Single Crystal Neutron Diffraction Studies of Hcp Rare Earth Thorium Alloys H

Total Page:16

File Type:pdf, Size:1020Kb

Single Crystal Neutron Diffraction Studies of Hcp Rare Earth Thorium Alloys H SINGLE CRYSTAL NEUTRON DIFFRACTION STUDIES OF HCP RARE EARTH THORIUM ALLOYS H. Child, W. Koehler To cite this version: H. Child, W. Koehler. SINGLE CRYSTAL NEUTRON DIFFRACTION STUDIES OF HCP RARE EARTH THORIUM ALLOYS. Journal de Physique Colloques, 1971, 32 (C1), pp.C1-1128-C1-1129. 10.1051/jphyscol:19711403. jpa-00214444 HAL Id: jpa-00214444 https://hal.archives-ouvertes.fr/jpa-00214444 Submitted on 1 Jan 1971 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE Colloque C 1, supplément au n° 2-3, Tome 32, Février-Mars 1971, page C 1 - 1128 SINGLE CRYSTAL NEUTRON DIFFRACTION STUDIES OF HCP RARE EARTH THORIUM ALLOYS (*) H. R. CHILD and W. C. KOEHLER Solid State Division, Oak Ridge National Laboratory Oak Ridge, Tennessee Résumé. — On a fait antérieurement des mesures par diffraction neutronique sur des échantillons en poudre d'alliages de Tb-terres rares. On a trouvé que l'addition du thorium dans les terres rares tendait de stabiliser la structure ferroma­ gnétique par rapport à la structure hélicoïdale. On rapporte ici des résultats plus précis qu'on a obtenus avec des mono­ cristaux. L'alliage 85 % Dy-15 % Th est ferromagnétique au-dessous de la température de Curie, 7c = 119 °K, sans aucune indication d'une structure hélicoïdale. Quand on ajoute le thorium à l'holmium, on trouve que la température de Néel aussi bien que l'angle entre l'aimantation en plans adjacents décroît. La structure conique est supprimée dans l'alliage 95 % Ho-5 % Th. Une phase ferromagnétique se forme ; dans cette phase les moments magnétiques se trouvent dans le plan mais avec une modulation faible superposée. Quand on augmente la concentration du thorium, cette modulation disparaît et la structure ferromagnétique est conservée. L'addition du thorium à l'erbium entraîne la décroissance de la température où s'ordonnent les composantes des moments magnétiques dans le plan, mais la température à laquelle la structure conique se développe augmente. L'alliage 95 % Er-5 % Th a les trois mêmes types de structure que l'erbium pur mais avec une séquence différente. Les alliages 90 % Er-10 % Th, et 85 % Er-15 % Th possèdent seulement des structures ferromagnétiques. Abstract. — Previous powder neutron diffraction measurements of polycrystalline hep Ho- and Er-Th alloys showed that the addition of the Th tended to enhance the ferromagnetic structure of the rare earths. We report here more detailed single crystal studies of representative alloys of rare earths with Th. An 85 % Dy-15 % Th crystal is ferromagnetic below Tc — 119 °K with no visible region of spiral structure. The addition of Th to Ho causes a drop in TN and a decrease in the interlayer turn angle of the spiral phase. The conical structure is suppressed with as little as 5 at. % Th and a phase with a large ferromagnetic base plane component and a small superimposed modulation is observed. As the concentration of Th is increased this extra modulation is eliminated and only the ferromagnetic component remains. Dilution of Er by Th causes a drop in the ordering temperature of the basal plane spiral component but a rise in the conical ferromagnetic transition temperature. A 95 at. % Er-5 % Th alloy shows all three regions of magnetic order of Er but their temperature sequence is changed. Alloys containing 90 and 85 at. % Er, however, have only a ferromagnetic structure. Introduction. — Previous neutron diffraction expe­ 179 to 87 °K is not present in this alloy. The addition riments on polycrystalline samples of heavy rare of this relatively small amount of Th has thus altered earth-thorium alloys [1] showed that dilution by the magnetic structure of Dy so that it transforms thorium tended to enhance the ferromagnetic character spontaneously from a paramagnetic to a ferromagnetic of the rare earths as long as the hep structure was configuration without going through an intermediate retained. The limit of Th concentration in this structure spiral phase. The axial anisotropy of the pure-metal is 15 to 20 at. % and when this limit is exceeded, a is retained, however, since the moments in the alloy two phase region occurs followed by the fee Th phase lie in the base plane. when the Th concentration exceeds about 50 at. % [2]. Figure 1 illustrates the magnetic transition tempe­ Alloys with the fee phase show magnetic short range ratures observed for the Ho- and Er-Th crystals. order in their low temperature neutron patterns [3] There seems to be thermal hysteresis in some of the with behavior characteristic of antiferromagnetic transitions so the temperatures shown are those correlations but no long range magnetic order down measured on warming the sample whenever the diffe­ to 1.3 °K. In the course of the previous study some rence in the warming and cooling temperatures were details of the magnetic structures could not be well determined from the powder neutron patterns so single crystals of hep rare earth-Th alloys were grown by A. H. Millhouse using the strain anneal method and in this paper we report preliminary results of the ) study of these crystals. Most of the discussion will be (°K devoted to the Ho and Er systems since these systems E appear to be the most interesting. Attempts to grow crystals of the fee phases have so far been unsuccessful. TEMPERATUR G Experimental results. — An 85 at. % Dy-15 at. % Th alloy crystal exhibits a Curie temperature of 119 ± 3 °K, considerably higher than the Curie point of pure ORDERIN Dy at 87 °K. Furthermore, no visible satellite reflec­ tions were observed at any temperature indicating that the spiral phase observed in pure Dy from (*) Research sponsored by the TJ. S. Atomic Energy Com­ FIG. 1. — Magnetic transition temperatures of hep alloys mission under contract with the Union Carbide Corporation. of Th with Ho and Er. Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19711403 SINGLE CRYSTAL NEUTRON DIFFRACTION STUDIES OF HCP RARE EARTH THORIUM ALLOYS C 1 - 1129 outside of experimental error. Pure Ho [4] has a in the 95 an 90 at. % Ho alloys. This indicates that transition at TN = I33 OK to a spiral spin structure the simple spiral is not retained throughout this tem- in the base plane which transforms at 20OK into a perature region and instead some distortion of the conical configuration in which a ferromagnetic compo- spiral occurs [4]. nent of 1.7 pB is aligned along the c-axis while the The magnetic intensities from the 84 at. % Ho rest of the moment remains in the base plane spiral. alloy were put on an absolute basis by comparison With the addition of Th to Ho the magnetic structure with the nuclear intensities. Assuming the magnetic observed below T, is still a base plane spiral but the form factor calculated for Ho+~or the form factor turn angle between rnomcnts in adjacent layers is observed from Ho,O,, a least squares fit of the data reduced ; for example, from 500 in pure Ho to 430/layer yields a magnetic moment per Ho atom of 9.0 ? 0.2 p,. in the 95 % alloy at TN. The turn angle decreases to This is based on a ferromagnet with the moments in about the same value as pure Ho as the temperature the base plane and equal domain populations. This is lowered for this alloy but as the Th concentration value is lower by 10 0/, than the expected moment of is increased, this reduction becomes greater. An 10 pR on the Ho + ion. This difference could indicate 84 % Ho alloy has an initial turn angle oi= 190 just a difference in the form factor for this alloy but the below TN and a final turn angle w, = 13.50 just above data seem to follow the form factor curves fairly well Tc. Turn angles this small could not be distinguished except for the scale factor. from w = 0 (a ferromagnet) in the former polycrys- Pure Er [5] has a transition at T, = 80 OK to a talline sample studies. magnetic structure in which the components of the The low temperature phases of the Ho-Th alloys moments oriented along the c-axis are modulated in are apparently of two types. The first occurs in the magnitude with a phase angle w between atoms in 95 and 90 at. % Ho alloys in which a large ferroma- adjacent c-axis layers. This configuration transforms gnetic moment is observed in the base plane with a- at T = 53 OK into a structure in which the base plane very small modulation superimposed on this predomi- components of the moment are arranged in a spiral nately ferromagnetic structure. This extra modulation and the c-axis moduiation begins squaring up into is shown by the presence of small satellite reflections an antiphase domain structure. Then, at Tc = 20 OK, at 40K with intensities corresponding roughly to the c-axis component (7.9 pB) becomes ferromagnetic 1 pB per atom if the structure were of the spiral type. while the base plane component (4.3 pB) retains the Furthermore, these satellites are present along the spiral arrangement. Thus the overall configuration is 001 zone indicating that the modulation is not solely conical and the total ordered moment is the expected along the c-axis.
Recommended publications
  • Canted Ferrimagnetism and Giant Coercivity in the Non-Stoichiometric
    Canted ferrimagnetism and giant coercivity in the non-stoichiometric double perovskite La2Ni1.19Os0.81O6 Hai L. Feng1, Manfred Reehuis2, Peter Adler1, Zhiwei Hu1, Michael Nicklas1, Andreas Hoser2, Shih-Chang Weng3, Claudia Felser1, Martin Jansen1 1Max Planck Institute for Chemical Physics of Solids, Dresden, D-01187, Germany 2Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, D-14109, Germany 3National Synchrotron Radiation Research Center (NSRRC), Hsinchu, 30076, Taiwan Abstract: The non-stoichiometric double perovskite oxide La2Ni1.19Os0.81O6 was synthesized by solid state reaction and its crystal and magnetic structures were investigated by powder x-ray and neutron diffraction. La2Ni1.19Os0.81O6 crystallizes in the monoclinic double perovskite structure (general formula A2BB’O6) with space group P21/n, where the B site is fully occupied by Ni and the B’ site by 19 % Ni and 81 % Os atoms. Using x-ray absorption spectroscopy an Os4.5+ oxidation state was established, suggesting presence of about 50 % 5+ 3 4+ 4 paramagnetic Os (5d , S = 3/2) and 50 % non-magnetic Os (5d , Jeff = 0) ions at the B’ sites. Magnetization and neutron diffraction measurements on La2Ni1.19Os0.81O6 provide evidence for a ferrimagnetic transition at 125 K. The analysis of the neutron data suggests a canted ferrimagnetic spin structure with collinear Ni2+ spin chains extending along the c axis but a non-collinear spin alignment within the ab plane. The magnetization curve of La2Ni1.19Os0.81O6 features a hysteresis with a very high coercive field, HC = 41 kOe, at T = 5 K, which is explained in terms of large magnetocrystalline anisotropy due to the presence of Os ions together with atomic disorder.
    [Show full text]
  • An Overview of Representational Analysis and Magnetic Space Groups
    Magnetic Symmetry: an overview of Representational Analysis and Magnetic Space groups Stuart Calder Neutron Scattering Division Oak Ridge National Laboratory ORNL is managed by UT-Battelle, LLC for the US Department of Energy Overview Aim: Introduce concepts and tools to describe and determine magnetic structures • Basic description of magnetic structures and propagation vector • What are the ways to describe magnetic structures properly and to access the underlying physics? – Representational analysis – Magnetic space groups (Shubnikov groups) 2 Magnetic Symmetry: an overview of Representational Analysis and Magnetic Space groups Brief History of magnetic structures • ~500 BC: Ferromagnetism documented Sinan, in Greece, India, used in China ~200 BC • 1932 Neel proposes antiferromagnetism • 1943: First neutron experiments come out of WW2 Manhatten project at ORNL • 1951: Antiferromagnetism measured in MnO and Ferrimagnetism in Fe3O4 at ORNL by Shull and Wollan with neutron scattering • 1950-60: Shubnikov and Bertaut develop methods for magnetic structure description • Present/Future: - Powerful and accessible experimental and software tools available - Spintronic devices and Quantum Information Science 3 Magnetic Symmetry: an overview of Representational Analysis and Magnetic Space groups Intrinsic magnetic moments (spins) in ions • Consider an ion with unpaired electrons • Hund’s rule: maximize S/J m=gJJ (rare earths) m=gsS (transtion metals) core 2+ Ni has a localized magnetic moment of 2µB Ni2+ • Magnetic moment (or spin) is a classical
    [Show full text]
  • Magnetic Point Groups
    GDR MEETICC Matériaux, Etats ElecTroniques, Interaction et Couplages non Conventionnels Winter school 4 – 10 February 2018, Banyuls-sur-Mer, France CRYSTALLOGRAPHIC and MAGNETIC STRUCTURES from NEUTRON DIFFRACTION: the POWER of SYMMETRIES (Lecture II) Béatrice GRENIER & Gwenaëlle ROUSSE UGA & CEA, INAC/MEM/MDN UPMC & Collège de France, Grenoble, France Paris, France GDR MEETICC Banyuls, Feb. 2018 Global outline (Lectures II, and III) II- Magnetic structures Description in terms of propagation vector: the various orderings, examples Description in terms of symmetry: Magnetic point groups: time reversal, the 122 magnetic point groups Magnetic lattices: translations and anti-translations, the 36 magnetic lattices Magnetic space groups = Shubnikov groups III- Determination of nucl. and mag. structures from neutron diffraction Nuclear and magnetic neutron diffraction: structure factors, extinction rules Examples in powder neutron diffraction Examples in single-crystal neutron diffraction Interest of magnetic structure determination ? Some material from: J. Rodriguez-Carvajal, L. Chapon and M. Perez-Mato was used to prepare Lectures II and III GDR MEETICC Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE 1 Banyuls, Feb. 2018 Interest of magnetic structure determination Methods and Computing Programs Multiferroics Superconductors GDR MEETICC Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE 2 Banyuls, Feb. 2018 Interest of magnetic structure determination Nano particles Multiferroics Computing Methods Manganites, charge ordering orbital ordering Heavy Fermions 3 GDR MEETICC Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE 3 Banyuls, Feb. 2018 1. What is a magnetic structure ? A crystallographic structure consists in a long-range order of atoms, described by a unit cell, a space group, and atomic positions of the asymmetry unit.
    [Show full text]
  • Arxiv:1712.02418V2 [Cond-Mat.Str-El] 12 Oct 2018 Layers
    Evidence for dynamic kagome ice E. Lhotel,1, ∗ S. Petit,2, y M. Ciomaga Hatnean,3 J. Ollivier,4 H. Mutka,4 E. Ressouche,5 M. R. Lees,3 and G. Balakrishnan3 1Institut N´eel,CNRS and Universit´eGrenoble Alpes, 38042 Grenoble, France 2Laboratoire L´eonBrillouin, CEA CNRS Universit Paris Saclay, CE-Saclay, F-91191 Gif-sur-Yvette, France 3Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom 4Institut Laue Langevin, F-38042 Grenoble, France 5INAC, CEA and Universit´eGrenoble Alpes, CEA Grenoble, F-38054 Grenoble, France The search for two-dimensional quantum spin liquids, exotic magnetic states remaining disordered down to zero temperature, has been a great challenge in frustrated magnetism over the last few decades. Recently, evidence for fractionalized excitations, called spinons, emerging from these states has been observed in kagome and triangular antiferromagnets. In contrast, quantum ferromagnetic spin liquids in two dimensions, namely quantum kagome ices, have been less investigated, yet their classical counterparts exhibit amazing properties, magnetic monopole crystals as well as magnetic fragmentation. Here we show that applying a magnetic field to the pyrochlore oxide Nd2Zr2O7, which has been shown to develop three-dimensional quantum magnetic fragmentation in zero field, results in a dimensional reduction, creating a dynamic kagome ice state: the spin excitation spectrum determined by neutron scattering encompasses a flat mode with a six arm shape akin to the kagome ice structure factor, from which dispersive branches emerge. I. INTRODUCTION (a) The two-dimensional kagome and three-dimensional pyrochlore structures are low connectivity lattices based (b) on corner sharing triangles or tetrahedra respectively.
    [Show full text]
  • Neutron Diffraction Studies of Magnetic Ordering in Superconducting Erni2b2c and Tmni2b2c in an Applied Magnetic Field
    Risø–R–1440(EN) Neutron diffraction stud- ies of magnetic ordering in superconducting ErNi2B2C and TmNi2B2C in an ap- plied magnetic field Katrine Nørgaard Toft Risø National Laboratory, Roskilde Faculty of Science, University of Copenhagen January 2004 Abstract This thesis describes neutron diffraction studies of the long-range magnetic or- dering of superconducting ErNi2B2C and TmNi2B2C in an applied magnetic field. The magnetic structures in an applied field are especially interesting because the field suppresses the superconducting order parameter and therefore the magnetic properties can be studied while varying the strength of superconductivity. ErNi2B2C: For magnetic fields along all three symmetry directions, the observed magnetic structures have a period corresponding to the Fermi surface nesting structure. The phase diagrams present all the observed magnetic structures, and the spin configuration of the structures are well understood in the context of the mean field model by Jensen et al. [1]. However, two results remain unresolved: 1. When B applying the magnetic field along [010], the minority domain (QN=(0,Q,0) with moments perpendicular to the field) shows no signs of hysteresis. I expected it to be a meta stable state which would be gradually suppressed by a magnetic field, and when decreasing the field it would not reappear until some small field comparable to the demagnetization field of 0.1 T. 2. When the field is applied along [110], the magnetic structure rotates a small angle of 0.5o away from the symmetry direction. TmNi2B2C: A magnetic field applied in the [100] direction suppresses the zero field magnetic structure QF =(0.094, 0.094, 0) (TN = 1.6 K), in favor of the Fermi surface nest- ing structure QN =(0.483, 0, 0).
    [Show full text]
  • Atom Site Preferences in Crmnas Laura Christine Lutz Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2013 Electronic structure, magnetic structure, and metal- atom site preferences in CrMnAs Laura Christine Lutz Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Chemistry Commons, and the Mechanics of Materials Commons Recommended Citation Lutz, Laura Christine, "Electronic structure, magnetic structure, and metal-atom site preferences in CrMnAs" (2013). Graduate Theses and Dissertations. 13271. https://lib.dr.iastate.edu/etd/13271 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Electronic structure, magnetic structure, and metal-atom site preferences in CrMnAs by Laura Christine Lutz A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Materials Science and Engineering Program of Study Committee: Gordon J. Miller, Co-major Professor Scott Beckman, Co-major Professor Ralph Napolitano Iowa State University Ames, Iowa 2013 Copyright c Laura Christine Lutz, 2013. All rights reserved. ii TABLE OF CONTENTS LIST OF TABLES iii LIST OF FIGURES iv ACKNOWLEDGEMENTS v ABSTRACT vi CHAPTER 1. INTRODUCTION 1 Introduction to the materials3 The structure and properties of CrMnAs3 Antiferromagnetism of Cr2As and Mn2As7 Introduction to the computational methods 10 VASP 10 TB-LMTO-ASA 10 Other software tools 11 Goals 11 CHAPTER 2.
    [Show full text]
  • Neutron Scattering Studies of Spin Ices and Spin Liquids
    Collection SFN 13, 04001 (2014) DOI: 10.1051/sfn/20141304001 C Owned by the authors, published by EDP Sciences, 2014 Neutron scattering studies of spin ices and spin liquids T. Fennell Laboratory for Neutron Scattering, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland Abstract. In frustrated magnets, competition between interactions, usually due to incompatible lattice and exchange geometries, produces an extensively degenerate manifold of groundstates. Exploration of these states results in a highly correlated and strongly fluctuating cooperative paramagnet, a broad classification which includes phases such as spin liquids and spin ices. Generally, there is no long range order and associated broken symmetry, so quantities typically measured by neutron scattering such as magnetic Bragg peaks and magnon dispersions are absent. Instead, spin correlations characterized by emergent gauge structure and exotic fractional quasiparticles may emerge. Neutron scattering is still an excellent tool for the investigation these phenomena, and this review outlines examples of frustrated magnets on the pyrochlore and kagome lattices with reference to experiments and quantities of interest for neutron scattering. 1. PREAMBLE In physics, a frustrated system is one in which all interactions cannot be simultaneously minimized, which is also to say that there is competition amongst the interactions. Frustration is most commonly associated with spin systems [1], where its consequences can be particularly well identified, but is by no means limited to magnetism. Frustrated interactions are also relevant in certain structural problems [2–6], colloids and liquid crystals [7], spin glasses [8], stripe phases [9, 10], Josephson junction arrays [11], stellar nuclear matter [12, 13], social dynamics [14], origami [15], and protein folding [16], to name a few.
    [Show full text]
  • Helimagnetism in Mnbi2se4 Driven by Spin-Frustrating Interactions Between Antiferromagnetic Chains
    crystals Article Helimagnetism in MnBi2Se4 Driven by Spin-Frustrating Interactions Between Antiferromagnetic Chains Judith K. Clark 1,†, Chongin Pak 1,2,†, Huibo Cao 3 and Michael Shatruk 1,2,* 1 Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; [email protected] (J.K.C.); [email protected] (C.P.) 2 National High Field Magnetic Laboratory, Tallahassee, FL 32310, USA 3 Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; [email protected] * Correspondence: [email protected] † Both authors contributed equally to this work. Abstract: We report the magnetic properties and magnetic structure determination for a linear- chain antiferromagnet, MnBi2Se4. The crystal structure of this material contains chains of edge- sharing MnSe6 octahedra separated by Bi atoms. The magnetic behavior is dominated by intrachain antiferromagnetic (AFM) interactions, as demonstrated by the negative Weiss constant of −74 K obtained by the Curie–Weiss fit of the paramagnetic susceptibility measured along the easy-axis magnetization direction. The relative shift of adjacent chains by one-half of the chain period causes spin frustration due to interchain AFM coupling, which leads to AFM ordering at TN = 15 K. Neutron diffraction studies reveal that the AFM ordered state exhibits an incommensurate helimagnetic structure with the propagation vector k = (0, 0.356, 0). The Mn moments are arranged perpendicular to the chain propagation direction (the crystallographic b axis), and the turn angle around the helix ◦ Citation: Clark, J.K.; Pak, C.; Cao, H.; is 128 . The magnetic properties of MnBi2Se4 are discussed in comparison to other linear-chain Shatruk, M.
    [Show full text]
  • Neutron Scattering Studies of Yttrium Doped Rare-Earth Hexagonal Multiferroics
    NEUTRON SCATTERING STUDIES OF YTTRIUM DOPED RARE-EARTH HEXAGONAL MULTIFERROICS A Dissertation presented to the Faculty of the Graduate School at the University of Missouri-Columbia In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy by JAGATH C GUNASEKERA Dr. Owen P. Vajk, Dissertation Supervisor JULY 2013 The undersigned, appointed by the Dean of the Graduate School, have examined the dissertation entitled: NEUTRON SCATTERING STUDIES OF YTTRIUM DOPED RARE-EARTH HEXAGONAL MULTIFERROICS presented by Jagath C Gunasekera, a candidate for the degree of Doctor of Philosophy and hereby certify that, in their opinion, it is worthy of acceptance. Dr. Owen. P. Vajk Dr. Wouter Montfrooij Dr. Sashi Satpathy Dr. Angela Speck Dr. Steven Keller To my parents and to my loving wife ACKNOWLEDGMENTS First, I want to thank my advisor Dr. Owen Vajk for introducing me to the world of strongly correlated systems, neutron scattering and crystal growth. His excellent support and perpetual guidance throughout my Ph.D has been enormous and without it this thesis would have not been possible. I have been very fortunate to learn from him. Owen also has great sense of humor. If you have any question about computers, just email him. I also want to thank Dr. Tom Heitmann for giving me practical knowledge in neutron scattering and keeping me company during long hours at the beam port floor, and also for maintaining the instrument at the reactor, without which no scattering experiments would have been possible. I would also like to thank Tom for his guidance and advice on dealing with life.
    [Show full text]
  • Chapter 1 MAGNETIC NEUTRON SCATTERING
    Chapter 1 MAGNETIC NEUTRON SCATTERING. And Recent Developments in the Triple Axis Spectroscopy Igor A . Zaliznyak'" and Seung-Hun Lee(2) (')Department of Physics. Brookhaven National Laboratory. Upton. New York 11973-5000 (')National Institute of Standards and Technology. Gaithersburg. Maryland 20899 1. Introduction..................................................................................... 2 2 . Neutron interaction with matter and scattering cross-section ......... 6 2.1 Basic scattering theory and differential cross-section................. 7 2.2 Neutron interactions and scattering lengths ................................ 9 2.2.1 Nuclear scattering length .................................................. 10 2.2.2 Magnetic scattering length ................................................ 11 2.3 Factorization of the magnetic scattering length and the magnetic form factors ............................................................................................... 16 2.3.1 Magnetic form factors for Hund's ions: vector formalism19 2.3.2 Evaluating the form factors and dipole approximation..... 22 2.3.3 One-electron spin form factor beyond dipole approximation; anisotropic form factors for 3d electrons..................... 27 3 . Magnetic scattering by a crystal ................................................... 31 3.1 Elastic and quasi-elastic magnetic scattering............................ 34 3.2 Dynamical correlation function and dynamical magnetic susceptibility ............................................................................................
    [Show full text]
  • Chiral Ordering Spin Associated Glass Like State in Srruo3/Sriro3 Superlattice
    Chiral Ordering Spin Associated Glass like State in SrRuO3/SrIrO3 Superlattice Bin Pang1, Lunyong Zhang1,2*, Y.B Chen3*, Jian Zhou1 , Shuhua Yao1, Shantao Zhang1, Yanfeng Chen1 1. National Laboratory of Solid State Microstructures & Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China 2. Max Planck POSTECH Center for Complex Phase Materials, Max Planck POSTECH/Korea Research Initiative (MPK), Gyeongbuk 376-73, Korea 3. National Laboratory of Solid State Microstructures & Department of Physics, Nanjing University, 210093 Nanjing, China * Corresponding authors: Lunyong Zhang [email protected] and Y.B Chen [email protected] ABSTRACT:Heterostructure interface provides a powerful platform to observe rich emergent phenomena, such as interfacial superconductivity, nontrivial topological surface state. Here SrRuO3/SrIrO3 superlattices were epitaxially synthesized. The magnetic and electrical properties of these superlattices were characterized. Broad cusps in the zero field cooling magnetization curves and near stable residual magnetization below the broad cusps, as well as two steps magnetization hysteresis loops are observed. The magnetization relaxes following a modified Stretched function model indicating coexistence of spin glass and ferromagnetic ordering in the superlattices. Topological Hall effect was demonstrated at low temperature and weakened with the increase of SrIrO3 layer thickness. These results suggest that chiral ordering spin texture were generated at the interfaces due to the interfacial Dzyaloshinskii-Moriya (DM) interaction, which generates the spin glass behaviors. The present work demonstrates that SrIrO3 can effectively induce interface DM interactions in heterostructures, it would pave light on the new research directions of strong spin orbit interaction oxides, from the viewpoints of both basic science and prospective spintronics devices applications.
    [Show full text]
  • Topological Metastability Supported by Thermal Fluctuation Upon Formation
    www.nature.com/scientificreports OPEN Topological metastability supported by thermal fuctuation upon formation of chiral soliton lattice in CrNb3S6 T. Honda1, Y. Yamasaki1,2,3,4*, H. Nakao1, Y. Murakami1, T. Ogura5, Y. Kousaka6 & J. Akimitsu7 Topological magnetic structure possesses topological stability characteristics that make it robust against disturbances which are a big advantage for data processing or storage devices of spintronics; nonetheless, such characteristics have been rarely clarifed. This paper focused on the formation of chiral soliton lattice (CSL), a one-dimensional topological magnetic structure, and provides a discussion of its topological stability and infuence of thermal fuctuation. Herein, CSL responses against change of temperature and applied magnetic feld were investigated via small-angle resonant soft X-ray scattering in chromium niobium sulfde ( CrNb3S6 ). CSL transformation relative to the applied magnetic feld demonstrated a clear agreement with the theoretical prediction of the sine- Gordon model. Further, there were apparent diferences in the process of chiral soliton creation and annihilation, discussed from the viewpoint of competing between thermal fuctuation and the topological metastability. Magnets with chiral crystal structure provide a good platform for exploring non-trivial spin textures due to Dzyaloshinskii-Moriya (DM) interaction which comes from the spin-orbit interaction and the lack of inver- sion symmetry of crystals. In these years, spin textures with topological features in the chiral magnets have been intensively investigated because of their promising potential for developing novel spintronics devices. For example, skyrmions, topological magnetic structures, show a triangle crystallization of the stable magnetic whirls that emerge in the 2D or 3D magnetic system1.
    [Show full text]