Introduction to Radiation Biology

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Radiation Biology Outline Introduction to • Terminology Radiation Biology • Development of radiobiological damage • Cell cycle • Cell survival curves Survey of Clinical Radiation Oncology • Radiobiological damage: oxygenation, fractionation, and 4 R’s of radiobiology Lecture 2 • Cell and tissue radiosensitivity Radiation biology Types of ionizing radiations • Radiation biology is the study of the action of • Electromagnetic radiations ionizing radiation on living organisms – X-rays and Gamma-rays • The action is very complex, involving physics, chemistry, and biology • Particulate radiations – Different types of ionizing radiation – Electrons, protons, a-particles, heavy charged – Energy absorption at the atomic and molecular level particles leads to biological damage – Neutrons – Repair of damage in living organisms • All charged particles: directly ionizing radiation • Basic principles are used in radiation therapy with the objective to treat cancer with minimal damage • X and g-rays, as well as neutrons – indirectly to the normal tissues ionizing radiation Types of ionizing radiations Linear Energy Transfer • If radiation is absorbed in biologic material, ionizations and excitations occur in a pattern that depends on the • Linear energy transfer (LET) is the energy type of radiation involved transferred per unit length of the track • Depending on how far the primary ionization events • The special unit usually used for this quantity is are separated in space, radiation is characterized as sparsely ionizing (x-rays) or densely ionizing (a- keV/mm of unit density material particles) • It is an average quantity, typically track averaged • Heavier particles with larger charge produce higher ionization density • For a given particle type, the density of ionization LET dE/ dl decreases as the energy (and velocity) goes up 1 Linear Energy Transfer Relative Biological Effectiveness • Equal doses of different types of radiation do not produce equal biologic effects – 1 Gy of neutrons produces a greater biologic effect than 1 Gy of x-rays due to the difference in the pattern of energy deposition at the microscopic level • The relative biologic effectiveness (RBE) of some test radiation (r) compared with 250 kV x-rays is defined D RBE 250kV • The method of averaging makes little difference for x- Dr rays or for mono-energetic charged particles, but the track • D250kV and Dr are the doses of x-rays and the test average and energy average are different for neutrons radiation required for equal biological effect Relative Biological Effectiveness Development of radiobiological damage • Because the x-ray and neutron survival curves have different shapes the resultant RBE depends on the level of biologic damage chosen • The RBE for a fractionated regimen with neutrons is greater than for a single exposure (because the RBE is larger for smaller doses) Development of radiobiological Characteristic time scales damage • The physical event of absorption occurs over Incident radiation about 10-15 seconds • The biologic lifetime of the free radical is on Radiation absorption the order of 10-10 - 10-9 seconds (10-5 seconds in the presence of air) Excitation and ionization • The expression of cell death may take up to Free radical formation days to months • The expression of carcinogenesis may take Brakeage of chemical bonds years or generations Biological effects 2 Absorption of radiation Biological effect • Biological systems are very sensitive to radiation • The biological effect is expressed in cell • Absorption of 4 Gy in water produces the rise in killing, or cell transformation (carcinogenesis temperature ~10-3 oC (~67 cal in 70-kg person) and mutations) • Whole body dose of 4 Gy given to human is • The primary target of radiation is DNA lethal in 50% of cases (LD50) molecule, suffering breaks in chemical bonds • The potency of radiation is in its concentration • Depending on the extent of the damage, it can be repaired through several repair mechanisms and the damage done to the genetic material of in place in a living organism each cell The structure of DNA DNA as a target • DNA molecule has many deoxyribo-nucleotides (bases) • Single-strand breaks are of little linked in a chain-like arrangement biologic consequence because they • Bases are held by hydrogen bonds are repaired readily using the and are paired complimentary opposite strand as a template (adenine with thymine; cytosine • Double-strand breaks are believed with guanine) to be the most important lesions • Each half is a template for produced in chromosomes by reconstruction of the other half radiation; the interaction of two • During cell division each strand is self-replicated double-strand breaks may result in resulting in identical molecules cell killing, carcinogenesis, or mutation Direct and indirect actions • In direct action, a secondary Free radicals electron resulting from absorption • A free radical is an atom or molecule carrying an unpaired of an x-ray photon interacts with orbital electron in the outer shell. This state is associated the DNA to produce an effect with a high degree of chemical reactivity • In indirect action, the secondary • Since 80% of a cell is composed of water, as a result of the electron interacts with, for interaction with a photon or a charged particle, the water example, a water molecule to molecule may become ionized: produce a hydroxyl radical (OH-), which in turn produces the H2O H2O e damage to the DNA + -10 • H2O is an ion radical with a lifetime of ~10 s; it decays • The DNA helix has a diameter of to form highly reactive hydroxyl free radical OH ~ 2 nm; free radicals produced in H O H O H O OH a cylinder with a diameter ~ 4 nm 2 2 3 can affect the DNA • About 2/3 of the x-ray damage to DNA in mammalian -3 • Indirect action is dominant for cells is caused by the hydroxyl radical (lifetime of ~10 s) sparsely ionizing radiation (x-rays) 3 Chromosomes Chromosome aberrations • DNA molecules carry the • Damage to DNA may result in lethal damage genetic information or repair efforts modulated by specific • Chromosome is an enzymes may result in mutations which can be organized structure of DNA perpetuated in subsequent cellular divisions and DNA-bound proteins (serve to package the DNA • Mutations are mostly characterized by and control its functions) deletions (where part of the genetic message is lost) or translocations where a segment of a • Chromosomes are located chromosome is lost from its proper location mostly in cell nucleus (some and recombines with another chromosome amount is in mitochondria) Radiation-induced aberrations Radiation-induced aberrations A: Symmetric translocation: radiation produces breaks in two different pre-replication chromosomes. The broken pieces are exchanged between the two chromosomes, and the “sticky” ends rejoin. B: Deletion: radiation produces two breaks in the same arm of the same chromosome Lethal aberrations include dicentrics (A), rings (B), and Symmetric translocations and small anaphase bridges (C) deletions are nonlethal The cell cycle Mutations • M - mitosis, identifiable by • If occur in the germ cells (sperm and ova) they light microscopy and the can be passed on as genetic abnormalities in most constant time (~ 1 hr) offspring • S - DNA synthesis phase • If they occur in the somatic cells (the cells that • G1 - the first gap in activity, make up an organism) they can lead to the between mitosis and the S development of diseases including cancer - this is phase (most variable length) called carcinogenesis • G2 - the second gap in • There are genes called oncogenes that affect activity, between S phase cancer incidence and the next mitosis • If an inhibitory oncogene is lost due to a deletion • If the cells stop progressing the patient is at higher risk for cancer formation through the cycle (if they are arrested) they are in G0 4 Variation of radiosensitivity Molecular checkpoint genes with cell age in the mitotic cycle • Cell-cycle progression is • Cells are most sensitive at or close to M (mitosis) controlled by a family of molecular checkpoint genes • G2 phase is usually as sensitive as M phase • Their function is to ensure the • Resistance is usually greatest in the latter part correct order of cell-cycle events of S phase due to repairs that are more likely to • The genes involved in radiation occur after the DNA has replicated effects halt cells in G2, so that an inventory of chromosome • If G1 phase has an appreciable length, a resistant damage can be taken, and repair period is evident early in G1, followed by a initiated and completed, before the mitosis is attempted sensitive period toward the end of G1 • Cells that lack checkpoint genes are sensitive to radiation-induced cell killing, and carcinogenesis Mechanisms of cell death after Cell survival curves irradiation • The main target of radiation is cell’s DNA: single breaks are often reparable, double breaks lethal • Mitotic death – cells die attempting to divide, primarily due to asymmetric chromosome aberrations; most common mechanism • Apoptosis – programmed cell death; characterized by a predefined sequence of events resulting in cell separation in apoptotic bodies • A cell survival curve describes the relationship between the • Bystander effect – cells directly affected by radiation dose and the proportion of cells that survive radiation release cytotoxic molecules inducing • Usually presented in the form with dose plotted on a linear scale death in neighboring cells and surviving fraction on a log scale Cell survival curve
Recommended publications
  • Low Dose and Low Dose-Rate Radiation Effects and Models
    Forty-Fourth Annual Meeting Program Low Dose and Low Dose-Rate Radiation Effects and Models April 14–15, 2008 Bethesda North Marriott Hotel & Conference Center 5701 Marinelli Road North Bethesda, MD 20852 On the cover: • top: Two nuclei have each been “hit” by three alpha particles from a microbeam and show activated γH2AX foci at the site of the traversal. • center: Chromosome painting technology makes it possible to identify each human chromosome and characterize the number, location and types of aberrations produced by ionizing radiation. • bottom: Measuring the frequency of micronuclei provides a rapid measure of cytogenetic damage, which increases as a function of radiation dose. Introduction Low Dose and Low Dose-Rate Radiation Effects and Models Forty-Fourth Annual Meeting of the National Council on Radiation Protection and Measurements (NCRP) Potential human health effects of low doses of ionizing models of the biological responses and human health radiation such as those experienced in occupational impacts of exposure to low doses of radiation. The and medical exposures are of great contemporary meeting will feature presentations by international interest. Considerable debate exists over the applica- experts on the topics of (1) molecular, cellular, tissue, bility of a linear-nonthreshold model for characterizing and laboratory animal studies on the effects of expo- the biological responses and health effects of expo- sure to low dose and low dose-rate radiation, (2) sure to low radiation doses, and alternative models results of epidemiological studies on human health have been proposed. A related subject of interest and effects of low radiation doses in occupational, medical debate is the effect of the rate of delivery of radiation and other exposure scenarios, (3) potential impacts of doses on the biological and health outcomes of expo- these findings on future regulatory guidance and pub- sure.
    [Show full text]
  • Radioresistance of Brain Tumors
    cancers Review Radioresistance of Brain Tumors Kevin Kelley 1, Jonathan Knisely 1, Marc Symons 2,* and Rosamaria Ruggieri 1,2,* 1 Radiation Medicine Department, Hofstra Northwell School of Medicine, Northwell Health, Manhasset, NY 11030, USA; [email protected] (K.K.); [email protected] (J.K.) 2 The Feinstein Institute for Molecular Medicine, Hofstra Northwell School of Medicine, Northwell Health, Manhasset, NY 11030, USA * Correspondence: [email protected] (M.S.); [email protected] (R.R.); Tel.: +1-516-562-1193 (M.S.); +1-516-562-3410 (R.R.) Academic Editor: Zhe-Sheng (Jason) Chen Received: 17 January 2016; Accepted: 24 March 2016; Published: 30 March 2016 Abstract: Radiation therapy (RT) is frequently used as part of the standard of care treatment of the majority of brain tumors. The efficacy of RT is limited by radioresistance and by normal tissue radiation tolerance. This is highlighted in pediatric brain tumors where the use of radiation is limited by the excessive toxicity to the developing brain. For these reasons, radiosensitization of tumor cells would be beneficial. In this review, we focus on radioresistance mechanisms intrinsic to tumor cells. We also evaluate existing approaches to induce radiosensitization and explore future avenues of investigation. Keywords: radiation therapy; radioresistance; brain tumors 1. Introduction 1.1. Radiotherapy and Radioresistance of Brain Tumors Radiation therapy is a mainstay in the treatment of the majority of primary tumors of the central nervous system (CNS). However, the efficacy of this therapeutic approach is significantly limited by resistance to tumor cell killing after exposure to ionizing radiation. This phenomenon, termed radioresistance, can be mediated by factors intrinsic to the cell or by the microenvironment.
    [Show full text]
  • Human Radiosensitivity and Radiosusceptibility: What Are the Differences?
    International Journal of Molecular Sciences Review Human Radiosensitivity and Radiosusceptibility: What Are the Differences? Laura El-Nachef 1, Joelle Al-Choboq 1, Juliette Restier-Verlet 1, Adeline Granzotto 1, Elise Berthel 1,2, Laurène Sonzogni 1,Mélanie L. Ferlazzo 1, Audrey Bouchet 1 , Pierre Leblond 3, Patrick Combemale 3, Stéphane Pinson 4, Michel Bourguignon 1,5 and Nicolas Foray 1,* 1 Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; [email protected] (L.E.-N.); [email protected] (J.A.-C.); Juliette.Restier–[email protected] (J.R.-V.); [email protected] (A.G.); [email protected] (E.B.); [email protected] (L.S.); [email protected] (M.L.F.); [email protected] (A.B.); [email protected] (M.B.) 2 Neolys Diagnostics, 67960 Entzheim, France 3 Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; [email protected] (P.L.); [email protected] (P.C.) 4 Hospices Civils de Lyon, Quai des Célestins, 69002 Lyon, France; [email protected] 5 Université Paris Saclay Versailles St Quentin en Yvelines, 78035 Versailles, France * Correspondence: [email protected]; Tel.: +33-4-78-78-28-28 Abstract: The individual response to ionizing radiation (IR) raises a number of medical, scientific, and societal issues. While the term “radiosensitivity” was used by the pioneers at the beginning Citation: El-Nachef, L.; Al-Choboq, of the 20st century to describe only the radiation-induced adverse tissue reactions related to cell J.; Restier-Verlet, J.; Granzotto, A.; death, a confusion emerged in the literature from the 1930s, as “radiosensitivity” was indifferently Berthel, E.; Sonzogni, L.; Ferlazzo, used to describe the toxic, cancerous, or aging effect of IR.
    [Show full text]
  • Thesis to My Family, for the Joy in Everyday Life
    From DEPARTMENT OF ONCOLOGY AND PATHOLOGY Karolinska Institutet, Stockholm, Sweden STEREOTACTIC BODY RADIATION THERAPY OF PRIMARY LUNG CANCER AND METASTASES Karin Lindberg Stockholm 2015 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by AJ E-print AB © Karin Lindberg, 2015 ISBN 978-91-7549-942-0 Institutionen för Onkologi-Patologi Stereotactic Body Radiation Therapy of Primary Lung cancer and Metastases AKADEMISK AVHANDLING som för avläggande av medicine doktorsexamen vid Karolinska Institutet offentligen försvaras i Radiumhemmets föreläsningssal, plan 01 (P1:01), Karolinska Universitetssjukhuset Solna Fredagen den 29:e maj 2015, kl 10.00 Av Karin Lindberg Leg läkare Huvudhandledare: Fakultetsopponent: Rolf Lewensohn, MD, PhD, Professor Matthias Guckenberger, MD, PhD, Professor Karolinska Institutet University Hospital Zürich (USZ) Department of Radiation Oncology Institutionen för Onkologi-Patologi Bihandledare: Betygsnämnd: Peter Wersäll, MD, PhD, Docent Magnus Sköld, MD, PhD, Professor Karolinska Institutet Karolinska Institutet Institutionen för Onkologi-Patologi Institutionen för Medicin Solna Signe Friesland, MD, PhD Thomas Asklund, MD, PhD, Docent Karolinska Institutet Umeå Universitet Institutionen för Onkologi-Patologi Institutionen för strålningsvetenskaper Anders Montelius, PhD, Docent Uppsala Universitet Institutionen för Immunologi, Genetik och Patologi I dedicate this thesis to my family, for the joy in everyday life. ...”Kärlek som är att vakna tillsammans och möta den blåögda morgonen att utbyta leenden som värmer och värnar och den nya dagens framtid att på resan genom dagen vila tillsammans på klockslagens små väntstationer och intaga gemensamma måltider upplysta av lingonsyltens röda glädje”... Ur Den dagliga kärleken av Maria Wine ABSTRACT Stereotactic body radiation therapy (SBRT) has been assessed by both retrospective and prospective studies showing excellent treatment outcome with acceptable toxicity and high grade of local control.
    [Show full text]
  • Atorvastatin Prolongs the Lifespan of Radiation‑Induced Reactive Oxygen Species in PC‑3 Prostate Cancer Cells to Enhance
    ONCOLOGY REPORTS 37: 2049-2056, 2017 Atorvastatin prolongs the lifespan of radiation‑induced reactive oxygen species in PC‑3 prostate cancer cells to enhance the cell killing effect HAO Yu, SHAO-QiAN SuN, XiAO-BiN Gu, WeN WANG and XiAN-SHu GAO Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing 100034, P.R. China Received June 25, 2016; Accepted August 23, 2016 DOI: 10.3892/or.2017.5447 Abstract. Studies have reported that atorvastatin (ATO) may of radiation-induced ROS via a decrease in the level of NOXs increase the radiosensitivity of malignant cells. However, the and SOD activity. influence of ATO on reactive oxygen species (ROS) levels before and after irradiation has not been fully illustrated. In Introduction the present study, radiosensitivity was evaluated by a clono- genic assay and a cell survival curve and cell apoptosis was Radiotherapy is one of the main treatments used to deal measured by flow cytometry. ROS were detected by a laser with malignancy. More than 50% of patients with malig- scanning confocal microscope and flow cytometry with a nant tumors receive radiotherapy during their treatment (1). DCFH-DA probe. NADPH oxidases (NOXs) and superoxide Radiation-induced DNA damage is one of main mechanisms dismutase (SOD) proteins were detected by immunoblotting, underlying the cell killing effect of radiotherapy. Compared and total SOD activity was measured using an SOD kit. with the direct killing effect of irradiation, the indirect killing We also conducted transient transfection of NOX2 and effect that results from reactive oxygen species (ROS) plays NOX4 genes to increase intracellular ROS generation and a pivotal role in DNA damage (2).
    [Show full text]
  • Radiosensitization by Targeting Radioresistance-Related Genes with Protein Kinase a Inhibitor in Radioresistant Cancer Cells
    EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 37, No. 6, 608-618, December 2005 Radiosensitization by targeting radioresistance-related genes with protein kinase A inhibitor in radioresistant cancer cells Chur Chin1, Jae Ho Bae1,4, Mi Ju Kim1,4, damage repair, and Bcl-2 and NF-κB genes that Jee Young Hwang2,8, Su Jin Kim1, related to antiapoptosis, were up-regulated, but the Man Soo Yoon2, Min Ki Lee3, expression of proapototic Bax gene was down- Dong Wan Kim7, Byung Seon Chung1, regulated in the radioresistant cells as compared to 1,5 1,4,5,6,9 each parental counterpart. We also revealed that the Chi Dug Kang and Sun Hee Kim combined treatment of radiation and the inhibitor of protein kinase A (PKA) to these radioresistant cells 1Department of Biochemistry 2 resulted in synergistic inhibition of DNA-PK, Rad51 Obstetrics and Gynecology and Bcl-2 expressions of the cells, and conse- 3Internal Medicine 4 quently restored radiosensitivity of the cells. Our Research Center for Ischemic Tissue Regeneration results propose that combined treatment with College of Medicine radiotherapy and PKA inhibitor can be a novel Pusan National University therapeutic strategy to radioresistant cancers. 5Medical Research Institutes 6 Cancer Research Center Keywords: cyclic AMP-dependent protein kinases; Pusan National University Hospital gene expression profiling; gene expression regulation, Busan 602-739, Korea neoplastic; radiation 7Department of Microbiology, College of Natural Sciences Chang Won National University Chang Won 641-773, Korea Introduction 8Present Address: Department of Obstetrics and Gynecology Dongguk University College of Medicine Radiation therapy is an effective modality for the Kyung-ju 780-714, Korea treatment of many tumors (Rosen et al., 1999).
    [Show full text]
  • Intrinsic Radiosensitivity Is Not the Determining Factor in Treatment Response Differences Between HPV Negative and HPV Positive Head and Neck Cancers
    cells Article Intrinsic Radiosensitivity Is Not the Determining Factor in Treatment Response Differences between HPV Negative and HPV Positive Head and Neck Cancers Paul Reid 1,2,* , Alexander H. Staudacher 3,4, Loredana G. Marcu 1,5 , Ian Olver 4 , Leyla Moghaddasi 6,7, Michael P. Brown 3,8,9, Yanrui Li 2 and Eva Bezak 1,2,6 1 School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; [email protected] (L.G.M.); [email protected] (E.B.) 2 Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia; [email protected] 3 Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia; [email protected] (A.H.S.); [email protected] (M.P.B.) 4 School of Psychology, University of Adelaide, Adelaide, SA 5000, Australia; [email protected] 5 Faculty of Science, University of Oradea, 410087 Oradea, Romania 6 Department of Physics, University of Adelaide, Adelaide, SA 5005, Australia; [email protected] 7 Genesis Care, Adelaide Radiotherapy Centre, Adelaide, SA 5000, Australia 8 School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia 9 Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia * Correspondence: [email protected] Received: 25 June 2020; Accepted: 24 July 2020; Published: 27 July 2020 Abstract: Head and neck squamous cell carcinomas (HNSCC) resulting from human papillomavirus (HPV) are increasing in incidence but demonstrate significantly better treatment response than HNSCC from other causes such as tobacco and alcohol.
    [Show full text]
  • A New Insight on the Radioprotective Potential of Epsilon-Aminocaproic Acid
    medicina Article A New Insight on the Radioprotective Potential of Epsilon-Aminocaproic Acid Timur Saliev 1,* , Dinara Baiskhanova 2, Dmitriy Beznosko 3 , Dinara Begimbetova 2, Bauyrzhan Umbayev 2 , Talgat Nurgozhin 1, Ildar Fakhradiyev 1, Baimakhan Tanabayev 4 and Dainius Pavalkis 5 1 S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; [email protected] (T.N.); [email protected] (I.F.) 2 National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; [email protected] (D.B.); [email protected] (D.B.); [email protected] (B.U.) 3 Clayton State University, Morrow, GA 30260, USA; [email protected] 4 South-Kazakhstan Medical Academy, Shymkent 160012, Kazakhstan; [email protected] 5 NJSC “Astana Medical University”, Nur-sultan 010000, Kazakhstan; [email protected] * Correspondence: [email protected]; Tel.: +7-(727)-338-7225 Received: 2 November 2020; Accepted: 19 November 2020; Published: 30 November 2020 Abstract: Background and objectives: The aim of the study was to scrutinize the ability of epsilon- aminocaproic acid (EACA) to prevent radiation-induced damage to human cells. Materials and Methods: Human peripheral blood mononuclear cells (PBMCs) were exposed to ionizing radiation at three low doses (22.62 mGy, 45.27 mGy, and 67.88 mGy) in the presence of EACA at the concentration of 50 ng/mL. Results: EACA was able to prevent cell death induced by low-dose X-ray radiation and suppress the formation of reactive oxygen species (ROS). EACA also demonstrated a capacity to protect DNA from radiation-induced damage. The data indicated that EACA is capable of suppression of radiation-induced apoptosis.
    [Show full text]
  • Brachial Plexus Neuropathy Following Radiotherapy for Breast Carcinoma
    Report of the Independent Review commissioned by The Royal College of Radiologists into Brachial Plexus Neuropathy following Radiotherapy for Breast Carcinoma Thelma Bates and RGB Evans The Royal College of Radiologists The Royal College of Radiologists 38 Portland Place London W1N 4JQ Telephone 0171 636 4432 Fax 0171 323 3100 Citation details: Thelma Bates and R G B Evans. Report of the Independent Review Commissioned by The Royal College Of Radiologists into Brachial Plexus Neuropathy following Radiotherapy for Breast Carcinoma. London: The Royal College of Radiologists, 1995. ISBN: 1 872599 18 4 RCR Ref No BFCO(95)4 © The Royal College of Radiologists 1995 This publication is copyright under the Berne Convention and the International Copyright Convention. All rights reserved. This independent review was commissioned by The Royal College of Radiologists at the request of the Department of Health. It has been supported by a grant from the Clinical Audit Unit of the Executive of the NHS for England. This report was presented to The Royal College of Radiologists on 1 December 1995. Further copies of this report are available, free of charge, from the College’s Clinical Audit Unit at the address above. Design, print and Internet development: Intertype, London. Contents Paras Page – Skin changes 5.32 21 – Lung fibrosis 5.33 21 Summary 5 Other suffering 5.34 21 Preamble 8 6 Methods of treatment used 22 1 Introduction 1.1-1.8 9 Surgery 6.1 22 The Brachial Plexus 1.9-1.16 9 Radiotherapy techniques Breast carcinoma 1.17-1.23 10 – Chest wall
    [Show full text]
  • Ionizing Radiation Protein Biomarkers in Normal Tissue and Their Correlation to Radiosensitivity: Protocol for a Systematic Review
    Journal of Personalized Medicine Review Ionizing Radiation Protein Biomarkers in Normal Tissue and Their Correlation to Radiosensitivity: Protocol for a Systematic Review Anne Dietz, Maria Gomolka, Simone Moertl and Prabal Subedi * Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany; [email protected] (A.D.); [email protected] (M.G.); [email protected] (S.M.) * Correspondence: [email protected]; Tel.: +49-30183332244 Abstract: Background: Radiosensitivity is a significantly enhanced reaction of cells, tissues, organs or organisms to ionizing radiation (IR). During radiotherapy, surrounding normal tissue radiosensitivity often limits the radiation dose that can be applied to the tumour, resulting in suboptimal tumour control or adverse effects on the life quality of survivors. Predicting radiosensitivity is a component of personalized medicine, which will help medical professionals allocate radiation therapy decisions for effective tumour treatment. So far, there are no reviews of the current literature that explore the relationship between proteomic changes after IR exposure and normal tissue radiosensitivity systematically. Objectives: The main objective of this protocol is to specify the search and evaluation strategy for a forthcoming systematic review (SR) dealing with the effects of in vivo and in vitro IR exposure on the proteome of human normal tissue with focus on radiosensitivity. Methods: The SR framework has been developed following the guidelines established in the National Toxicology Program/Office of Health Assessment and Translation (NTP/OHAT) Handbook for Conducting a Literature-Based Health Assessment, which provides a standardised methodology to implement the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to environmental health assessments.
    [Show full text]
  • Radiation-Induced Peripheral Neuropathies: Etiopathogenesis, Risk Factors, Differential Diagnostics, Symptoms and Treatment Ljiljana Vasić
    Review articles Radiation-induced peripheral neuropathies: etiopathogenesis, risk factors, differential diagnostics, symptoms and treatment Ljiljana Vasić SUMMARY The success of radiation oncology has lead to longer patient survival. This provides a greater opportunity for radiation injuries Arch Oncol 2007;15(3-4):81-4. of the peripheral nerves to develop. Peripheral neuropathy in cancer patients may result from either tumor recurrence or as UDC: 616-006:616.85:616-079.4:6 15-085 a consequence of radiation therapy. Distinguishing between radiation injury and cancer disease recurrence as a cause of DOI: 10.2298/AOO0704081V nerve dysfunction may be difficult. In this article the etiopathogenesis of radiation-induced peripheral neuropathies has been discussed as well as main risk factors, symptoms and method of treatment. University of Kragujevac Medical Center, Department of Oncology, Kragujevac, Key words: Neoplasms; Radiotherapy; Radiation Injuries; Fibrosis Peripheral Nerves Serbia Correspondence to: Inrtoduction of cytokines and inflammatory mediators. Initial nonspecific changes at tissue Mr sci dr Ljiljana Vasić, Bukureška 13, 34000 Kragujevac, Serbia Neuropathy is a common finding in cancer patients. In patients with a known level can include fibrosis, atrophy, and ulceration (24,25). E-mail: [email protected] cancer diagnosis, efforts should be made to elucidate the etiologies of such Tissue response can further be broken down into two categories of early effects neuropathy. The most common cause of new-onset neuropathy is progres- and late effects. Early tissue changes occur within days or weeks of irradiation Received: 18.07.2007 treatment, while late changes can appear months or even years after radiation Provisionally accepted: 01.08.2007 sion of tumor or recurrence of such tumor (1,2).
    [Show full text]
  • Radiation-Induced Neuropathies in Head and Neck Cancer: Prevention and Treatment Modalities
    Radiation-induced neuropathies in head and neck cancer: prevention and treatment modalities Patrick Azzam1, Manal Mroueh1, Marina Francis1, Alaa Abou Daher1 and Youssef H Zeidan1,2 1Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon 2Department of Radiation Oncology, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon Abstract Head and neck cancer (HNC) is the sixth most common human malignancy with a global incidence of 650,000 cases per year. Radiotherapy (RT) is commonly used as an effective therapy to treat tumours as a definitive or adjuvant treatment. Despite the substantial advances in RT contouring and dosage delivery, patients suffer from various radiation- induced complications, among which are toxicities to the nervous tissues in the head and neck area. Radiation-mediated neuropathies manifest as a result of increased oxidative stress-mediated apoptosis, neuroinflammation and altered cellular function in the nervous tissues. Eventually, molecular damage results in the formation of fibrotic tissues leading to susceptible loss of function of numerous neuronal substructures. Neu- Review ropathic sequelae following irradiation in the head and neck area include sensorineural hearing loss, alterations in taste and smell functions along with brachial plexopathy, and cranial nerves palsies. Numerous management options are available to relieve radiation- associated neurotoxicities notwithstanding treatment alternatives that remain restricted
    [Show full text]