERS CHIRAL DRUGS in BIOLOGICAL SYSTEMS
    Abstract CHIRALITY AND ENANTIOMERS This section contains the basics needed to understand chiral drugs. Undergraduate textbooks in chemistry are good resources for a more thorough discussion of chirality and enantiomers. The most important point is that chiral drugs have 2 structurally similar forms that can behave very differently in biological systems due to their different shapes in 3-dimensional space. These 2 possible forms are termed enantiomers, and the 2 enantiomers of a given chiral drug should be considered 2 different drugs. This topic is discussed further in the next section. Chirality is formally defined as the geometric property of a rigid object (like a molecule or drug) of not being superimposable with its mirror image. Molecules that can be superimposed on their mirror images are achiral (not chiral). Chirality is a property of matter found throughout biological systems, from the basic building blocks of life such as amino acids, carbohydrates, and lipids to the layout of the human body. Chirality is often illustrated with the idea of left- and right-handedness: a left hand and right hand are mirror images of each other but are not superimposable. The 2 mirror images of a chiral molecule are termed enantiomers. Like hands, enantiomers come in pairs. Both molecules of an enantiomer pair have the same chemical composition and can be drawn the same way in 2 dimensions (e.g., a drug structure on a package insert), but in chiral environments such as the receptors and enzymes in the body, they can behave differently. A racemate (often called a racemic mixture) is a mixture of equal amounts of both enantiomers of a chiral drug.
    [Show full text]
  • Enantiomeric Quantification of Psychoactive Substances and Beta Blockers by Gas Chromatography-Mass Spectrometry in Influents of Wastewater Treatment Plants
    Enantiomeric quantification of psychoactive substances and beta blockers by gas chromatography-mass spectrometry in influents of wastewater treatment plants Ricardo Daniel Teixeira Gonçalves Dissertation of the 2nd Cycle of Studies Conducive to the Master’s Degree in Clinical and Forensic Analytical Toxicology, Faculty of Pharmacy, University of Porto Work performed under the orientation of: Professor Doctor Maria Elizabeth Tiritan Professor Doctor Cláudia Maria Rosa Ribeiro September 2018 IT IS NOT PERMITED TO REPRODUCE ANY PART OF THIS DISSERTATION DE ACORDO COM A LEGISLAÇÃO EM VIGOR, NÃO É PERMITIDA A REPRODUÇÃO DE QUALQUER PARTE DESTA DISSERTAÇÃO Agradecimentos Em primeiro lugar gostaria de agradecer às minhas orientadoras (ou mães da ciência), a Professora Doutora Maria Elizabeth Tiritan e a Professora Doutora Cláudia Ribeiro por me terem aceitado (adotado) para poder continuar este projeto. Obrigado por me ajudarem na iniciação de um projeto de raiz, que depois de quatro anos e muitas frustrações, vejo que não foi em vão. Por toda a ajuda, insistência, paciência, preocupação e compreensão que sempre tiveram, o maior obrigado! À Dra. Sara Cravo do laboratório de química orgânica da FFUP, que me recebeu de braços abertos, batalhou comigo durante meses e me deixou usar e abusar do seu laboratório de cromatografia gasosa. Obrigado por toda a ajuda, paciência, explicações, disponibilidade e acima de tudo, por me compreender nos momentos mais desesperantes. Estou-lhe profundamente grato por me fazer sentir “em casa” e por sempre arranjar soluções! Ao Professor Doutor Carlos Afonso do laboratório de química orgânica da FFUP por me autorizar a invadir o laboratório de química orgânica e pela preocupação constante com o progresso do trabalho.
    [Show full text]
  • First Chemoenzymatic Stereodivergent Synthesis of Both Enantiomers of Promethazine and Ethopropazine
    First chemoenzymatic stereodivergent synthesis of both enantiomers of promethazine and ethopropazine Paweł Borowiecki*, Daniel Paprocki and Maciej Dranka Full Research Paper Open Access Address: Beilstein J. Org. Chem. 2014, 10, 3038–3055. Warsaw University of Technology, Faculty of Chemistry, doi:10.3762/bjoc.10.322 Noakowskiego St. 3, 00-664 Warsaw, Poland Received: 03 September 2014 Email: Accepted: 01 December 2014 Paweł Borowiecki* - [email protected] Published: 18 December 2014 * Corresponding author Associate Editor: J. Aubé Keywords: © 2014 Borowiecki et al; licensee Beilstein-Institut. ethopropazine; lipase-catalyzed kinetic resolution; Mosher License and terms: see end of document. methodology; promethazine; stereodivergent synthesis Abstract Enantioenriched promethazine and ethopropazine were synthesized through a simple and straightforward four-step chemoenzy- matic route. The central chiral building block, 1-(10H-phenothiazin-10-yl)propan-2-ol, was obtained via a lipase-mediated kinetic resolution protocol, which furnished both enantiomeric forms, with superb enantioselectivity (up to E = 844), from the racemate. Novozym 435 and Lipozyme TL IM have been found as ideal biocatalysts for preparation of highly enantioenriched phenothiazolic alcohols (up to >99% ee), which absolute configurations were assigned by Mosher’s methodology and unambiguously confirmed by XRD analysis. Thus obtained key-intermediates were further transformed into bromide derivatives by means of PBr3, and subse- quently reacted with appropriate amine providing desired pharmacologically valuable (R)- and (S)-stereoisomers of title drugs in an ee range of 84–98%, respectively. The modular amination procedure is based on a solvent-dependent stereodivergent transforma- tion of the bromo derivative, which conducted in toluene gives mainly the product of single inversion, whereas carried out in methanol it provides exclusively the product of net retention.
    [Show full text]
  • University of Lucknow Masters of Pharmaceutical Chemistry Programme Regulation 2020
    UNIVERSITY OF LUCKNOW MASTERS OF PHARMACEUTICAL CHEMISTRY PROGRAMME REGULATION 2020 1. Applicability These regulations shall apply to the Masters in Pharmaceutical Chemistry programme from the session 2020-21. 2. Minimum eligibility for admission A three/four years Bachelor’s degree or equivalent with chemistry as one of the subject in final year awarded by University or Institute established as per law and recognized as equivalent by university with minimum 45% marks for general and OBC (SC/ST 40%) or equivalent grade shall constitute the minimum requirement for admission to the Masters in Pharmaceutical Chemistry Programme 3. Programme Objectives i. To enable the students to understand the basic concepts of bio-inorganic, bio- organic, physical chemistry, analytical chemistry, drug formulation, drug design and development. ii. To develop the ability to present pharmaceutical chemistry research by means of an oral presentation, a scientific poster or a written report. iii. To be able to use and apply professional softwares relevant to chemistry. iv. To equip the students with the knowledge to develop Pharmaceutically important molecules, new drug delivery systems etc. v. To learn the application of analytical tools for determination of organic molecules and to generate validation protocol for all pharmaceutical operations starting from drug research to development to formulation. vi. To learn the Mechanism of Action of various class of drugs. vii. To learn the brief overview of the use of various drugs in treatment of various diseases. 4. Programme Outcomes PO-1. Demonstrate, solve and an understanding of major concepts in all disciplines of Chemistry independently and in group as well as draw logical conclusions through Project and Seminar Presentation.
    [Show full text]
  • Three-Dimensional Pharmacology, a Subject Ranging from Ignorance to Overstatements. Waldeck, Bertil
    Three-dimensional pharmacology, a subject ranging from ignorance to overstatements. Waldeck, Bertil Published in: Pharmacology and Toxicology DOI: 10.1046/j.1600-0773.2003.pto930502.x 2003 Link to publication Citation for published version (APA): Waldeck, B. (2003). Three-dimensional pharmacology, a subject ranging from ignorance to overstatements. Pharmacology and Toxicology, 93(5), 203-210. https://doi.org/10.1046/j.1600-0773.2003.pto930502.x Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 C Pharmacology & Toxicology 2003, 93, 203–210. Copyright C Printed in Denmark . All rights reserved ISSN 0901-9928 MiniReview Three-Dimensional Pharmacology, a Subject Ranging from Ignorance to Overstatements Bertil Waldeck Institute for Physiological Sciences, Department of Pharmacology, University of Lund, BMC F13, S-221 84 Lund, Sweden (Received June 10, 2003; Accepted August 27, 2003) Abstract: Stereoselectivity has been known to play a role in drug action for 100 years or more.
    [Show full text]
  • Asymmetric Catalysis in Organic Synthesis
    catalysts Editorial Asymmetric Catalysis in Organic Synthesis Frady G. Adly 1,* and Ashraf Ghanem 2,* 1 School of Science, Faculty of Science and Technology, University of Canberra, ACT, Canberra 2601, Australia 2 Chirality Program, Faculty of Science and Technology, University of Canberra, ACT, Canberra 2601, Australia * Correspondence: [email protected] (F.G.A.); [email protected] (A.G.); Tel.: +61-2-6206-8963 (F.G.A.); +61-2-6201-2089 (A.G.) Received: 6 September 2019; Accepted: 11 September 2019; Published: 15 September 2019 Biological systems, in most cases, recognize a pair of enantiomers as different substances eliciting different responses. Therefore, one enantiomer may act as a very effective therapeutic agent whereas the other enantiomer, at worst, interacts with a totally different target resulting in undesired side effects. Thalidomide offers a tragic example that led to the death of approximately 2000 children and serious malformation of arms and legs in 10,000 babies born around the world [1]. This disaster emphasized the need for a greater regulation governing the use of drugs, particularly enantiomers. The impetus is on synthetic chemists to provide highly efficient and reliable methods to access the desired compounds in an enantiomerically pure format, avoiding underside effects of unwanted enantiomers. Regulatory guidance was published, firstly in the US followed by the EU [2,3], reflecting rigorous steps required to follow before an approval of racemates is granted. The Australian and Canadian guidance are also based on similar principles [4,5]. As chiral drugs comprise more than half the drugs approved worldwide, including many of the top-selling drugs [6], these regulations create a chronic problem for the pharmaceutical industry.
    [Show full text]
  • Chirality of Modern Antidepressants
    Advanced Adv Pharm Bull, 2017, 7(4), 495-500 Pharmaceutical doi: 10.15171/apb.2017.061 Bulletin http://apb.tbzmed.ac.ir Editorial Chirality of Modern Antidepressants: An Overview Monica Budău1, Gabriel Hancu1*, Aura Rusu1, Melania Cârcu-Dobrin1, Daniela Lucia Muntean2 1 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy from Tîrgu Mureș, Tîrgu Mureș, Romania. 2 Department of Analytical Chemistry and Drug Analysis, Faculty of Pharmacy, University of Medicine and Pharmacy from Tîrgu Mureș, Tîrgu Mureș, Romania. Article info Abstract Article History: The majority of modern antidepressants (selective serotonin reuptake inhibitors and Received: 27 November 2017 selective serotonin and norepinephrine reuptake inhibitors) have one or two centers of Revised: 30 November 2017 asymmetry in their structure; resulting in the formation of enantiomers which may exhibit Accepted: 5 December 2017 different pharmacodynamic and pharmacokinetic properties. Recent developments in drug ePublished: 31 December 2017 stereochemistry has led to understanding the role of chirality in modern therapy correlated with increased knowledge regarding the molecular structure of specific drug targets and Keywords: towards the possible advantages of using pure enantiomers instead of racemic mixtures. The Antidepressants current review deals with chiral antidepressant drugs; presenting examples of Selective serotonin reuptake stereoselectivity in the pharmacological actions of certain antidepressants and their inhibitor (SSRI)
    [Show full text]
  • The Crystal Structure of N-(1-Arylethyl)-4-Methyl- 2,2-Dioxo-1H-26,1-Benzothiazine-3-Carboxamides As the Factor Determining Biol
    Scientia Pharmaceutica Article The Crystal Structure of N-(1-Arylethyl)-4-methyl- 2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamides as the Factor Determining Biological Activity Thereof Igor V. Ukrainets 1,* , Ganna M. Hamza 1, Anna A. Burian 1 , Natali I. Voloshchuk 2 , Oxana V. Malchenko 2, Svitlana V. Shishkina 3,4, Irina A. Danylova 1 and Galina Sim 5 1 Department of Pharmaceutical Chemistry, National University of Pharmacy, 53 Pushkinska st., 61002 Kharkiv, Ukraine; [email protected] (G.M.H.); [email protected] (A.A.B.); [email protected] (I.A.D.) 2 Department of Pharmacology, N.I. Pirogov Vinnitsa National Medical University, 56 Pirogov st., 21018 Vinnitsa, Ukraine; [email protected] (N.I.V.); [email protected] (O.V.M.) 3 STC “Institute for Single Crystals”, National Academy of Sciences of Ukraine, 60 Nauki ave., 61001 Kharkiv, Ukraine; [email protected] 4 Department of Inorganic Chemistry, V.N. Karazin Kharkiv National University, 4 Svobody sq., 61077 Kharkiv, Ukraine 5 Department of Pharmaceutical Chemistry, Far Eastern State Medical University, 35 Murav’eva-Amurskogo st., 680000 Khabarovsk, Russia; [email protected] * Correspondence: [email protected]; Tel.: +380-572-679-185 Received: 27 February 2019; Accepted: 4 April 2019; Published: 19 April 2019 Abstract: In order to detect new structural and biological patterns in a series of hetaryl-3-carboxylic acid derivatives, the optically pure (S)- and (R)-enantiomers of N-(1-arylethyl)-4-methyl- 2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamides, their true racemates, and mechanical racemic mixtures have been synthesized in independent ways.
    [Show full text]
  • Racemic Beta-Blockers - Fixed Combinations of Different Drugs
    Journal of Clinical and Basic Cardiology An Independent International Scientific Journal Journal of Clinical and Basic Cardiology 1998; 1 (1), 15-19 Racemic beta-blockers - fixed combinations of different drugs Stoschitzky K, Lindner W, Zernig G Homepage: www.kup.at/jcbc Online Data Base Search for Authors and Keywords Indexed in Chemical Abstracts EMBASE/Excerpta Medica Krause & Pachernegg GmbH · VERLAG für MEDIZIN und WIRTSCHAFT · A-3003 Gablitz/Austria CURRENT OPINION J Clin Bas Cardiol 1998; 1: 14 Racemic beta-blockers Racemic beta-blockers – fixed combinations of different drugs K. Stoschitzky, G. Zernig1, W. Lindner2 Beta-blockers were introduced in clinical practice in the 1960s as racemic mixtures consisting of d- and l-enantiomers in a fixed 1:1 ratio. Little has changed on this issue although it has been clearly shown in vitro as well as in human studies that only the l-enantiomers exert beta-blockade when clinical doses of the racemic drugs are used, the d-enantiomers not contributing to this effect. In recent years numerous specific as well as non-specific effects of d-enantiomers of beta-blockers have been reported. Therefore, these non beta-blocking d-enantiomers may increase or even cause serious side effects on their own. In addition, pharmacokinetic properties of the l- and d-enantiomers vary widely even when they are given in the fixed 1:1 ratio of a racemic drug, particularly when exercise is performed. In conclusion, the data actually available on this issue demonstrate profound and clinically significant differences between the d- and l-enantiomers of beta-blockers. Therefore, the d- and l-enantiomers of beta-blocking drugs should be recognized and used as individual drugs on their own.
    [Show full text]