Earth and Terrestrial Planet Formation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Using Kepler Systems to Constrain the Frequency and Severity of Dynamical Effects on Habitable Planets Alexander James Mustill Melvyn B
Using Kepler systems to constrain the frequency and severity of dynamical effects on habitable planets Alexander James Mustill Melvyn B. Davies Anders Johansen Dynamical instability bad for habitability • Excitation of eccentricity can shift HZ or cause extreme seasons (Spiegel+10, Dressing+10) • Planets may be scattered out of HZ • Planet-planet collisions may remove biospheres, atmospheres, water • Earth-like planets may be eaten by Neptunes/Jupiters Strong dynamical effects: scattering and Kozai • Scattering: closely-spaced giant planets excite each others’ eccentricities (Chatterjee+08) • Kozai: inclined external perturber (e.g. binary) can cause very large eccentricity fluctuations (Kozai 62, Lidov 62, Naoz 16) Relevance of inner systems to HZ • If you can • form a hot Jupiter through high-eccentricity migration • damage a Kepler system at few tenths of an au • you will damage the habitable zone too Relevance of inner systems intrinsically • Large number of single-candidate systems found by Kepler relative to multiples • Is this left over from formation? Or do the multiples evolve into singles through dynamics? (Johansen+12) • Informs models of planet formation • all the Kepler systems are interestingly different to the Solar system, but do we have two interestingly different channels of planet formation or only one? What do we know about the prevalence of strong dynamical effects? • So far know little about planets in HZ • What we do know: • Violent dynamical history strong contender for hot Jupiter migration • Many giants have high -
Formation of TRAPPIST-1
EPSC Abstracts Vol. 11, EPSC2017-265, 2017 European Planetary Science Congress 2017 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2017 Formation of TRAPPIST-1 C.W Ormel, B. Liu and D. Schoonenberg University of Amsterdam, The Netherlands ([email protected]) Abstract start to drift by aerodynamical drag. However, this growth+drift occurs in an inside-out fashion, which We present a model for the formation of the recently- does not result in strong particle pileups needed to discovered TRAPPIST-1 planetary system. In our sce- trigger planetesimal formation by, e.g., the streaming nario planets form in the interior regions, by accre- instability [3]. (a) We propose that the H2O iceline (r 0.1 au for TRAPPIST-1) is the place where tion of mm to cm-size particles (pebbles) that drifted ice ≈ the local solids-to-gas ratio can reach 1, either by from the outer disk. This scenario has several ad- ∼ vantages: it connects to the observation that disks are condensation of the vapor [9] or by pileup of ice-free made up of pebbles, it is efficient, it explains why the (silicate) grains [2, 8]. Under these conditions plan- TRAPPIST-1 planets are Earth mass, and it provides etary embryos can form. (b) Due to type I migration, ∼ a rationale for the system’s architecture. embryos cross the iceline and enter the ice-free region. (c) There, silicate pebbles are smaller because of col- lisional fragmentation. Nevertheless, pebble accretion 1. Introduction remains efficient and growth is fast [6]. (d) At approx- TRAPPIST-1 is an M8 main-sequence star located at a imately Earth masses embryos reach their pebble iso- distance of 12 pc. -
Dynamics of the Terrestrial Planets from a Large Number of N-Body Simulations ∗ Rebecca A
Earth and Planetary Science Letters 392 (2014) 28–38 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Dynamics of the terrestrial planets from a large number of N-body simulations ∗ Rebecca A. Fischer , Fred J. Ciesla Department of the Geophysical Sciences, University of Chicago, 5734 S Ellis Ave, Chicago, IL 60637, USA article info abstract Article history: The agglomeration of planetary embryos and planetesimals was the final stage of terrestrial planet Received 6 September 2013 formation. This process is modeled using N-body accretion simulations, whose outcomes are tested by Received in revised form 26 January 2014 comparing to observed physical and chemical Solar System properties. The outcomes of these simulations Accepted 3 February 2014 are stochastic, leading to a wide range of results, which makes it difficult at times to identify the full Availableonline25February2014 range of possible outcomes for a given dynamic environment. We ran fifty high-resolution simulations Editor: T. Elliott each with Jupiter and Saturn on circular or eccentric orbits, whereas most previous studies ran an Keywords: order of magnitude fewer. This allows us to better quantify the probabilities of matching various accretion observables, including low probability events such as Mars formation, and to search for correlations N-body simulations between properties. We produce many good Earth analogues, which provide information about the mass terrestrial planets evolution and provenance of the building blocks of the Earth. Most observables are weakly correlated Mars or uncorrelated, implying that individual evolutionary stages may reflect how the system evolved even late veneer if models do not reproduce all of the Solar System’s properties at the end. -
News Feature: the Mars Anomaly
NEWS FEATURE NEWS FEATURE The Mars anomaly The red planet’s size is at the heart of a rift of ideas among researchers modeling the solar system’s formation. Stephen Ornes, Science Writer The presence of water isn’t the only Mars mystery sci- debate, data, and computer simulations, until re- entists are keen to probe. Another centers around a cently most models predicted that Mars should be seemingly trivial characteristic of the Red Planet: its many times its observed size. Getting Mars to form size. Classic models of solar system formation predict attherightplacewiththerightsizeisacrucialpartof that the girth of rocky worlds should grow with their any coherent explanation of the solar system’sevo- distance from the sun. Venus and Earth, for example, lution from a disk of gas and dust to its current con- should exceed Mercury, which they do. Mars should at figuration. In trying to do so, researchers have been — least match Earth, which it doesn’t. The diameter of the forced to devise models that are more detailed and — RedPlanetislittlemorethanhalfthatofEarth(1,2). even wilder than any seen before. “We still don’t understand why Mars is so small,” Nebulous Notions says astronomer Anders Johansen, who builds com- The solar system began as an immense cloud of dust putational models of planet formation at Lund Univer- and gas called a nebula. The idea of a nebular origin sity in Sweden. “It’s a really compelling question that dates back nearly 300 years. In 1734, Swedish scientist drives a lot of new theories.” and mystic Emanuel Swedenborg—whoalsoclaimed Understanding the planet’s diminutive size is key that Martian spirits had communed with him—posited to knowing how the entire solar system formed. -
Protoplanetary Disk Turbulence Driven by the Streaming Instability: Non-Linear Saturation and Particle Concentration
Accepted for publication in ApJ A Preprint typeset using LTEX style emulateapj v. 02/07/07 PROTOPLANETARY DISK TURBULENCE DRIVEN BY THE STREAMING INSTABILITY: NON-LINEAR SATURATION AND PARTICLE CONCENTRATION A. Johansen1 Max-Planck-Institut f¨ur Astronomie, 69117 Heidelberg, Germany and A. Youdin2 Princeton University Observatory, Princeton, NJ 08544 Accepted for publication in ApJ ABSTRACT We present simulations of the non-linear evolution of streaming instabilities in protoplanetary disks. The two components of the disk, gas treated with grid hydrodynamics and solids treated as super- particles, are mutually coupled by drag forces. We find that the initially laminar equilibrium flow spontaneously develops into turbulence in our unstratified local model. Marginally coupled solids (that couple to the gas on a Keplerian time-scale) trigger an upward cascade to large particle clumps with peak overdensities above 100. The clumps evolve dynamically by losing material downstream to the radial drift flow while receiving recycled material from upstream. Smaller, more tightly coupled solids produce weaker turbulence with more transient overdensities on smaller length scales. The net inward radial drift is decreased for marginally coupled particles, whereas the tightly coupled particles migrate faster in the saturated turbulent state. The turbulent diffusion of solid particles, measured by their random walk, depends strongly on their stopping time and on the solids-to-gas ratio of the background state, but diffusion is generally modest, particularly for tightly coupled solids. Angular momentum transport is too weak and of the wrong sign to influence stellar accretion. Self-gravity and collisions will be needed to determine the relevance of particle overdensities for planetesimal formation. -
Setting the Stage: Planet Formation and Volatile Delivery
Noname manuscript No. (will be inserted by the editor) Setting the Stage: Planet formation and Volatile Delivery Julia Venturini1 · Maria Paula Ronco2;3 · Octavio Miguel Guilera4;2;3 Received: date / Accepted: date Abstract The diversity in mass and composition of planetary atmospheres stems from the different building blocks present in protoplanetary discs and from the different physical and chemical processes that these experience during the planetary assembly and evolution. This review aims to summarise, in a nutshell, the key concepts and processes operating during planet formation, with a focus on the delivery of volatiles to the inner regions of the planetary system. 1 Protoplanetary discs: the birthplaces of planets Planets are formed as a byproduct of star formation. In star forming regions like the Orion Nebula or the Taurus Molecular Cloud, many discs are observed around young stars (Isella et al, 2009; Andrews et al, 2010, 2018a; Cieza et al, 2019). Discs form around new born stars as a natural consequence of the collapse of the molecular cloud, to conserve angular momentum. As in the interstellar medium, it is generally assumed that they contain typically 1% of their mass in the form of rocky or icy grains, known as dust; and 99% in the form of gas, which is basically H2 and He (see, e.g., Armitage, 2010). However, the dust-to-gas ratios are usually higher in discs (Ansdell et al, 2016). There is strong observational evidence supporting the fact that planets form within those discs (Bae et al, 2017; Dong et al, 2018; Teague et al, 2018; Pérez et al, 2019), which are accordingly called protoplanetary discs. -
The Multifaceted Planetesimal Formation Process
The Multifaceted Planetesimal Formation Process Anders Johansen Lund University Jurgen¨ Blum Technische Universitat¨ Braunschweig Hidekazu Tanaka Hokkaido University Chris Ormel University of California, Berkeley Martin Bizzarro Copenhagen University Hans Rickman Uppsala University Polish Academy of Sciences Space Research Center, Warsaw Accumulation of dust and ice particles into planetesimals is an important step in the planet formation process. Planetesimals are the seeds of both terrestrial planets and the solid cores of gas and ice giants forming by core accretion. Left-over planetesimals in the form of asteroids, trans-Neptunian objects and comets provide a unique record of the physical conditions in the solar nebula. Debris from planetesimal collisions around other stars signposts that the planetesimal formation process, and hence planet formation, is ubiquitous in the Galaxy. The planetesimal formation stage extends from micrometer-sized dust and ice to bodies which can undergo run-away accretion. The latter ranges in size from 1 km to 1000 km, dependent on the planetesimal eccentricity excited by turbulent gas density fluctuations. Particles face many barriers during this growth, arising mainly from inefficient sticking, fragmentation and radial drift. Two promising growth pathways are mass transfer, where small aggregates transfer up to 50% of their mass in high-speed collisions with much larger targets, and fluffy growth, where aggregate cross sections and sticking probabilities are enhanced by a low internal density. A wide range of particle sizes, from mm to 10 m, concentrate in the turbulent gas flow. Overdense filaments fragment gravitationally into bound particle clumps, with most mass entering planetesimals of contracted radii from 100 to 500 km, depending on local disc properties. -
The Formation of Jupiter by Hybrid Pebble-Planetesimal Accretion
The formation of Jupiter by hybrid pebble-planetesimal accretion Author: Yann Alibert1, Julia Venturini2, Ravit Helled2, Sareh Ataiee1, Remo Burn1, Luc Senecal1, Willy Benz1, Lucio Mayer2, Christoph Mordasini1, Sascha P. Quanz3, Maria Schönbächler4 Affiliations: 1Physikalisches Institut & Center for Space and Habitability, Universität Bern, Gesellschaftsstrasse 6, 3012 Bern, Switzerland 2Institut for Computational Sciences, Universität Zürich, Winterthurstrasse 190, 8057 Zürich, Switzerland 3 Institute for Particle Physics and Astrophysics, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland 4Institute of Geochemistry and Petrology, ETH Zürich, Clausiusstrasse 25, 8092 Zürich, Switzerland The standard model for giant planet formation is based on the accretion of solids by a growing planetary embryo, followed by rapid gas accretion once the planet exceeds a so- called critical mass1. The dominant size of the accreted solids (cm-size particles named pebbles or km to hundred km-size bodies named planetesimals) is, however, unknown1,2. Recently, high-precision measurements of isotopes in meteorites provided evidence for the existence of two reservoirs in the early Solar System3. These reservoirs remained separated from ~1 until ~ 3 Myr after the beginning of the Solar System's formation. This separation | downloaded: 6.1.2020 is interpreted as resulting from Jupiter growing and becoming a barrier for material transport. In this framework, Jupiter reached ~20 Earth masses (M⊕) within ~1 Myr and 3 slowly grew to ~50 M⊕ in the subsequent 2 Myr before reaching its present-day mass . The evidence that Jupiter slowed down its growth after reaching 20 M⊕ for at least 2 Myr is puzzling because a planet of this mass is expected to trigger fast runaway gas accretion4,5. -
L~,~!E?-~}On Streaming Dust Particle Instability
,I Indian Journ~f Radio' & ~patePhysics Vol. 23, Defember 1:,?~kPp. 410-415 Effect of streaming ~l~,~!E?-~}onstreaming dust particle instability Ix. { ....Physics Department,V ~ik~rn;, University yjj;yar~m~~ of Bombay,'{JS1DlTI\r' Bombay 400 090 , ,/ I J / '1J . Received 11 March 1994; revis'ed received 28 July 1994 '7 ~,ffiispersion relation for ~coustic wav~ in a homogeneous, unmagnetized and uniform plasma consistihg of charged streaming dust particles and streaming electrons is solved. The results are used .J to interpret the interaction between the solar wind plasma and ~.!~ry \iust QarticleJ. Due to this, it is suggested that, small dust particles are likely to be swept by the solar wind and thus assist in the formation of cometary tail.) :2). p 'i1 , -' /"" 1 Introduction cles with solar wind has been shown to have an Dust is found to be a common component in important role in the interpretation of large scale many plasma environments. Space plasmas, plane• structures of dusty plasma regionslH6. tary rings, cometary tails, asteroid belts, magne• To assess the interaction between the solar tospheres and lower part of earth ionosphere con• wind and cometary dust tail the conditions for the tain dust particles. In the laboratory plasmas, out• onset of streaming instability by jets, expanding gassing from nucleus, electrostatic disruption etc. halos and solar wind with dusty environment have /. are sOl)1e of the sources of dust particles. These been analyzed5• Bharuthram et al.17have analyzed dust grains collect ions and electrons and acquire the two stream ion instability and also the insta• an electric charge which can be equivalent to bility of drifting dust beams. -
Planet Formation by Pebble Accretion in Ringed Disks A
A&A 638, A1 (2020) https://doi.org/10.1051/0004-6361/202037983 Astronomy & © A. Morbidelli 2020 Astrophysics Planet formation by pebble accretion in ringed disks A. Morbidelli Département Lagrange, University of Nice – Sophia Antipolis, CNRS, Observatoire de la Côte d’Azur, Nice, France e-mail: [email protected] Received 19 March 2020 / Accepted 9 April 2020 ABSTRACT Context. Pebble accretion is expected to be the dominant process for the formation of massive solid planets, such as the cores of giant planets and super-Earths. So far, this process has been studied under the assumption that dust coagulates and drifts throughout the full protoplanetary disk. However, observations show that many disks are structured in rings that may be due to pressure maxima, preventing the global radial drift of the dust. Aims. We aim to study how the pebble-accretion paradigm changes if the dust is confined in a ring. Methods. Our approach is mostly analytic. We derived a formula that provides an upper bound to the growth of a planet as a function of time. We also numerically implemented the analytic formulæ to compute the growth of a planet located in a typical ring observed in the DSHARP survey, as well as in a putative ring rescaled at 5 AU. Results. Planet Type I migration is stopped in a ring, but not necessarily at its center. If the entropy-driven corotation torque is desaturated, the planet is located in a region with low dust density, which severely limits its accretion rate. If the planet is instead near the ring’s center, its accretion rate can be similar to the one it would have in a classic (ringless) disk of equivalent dust density. -
Circularizing Planet Nine Through Dynamical Friction with an Extended, Cold Planetesimal Belt
MNRAS 000,1{9 (2017) Preprint 6 November 2018 Compiled using MNRAS LATEX style file v3.0 Circularizing Planet Nine through dynamical friction with an extended, cold planetesimal belt Linn E.J. Eriksson,1? Alexander J. Mustill,1 Anders Johansen1 1Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, SE-221 00 Lund, Sweden Accepted XXX. Received YYY; in original form ZZZ ABSTRACT Unexpected clustering in the orbital elements of minor bodies beyond the Kuiper belt has led to speculations that our solar system actually hosts nine planets, the eight established plus a hypothetical \Planet Nine". Several recent studies have shown that a planet with a mass of about 10 Earth masses on a distant eccentric orbit with perihelion far beyond the Kuiper belt could create and maintain this clustering. The evolutionary path resulting in an orbit such as the one suggested for Planet Nine is nevertheless not easily explained. Here we investigate whether a planet scattered away from the giant-planet region could be lifted to an orbit similar to the one suggested for Planet Nine through dynamical friction with a cold, distant planetesimal belt. Recent simulations of planetesimal formation via the streaming instability suggest that planetesimals can readily form beyond 100 au. We explore this circularisation by dynamical friction with a set of numerical simulations. We find that a planet that is scattered from the region close to Neptune onto an eccentric orbit has a 20-30% chance of obtaining an orbit similar to that of Planet Nine after 4:6 Gyr. Our simulations also result in strong or partial clustering of the planetesimals; however, whether or not this clustering is observable depends on the location of the inner edge of the planetesimal belt. -
Curriculum Vitae
CURRICULUM VITAE Smadar Naoz September 2021 Contact University of California Los Angeles, Information Department of Physics & Astronomy 30 Portola Plaza, Box 951547 E-mail: [email protected] Los Angeles, CA 90095 WWW: http://www.astro.ucla.edu/∼snaoz/ Research Dynamics of planetary, stellar and black hole systems, which include formation of Hot Jupiters, Interests globular clusters, spiral structure, compact objects etc. Cosmology, structure formation in the early Universe, reionization and 21cm fluctuations. Education Tel Aviv University, Tel Aviv, Israel Ph.D. in Physics, January 2010 Hebrew University of Jerusalem, Jerusalem, Israel M.S. in Physics, Magna Cum Laude, 2004 B.S. in Physics 2002 Positions University of California, Los Angeles Associate professor since July 2019 Howard & Astrid Preston Term Chair in Astrophysics since July 2018 Assistant professor 2014-2019 Harvard Smithsonian CfA, Institute for Theory and Computation Einstein Fellow, September 2012 { June 2014 ITC Fellow, September 2011 { August 2012 Northwestern University, CIERA Gruber Fellow, September 2010 { August 2011 Postdoctoral associate in theoretical astrophysics, January 2010 { August 2010 Scholarships Helen B. Warner Prize, awarded by the American Astronomical Society, 2020 Honors and Scialog fellow, and accepted proposal, Signatures of Life in the Universe, 2020/2021 (conference Awards postponed to 2021 due to COVID-19) Career Commitment to Diversity, Equity and Inclusion Award, given by UCLA Academic Senate 2019. For other diversity awards, see xDEI. Hellman Fellows Award, awarded by Hellman Fellows Program, aimed to support the research of promising Assistant Professors who show capacity for great distinction in their research, June 2017 Multiple departmental teaching awards 2015-2019, see xTeaching, for details Sloan Research Fellowships awarded by the Alfred P.