Random Graph and Growth Models

Total Page:16

File Type:pdf, Size:1020Kb

Random Graph and Growth Models Sebastian Rosengren Networks and processes that live on them are everywhere. We find them in our social structures, in our brain, and in the way a disease Random Graph and Growth spreads amongst us. There is a need to understand these structures and processes. Paper I deals with a dynamic extension to the famous Erdös- Models Rényi graph. Paper II deals with a multi-type extension of the preferential attachment tree. Paper III is concerned with how the distribution over small degrees affects the size of the giant component Sebastian Rosengren in the configuration model. In Paper IV, we consider the frog model Models and Growth Random Graph and a two-type extension of it, showing that the shape of the asymptotic set does not depend on the initial starting set(s) and particle configuration(s) there. Paper V is concerned with the predictability of the set of discovered sites generated by the first passage percolation model. We show that it is possible to predict the shape of this set using a neural network. Sebastian Rosengren is motivated by using probability models to describe complexity. He hopes his research has helped explain a little of the complexity in the world. ISBN 978-91-7911-256-1 Department of Mathematics Doctoral Thesis in Mathematical Statistics at Stockholm University, Sweden 2020 Random Graph and Growth Models Sebastian Rosengren Academic dissertation for the Degree of Doctor of Philosophy in Mathematical Statistics at Stockholm University to be publicly defended on Friday 25 September 2020 at 13.00 in sal 15, hus 5, Kräftriket, Roslagsvägen 101. Abstract Random graphs is a well-studied field of probability theory, and have proven very useful in a range of applications — modeling social networks, epidemics, and structures on the Internet to name a few. However, most random graphs are static in the sense that the network structure does not change over time. Furthermore, standard models also tend to consist of single-type objects. This puts restrictions on possible applications. The first part of this thesis concerns random graphs with a focus on dynamic and multi-type extensions of standard models. The second part of the thesis deals with random growth models. Random growth models are important objects in probability theory and, as the name suggests, models the random growth of some entity. Typical examples include infectious disease spread; how a liquid flows through a random medium; and tumor growth. The growth of these models, properly scaled by time, tends to be deterministic. The second theme of the thesis concerns the final shape of the growing entity for two standard random growth models. In Paper I, we study a dynamic version of the famous Erdős-Rényi graph. The graph changes dynamically over time but still has the static Erdős-Rényi graph as its stationary distribution. In studying the dynamic graph we present two results. The first result concerns the time to stationarity, and the second concerns the time it takes for the graph to reach a certain number of edges. We also study the time until a large component emerges, as well as how it emerges. In Paper II, we introduce and study an extension of the preferential attachment tree. The standard version is already dynamic, but its vertices are only allowed to be of one type. We introduce a multi-type analog of the preferential attachment tree and study its asymptotic degree distributions as well as its asymptotic composition. Paper III concerns the configuration model — a random graph neither dynamic nor multi-type — and we break with the first theme of the thesis since no extensions are made to the model. Instead, we argue that the size of the largest component in the model does not depend on the tail of the degree distribution, but rather on the distribution over small degrees. This is quantified in some detail. In Paper IV, we consider the frog model on ℤd and a two-type extension of it. For the one-type model, we show that the asymptotic shape does not depend on the initial set and the particle configuration there. For the two-type model, we show that the possibility of both types to coexist also does not depend on the initial sets and the particle configurations there. Paper V is concerned with the predictability of the set of discovered sites generated by the first passage percolation model. First passage percolation has the property that the set of discovered sites, scaled properly by time, converges to some deterministic set as time grows. Typically, not much is known about this set, and to get an impression of it simulations are needed. Using simulated data we show that it is possible to use a neural network to adequately predict the shape, on this dataset, from some easily calculable properties of the passage times. The purpose of the paper is to give researchers a proof of concept of this method as wells as a new tool for quickly getting an impression of the shape. Stockholm 2020 http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-184028 ISBN 978-91-7911-256-1 ISBN 978-91-7911-257-8 Department of Mathematics Stockholm University, 106 91 Stockholm RANDOM GRAPH AND GROWTH MODELS Sebastian Rosengren Random Graph and Growth Models Sebastian Rosengren ©Sebastian Rosengren, Stockholm University 2020 ISBN print 978-91-7911-256-1 ISBN PDF 978-91-7911-257-8 Printed in Sweden by Universitetsservice US-AB, Stockholm 2020 It was the best of times, it was the worst of times — Charles Dickens List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I: A dynamic Erdős-Rényi graph model. Rosengren S., Trapman P. (2019). Markov Processes and Related Fields, 25(2):275-301. II: A multi-type preferential attachment tree. Rosengren, S. (2018). Internet Mathematics, 1(1). DOI:10.24166/im.05.2018 III: The tail does not determine the size of the giant. Deijfen, M., Rosengren, S., Trapman, P. (2018). Journal of Statistical Physics, 173:736–745. DOI:10.1007/s10955-018-2071-4. IV: The initial set in the frog model is irrelevant. Deijfen, M., Rosen- gren, S. (2020). Electronic Communications in Probability, 25(50):1-7 DOI:10.1214/20-ECP329 V: Predicting first passage percolation shapes using neural net- works. Rosengren, S. (2020). arXiv:2006.14004. Reprints were made with permission from the publishers. Author’s contributions: S. Rosengren has taken an active part in develop- ing the content of all papers. Paper I was based on the ideas of P. Trapman. The results in the first part of the paper was derived by S. Rosengren, and the second part was done jointly. The writing of the manuscript was done mainly by S. Rosengren. S. Rosengren is the sole author of Paper II, which is based on the ideas of M. Deijfen. Paper III was based on the ideas of M. Deijfen and P. Trapman. S. Rosengren derived all main results, and the simulations were done by S. Rosengren. The writing of the manuscript was mainly done by M. Deijfen. Paper IV was based on the ideas of M. Deijfen. The coupling argument, important for the main results, was provided by M. Deijfen but details were carried out by S. Rosengren. The writing of the manuscript was done jointly. Finally, S. Rosengren is the only author of Paper V, which is based on his ideas. Acknowledgments Here we are then, at the end of this journey. I know what you are thinking. A lazy person of average intelligence, now a PhD in Mathematical Statistics, how the hell did he pull this off? Turns out, you can get quite far with witty banter and wry observations. Joking aside, the answer is of course that I have had a lot of help, and I would like to thank all the people who made this thesis possible. First and foremost, I would like to thank my supervisor Professor Mia Deijfen. For her continuous support and guidance, her wisdom, intelligence, and endless patience. Thank you for being so generous with your ideas, and your time. My co-supervisor Pieter Trapman for all our fruitful discussions, collaborations, and for encouraging me to pursue a PhD. I want to thank all my colleagues at the Department of Mathematics at Stock- holm University for providing a fun and friendly work environment. To all the PhD students at the department — thank you for all the fun we have had. A special thank you to Felix, Måns, Hampus, and Erik for being very good friends and for making the quarantine quite enjoyable. Thank you Carl and Gabriel for our ventures outside academia. Finally, I want to thank my family, for all their love and support. My father for interesting me in the more difficult things of my life — mathematics and running — and for teaching me that the best tastes are acquired. My mother for taking such good care of me and my brother, and for always cheering us on. Contents List of Papers i Acknowledgments iii I Introduction 3 1 Random Graphs 5 1.1 Motivation . .5 1.1.1 Graph Properties . .6 1.2 Random Graph Models . .9 1.2.1 Erdős-Rényi Graph . .9 1.2.2 Preferential Attachment Models . 10 1.2.3 The Configuration Model . 11 1.3 Dynamic Processes on Graphs . 13 2 Random Growth Models 15 2.1.1 First Passage Percolation . 16 d 2.1.2 The Frog Model on Z ....................... 18 3 Overview of Papers 21 3.1 Paper I . 21 3.2 Paper II . 22 3.3 Paper III .
Recommended publications
  • Modern Discrete Probability I
    Preliminaries Some fundamental models A few more useful facts about... Modern Discrete Probability I - Introduction Stochastic processes on graphs: models and questions Sebastien´ Roch UW–Madison Mathematics September 6, 2017 Sebastien´ Roch, UW–Madison Modern Discrete Probability – Models and Questions Preliminaries Review of graph theory Some fundamental models Review of Markov chain theory A few more useful facts about... 1 Preliminaries Review of graph theory Review of Markov chain theory 2 Some fundamental models Random walks on graphs Percolation Some random graph models Markov random fields Interacting particles on finite graphs 3 A few more useful facts about... ...graphs ...Markov chains ...other things Sebastien´ Roch, UW–Madison Modern Discrete Probability – Models and Questions Preliminaries Review of graph theory Some fundamental models Review of Markov chain theory A few more useful facts about... Graphs Definition (Undirected graph) An undirected graph (or graph for short) is a pair G = (V ; E) where V is the set of vertices (or nodes, sites) and E ⊆ ffu; vg : u; v 2 V g; is the set of edges (or bonds). The V is either finite or countably infinite. Edges of the form fug are called loops. We do not allow E to be a multiset. We occasionally write V (G) and E(G) for the vertices and edges of G. Sebastien´ Roch, UW–Madison Modern Discrete Probability – Models and Questions Preliminaries Review of graph theory Some fundamental models Review of Markov chain theory A few more useful facts about... An example: the Petersen graph Sebastien´ Roch, UW–Madison Modern Discrete Probability – Models and Questions Preliminaries Review of graph theory Some fundamental models Review of Markov chain theory A few more useful facts about..
    [Show full text]
  • Markov Chain Monte Carlo Estimation of Exponential Random Graph Models
    Markov Chain Monte Carlo Estimation of Exponential Random Graph Models Tom A.B. Snijders ICS, Department of Statistics and Measurement Theory University of Groningen ∗ April 19, 2002 ∗Author's address: Tom A.B. Snijders, Grote Kruisstraat 2/1, 9712 TS Groningen, The Netherlands, email <[email protected]>. I am grateful to Paul Snijders for programming the JAVA applet used in this article. In the revision of this article, I profited from discussions with Pip Pattison and Garry Robins, and from comments made by a referee. This paper is formatted in landscape to improve on-screen readability. It is read best by opening Acrobat Reader in a full screen window. Note that in Acrobat Reader, the entire screen can be used for viewing by pressing Ctrl-L; the usual screen is returned when pressing Esc; it is possible to zoom in or zoom out by pressing Ctrl-- or Ctrl-=, respectively. The sign in the upper right corners links to the page viewed previously. ( Tom A.B. Snijders 2 MCMC estimation for exponential random graphs ( Abstract bility to move from one region to another. In such situations, convergence to the target distribution is extremely slow. To This paper is about estimating the parameters of the exponential be useful, MCMC algorithms must be able to make transitions random graph model, also known as the p∗ model, using frequen- from a given graph to a very different graph. It is proposed to tist Markov chain Monte Carlo (MCMC) methods. The exponen- include transitions to the graph complement as updating steps tial random graph model is simulated using Gibbs or Metropolis- to improve the speed of convergence to the target distribution.
    [Show full text]
  • Exploring Healing Strategies for Random Boolean Networks
    Exploring Healing Strategies for Random Boolean Networks Christian Darabos 1, Alex Healing 2, Tim Johann 3, Amitabh Trehan 4, and Am´elieV´eron 5 1 Information Systems Department, University of Lausanne, Switzerland 2 Pervasive ICT Research Centre, British Telecommunications, UK 3 EML Research gGmbH, Heidelberg, Germany 4 Department of Computer Science, University of New Mexico, Albuquerque, USA 5 Division of Bioinformatics, Institute for Evolution and Biodiversity, The Westphalian Wilhelms University of Muenster, Germany. [email protected], [email protected], [email protected], [email protected], [email protected] Abstract. Real-world systems are often exposed to failures where those studied theoretically are not: neuron cells in the brain can die or fail, re- sources in a peer-to-peer network can break down or become corrupt, species can disappear from and environment, and so forth. In all cases, for the system to keep running as it did before the failure occurred, or to survive at all, some kind of healing strategy may need to be applied. As an example of such a system subjected to failure and subsequently heal, we study Random Boolean Networks. Deletion of a node in the network was considered a failure if it affected the functional output and we in- vestigated healing strategies that would allow the system to heal either fully or partially. More precisely, our main strategy involves allowing the nodes directly affected by the node deletion (failure) to iteratively rewire in order to achieve healing. We found that such a simple method was ef- fective when dealing with small networks and single-point failures.
    [Show full text]
  • Percolation Threshold Results on Erdos-Rényi Graphs
    arXiv: arXiv:0000.0000 Percolation Threshold Results on Erd}os-R´enyi Graphs: an Empirical Process Approach Michael J. Kane Abstract: Keywords and phrases: threshold, directed percolation, stochastic ap- proximation, empirical processes. 1. Introduction Random graphs and discrete random processes provide a general approach to discovering properties and characteristics of random graphs and randomized al- gorithms. The approach generally works by defining an algorithm on a random graph or a randomized algorithm. Then, expected changes for each step of the process are used to propose a limiting differential equation and a large deviation theorem is used to show that the process and the differential equation are close in some sense. In this way a connection is established between the resulting process's stochastic behavior and the dynamics of a deterministic, asymptotic approximation using a differential equation. This approach is generally referred to as stochastic approximation and provides a powerful tool for understanding the asymptotic behavior of a large class of processes defined on random graphs. However, little work has been done in the area of random graph research to investigate the weak limit behavior of these processes before the asymptotic be- havior overwhelms the random component of the process. This context is par- ticularly relevant to researchers studying news propagation in social networks, sensor networks, and epidemiological outbreaks. In each of these applications, investigators may deal graphs containing tens to hundreds of vertices and be interested not only in expected behavior over time but also error estimates. This paper investigates the connectivity of graphs, with emphasis on Erd}os- R´enyi graphs, near the percolation threshold when the number of vertices is not asymptotically large.
    [Show full text]
  • Probability on Graphs Random Processes on Graphs and Lattices
    Probability on Graphs Random Processes on Graphs and Lattices GEOFFREY GRIMMETT Statistical Laboratory University of Cambridge c G. R. Grimmett 1/4/10, 17/11/10, 5/7/12 Geoffrey Grimmett Statistical Laboratory Centre for Mathematical Sciences University of Cambridge Wilberforce Road Cambridge CB3 0WB United Kingdom 2000 MSC: (Primary) 60K35, 82B20, (Secondary) 05C80, 82B43, 82C22 With 44 Figures c G. R. Grimmett 1/4/10, 17/11/10, 5/7/12 Contents Preface ix 1 Random walks on graphs 1 1.1 RandomwalksandreversibleMarkovchains 1 1.2 Electrical networks 3 1.3 Flowsandenergy 8 1.4 Recurrenceandresistance 11 1.5 Polya's theorem 14 1.6 Graphtheory 16 1.7 Exercises 18 2 Uniform spanning tree 21 2.1 De®nition 21 2.2 Wilson's algorithm 23 2.3 Weak limits on lattices 28 2.4 Uniform forest 31 2.5 Schramm±LownerevolutionsÈ 32 2.6 Exercises 37 3 Percolation and self-avoiding walk 39 3.1 Percolationandphasetransition 39 3.2 Self-avoiding walks 42 3.3 Coupledpercolation 45 3.4 Orientedpercolation 45 3.5 Exercises 48 4 Association and in¯uence 50 4.1 Holley inequality 50 4.2 FKGinequality 53 4.3 BK inequality 54 4.4 Hoeffdinginequality 56 c G. R. Grimmett 1/4/10, 17/11/10, 5/7/12 vi Contents 4.5 In¯uenceforproductmeasures 58 4.6 Proofsofin¯uencetheorems 63 4.7 Russo'sformulaandsharpthresholds 75 4.8 Exercises 78 5 Further percolation 81 5.1 Subcritical phase 81 5.2 Supercritical phase 86 5.3 Uniquenessofthein®nitecluster 92 5.4 Phase transition 95 5.5 Openpathsinannuli 99 5.6 The critical probability in two dimensions 103 5.7 Cardy's formula 110 5.8 The
    [Show full text]
  • 3 a Few More Good Inequalities, Martingale Variety 1 3.1 From
    3 A few more good inequalities, martingale variety1 3.1 From independence to martingales...............1 3.2 Hoeffding’s inequality for martingales.............4 3.3 Bennett's inequality for martingales..............8 3.4 *Concentration of random polynomials............. 10 3.5 *Proof of the Kim-Vu inequality................ 14 3.6 Problems............................. 18 3.7 Notes............................... 18 Printed: 8 October 2015 version: 8Oct2015 Mini-empirical printed: 8 October 2015 c David Pollard x3.1 From independence to martingales 1 Chapter 3 A few more good inequalities, martingale variety Section 3.1 introduces the method for bounding tail probabilities using mo- ment generating functions. Section 3.2 discusses the Hoeffding inequality, both for sums of independent bounded random variables and for martingales with bounded increments. Section 3.3 discusses the Bennett inequality, both for sums of indepen- dent random variables that are bounded above by a constant and their martingale analogs. *Section3.4 presents an extended application of a martingale version of the Bennett inequality to derive a version of the Kim-Vu inequality for poly- nomials in independent, bounded random variables. 3.1 From independence to martingales BasicMG::S:intro Throughout this Chapter f(Si; Fi): i = 1; : : : ; ng is a martingale on some probability space (Ω; F; P). That is, we have a sub-sigma fields F0 ⊆ F1 ⊆ · · · ⊆ Fn ⊆ F and integrable, Fi-measurable random variables Si for which PFi−1 Si = Si−1 almost surely. Equivalently, the martingale differ- ences ξi := Si − Si−1 are integrable, Fi-measurable, and PFi−1 ξi = 0 almost surely, for i = 1; : : : ; n. In that case Si = S0 + ξ1 + ··· + ξi = Si−1 + ξi.
    [Show full text]
  • Random Boolean Networks As a Toy Model for the Brain
    UNIVERSITY OF GENEVA SCIENCE FACULTY VRIJE UNIVERSITEIT OF AMSTERDAM PHYSICS SECTION Random Boolean Networks as a toy model for the brain MASTER THESIS presented at the science faculty of the University of Geneva for obtaining the Master in Theoretical Physics by Chlo´eB´eguin Supervisor (VU): Pr. Greg J Stephens Co-Supervisor (UNIGE): Pr. J´er^ome Kasparian July 2017 Contents Introduction1 1 Biology, physics and the brain4 1.1 Biological description of the brain................4 1.2 Criticality in the brain......................8 1.2.1 Physics reminder..................... 10 1.2.2 Experimental evidences.................. 15 2 Models of neural networks 20 2.1 Classes of models......................... 21 2.1.1 Spiking models...................... 21 2.1.2 Rate-based models.................... 23 2.1.3 Attractor networks.................... 24 2.1.4 Links between the classes of models........... 25 2.2 Random Boolean Networks.................... 28 2.2.1 General definition..................... 28 2.2.2 Kauffman network.................... 30 2.2.3 Hopfield network..................... 31 2.2.4 Towards a RBN for the brain.............. 32 2.2.5 The model......................... 33 3 Characterisation of RBNs 34 3.1 Attractors............................. 34 3.2 Damage spreading........................ 36 3.3 Canonical specific heat...................... 37 4 Results 40 4.1 One population with Gaussian weights............. 40 4.2 Dale's principle and balance of inhibition - excitation..... 46 4.3 Lognormal distribution of the weights.............. 51 4.4 Discussion............................. 55 i 5 Conclusion 58 Bibliography 60 Acknowledgements 66 A Python Code 67 A.1 Dynamics............................. 67 A.2 Attractor search.......................... 69 A.3 Hamming Distance........................ 73 A.4 Canonical specific heat.....................
    [Show full text]
  • An Introduction to Exponential Random Graph (P*) Models for Social Networks
    Social Networks 29 (2007) 173–191 An introduction to exponential random graph (p*) models for social networks Garry Robins ∗, Pip Pattison, Yuval Kalish, Dean Lusher Department of Psychology, School of Behavioural Science, University of Melbourne, Vic. 3010, Australia Abstract This article provides an introductory summary to the formulation and application of exponential random graph models for social networks. The possible ties among nodes of a network are regarded as random variables, and assumptions about dependencies among these random tie variables determine the general form of the exponential random graph model for the network. Examples of different dependence assumptions and their associated models are given, including Bernoulli, dyad-independent and Markov random graph models. The incorporation of actor attributes in social selection models is also reviewed. Newer, more complex dependence assumptions are briefly outlined. Estimation procedures are discussed, including new methods for Monte Carlo maximum likelihood estimation. We foreshadow the discussion taken up in other papers in this special edition: that the homogeneous Markov random graph models of Frank and Strauss [Frank, O., Strauss, D., 1986. Markov graphs. Journal of the American Statistical Association 81, 832–842] are not appropriate for many observed networks, whereas the new model specifications of Snijders et al. [Snijders, T.A.B., Pattison, P., Robins, G.L., Handock, M. New specifications for exponential random graph models. Sociological Methodology, in press] offer substantial improvement. © 2006 Elsevier B.V. All rights reserved. Keywords: Exponential random graph models; Statistical models for social networks; p* models In recent years, there has been growing interest in exponential random graph models for social networks, commonly called the p* class of models (Frank and Strauss, 1986; Pattison and Wasserman, 1999; Robins et al., 1999; Wasserman and Pattison, 1996).
    [Show full text]
  • A Review on Statistical Inference Methods for Discrete Markov Random Fields Julien Stoehr, Richard Everitt, Matthew T
    A review on statistical inference methods for discrete Markov random fields Julien Stoehr, Richard Everitt, Matthew T. Moores To cite this version: Julien Stoehr, Richard Everitt, Matthew T. Moores. A review on statistical inference methods for discrete Markov random fields. 2017. hal-01462078v2 HAL Id: hal-01462078 https://hal.archives-ouvertes.fr/hal-01462078v2 Preprint submitted on 11 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A review on statistical inference methods for discrete Markov random fields Julien Stoehr1 1School of Mathematical Sciences & Insight Centre for Data Analytics, University College Dublin, Ireland Abstract Developing satisfactory methodology for the analysis of Markov random field is a very challenging task. Indeed, due to the Markovian dependence structure, the normalizing constant of the fields cannot be computed using standard analytical or numerical methods. This forms a central issue for any statistical approach as the likelihood is an integral part of the procedure. Furthermore, such unobserved fields cannot be integrated out and the likelihood evaluation becomes a doubly intractable problem. This report gives an overview of some of the methods used in the literature to analyse such observed or unobserved random fields.
    [Show full text]
  • A Review on Statistical Inference Methods for Discrete Markov Random Fields Julien Stoehr
    A review on statistical inference methods for discrete Markov random fields Julien Stoehr To cite this version: Julien Stoehr. A review on statistical inference methods for discrete Markov random fields. 2017. hal-01462078v1 HAL Id: hal-01462078 https://hal.archives-ouvertes.fr/hal-01462078v1 Preprint submitted on 8 Feb 2017 (v1), last revised 11 Apr 2017 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A review on statistical inference methods for discrete Markov random fields Julien Stoehr1 1School of Mathematical Sciences & Insight Centre for Data Analytics, University College Dublin, Ireland February 8, 2017 Abstract Developing satisfactory methodology for the analysis of Markov random field is a very challenging task. Indeed, due to the Markovian dependence structure, the normalizing con- stant of the fields cannot be computed using standard analytical or numerical methods. This forms a central issue for any statistical approach as the likelihood is an integral part of the procedure. Furthermore, such unobserved fields cannot be integrated out and the like- lihood evaluation becomes a doubly intractable problem. This report gives an overview of some of the methods used in the literature to analyse such observed or unobserved random fields.
    [Show full text]
  • The Random Graph
    Chapter 1 The Random Graph Summary. Erd˝os and R´enyi showed the paradoxical result that there is a unique (and highly symmetric) countably infinite random graph. This graph, and its automorphism group, form the subject of the present survey. 1.1 Introduction In 1963, Erd˝os and R´enyi [25] showed: Theorem 1. There exists a graph R with the following property. If a countable 1 graph is chosen at random, by selecting edges independently with probability 2 from the set of 2-element subsets of the vertex set, then almost surely (i.e., with probability 1), the resulting graph is isomorphic to R. This theorem, on first acquaintance, seems to defy common sense — a ran- dom process whose outcome is predictable. Nevertheless, the argument which establishes it is quite short. (It is given below.) Indeed, it formed a tailpiece to the paper of Erd˝os and R´enyi, which mainly concerned the much less pre- dictable world of finite random graphs. (In their book Probabilistic Methods in Combinatorics, Erd˝os and Spencer [26] remark that this result “demolishes the theory of infinite random graphs.”) arXiv:1301.7544v1 [math.CO] 31 Jan 2013 I will give the proof in detail, since it underlies much that follows. The key is to consider the following property, which a graph may or may not have: ( ) Given finitely many distinct vertices u ,...,um, v ,...,vn, there exists a ∗ 1 1 vertex z which is adjacent to u1,...,um and nonadjacent to v1,...,vn. Often I will say, for brevity, “z is correctly joined”.
    [Show full text]
  • Critical Points for Random Boolean Networks James F
    Physica D 172 (2002) 49–64 Critical points for random Boolean networks James F. Lynch∗ Department of Mathematics and Computer Science, Box 5815, Clarkson University, Potsdam, NY 13699-5815, USA Received 22 May 2002; accepted 30 July 2002 Communicated by A.C. Newell Abstract A model of cellular metabolism due to S. Kauffman is analyzed. It consists of a network of Boolean gates randomly assembled according to a probability distribution. It is shown that the behavior of the network depends very critically on certain simple algebraic parameters of the distribution. In some cases, the analytic results support conclusions based on simulations of random Boolean networks, but in other cases, they do not. © 2002 Elsevier Science B.V. All rights reserved. PACS: 87.10; 82.39.R; 02.10; 89.75.F Keywords: Boolean networks; Cellular metabolism; Random graphs; Stability 1. Introduction Many dynamical systems are modeled by networks of interacting elements. Examples come from diverse areas of science and engineering and over enormous scales of time and space, from biochemical networks within a cell [1] to food webs [3] and collaboration networks in human organizations [16]. Often, these systems are subjected to random or unpredictable processes. In this paper, we analyze a class of random networks that Kauffman [9,10] proposed as models of cellular metabolism. These are networks of Boolean gates, where each gate corresponds to a gene or protein, and the network describes the interactions among these chemical compounds. Although Boolean networks capture at least some of the salient features of the operation of the genome, researchers have been mainly interested in certain abstract properties of their dynamics.
    [Show full text]