Arithmetic Structures in Small Subsets of Euclidean Space

Total Page:16

File Type:pdf, Size:1020Kb

Arithmetic Structures in Small Subsets of Euclidean Space Arithmetic Structures in Small Subsets of Euclidean Space Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Marc Carnovale, M.S. Graduate Program in Mathematics The Ohio State University 2019 Dissertation Committee: Prof. Vitaly Bergelson, Advisor Prof. Alexander Leibman Prof. Krystal Taylor c Copyright by Marc Carnovale 2019 Abstract In this thesis we extend techniques from additive combinatorics to the setting of harmonic analysis and geometric measure theory. We focus on studying the distribution of three- term arithmetic progressions (3APs) within the supports of singular measures in Euclidean space. In Chapter 2 we prove a relativized version of Roth's theorem on existence of 3APs for positive measure subsets of pseudorandom measures on R and show that a positive measure of points are the basepoints for three-term arithmetic progressions within these measures' supports. In Chapter 3 we combine Mattila's approach to the Falconer distance d conjecture with Green and Tao's arithmetic regularity lemma to show that measures on R with sufficiently small Fourier transform as measured by an Lp-norm have supports with an abundance of three-term arithmetic progressions of various step-sizes. In Chapter 4 d we develop a novel regularity lemma to show that measures on R with sufficiently large dimension, as measured by a gauge function, must either contain non-trivial three-term arithmetic progressions in their supports or else be structured in a specific quantitative manner, which can be qualitatively described as, at infinitely many scales, placing a large amount of mass on at least two distinct cosets of a long arithmetic progression. ii Aknowlegements First and foremost, I would like to thank my Ph.D. advisor Vitaly Bergelson, who set me on the road many years ago. His constant support and generosity have had a greater impact on me than I could ever express. In addition to Vitaly Bergelson, who taught me so much of what I know about math- ematics, I would especially like to thank my M.Sc. advisors IzabellaLaba and Malabika Pramanik who taught me much of the rest. Many thanks also to my thesis defense committee members Alexander Leibman and Krystal Taylor for their time and encouragement. Finally I would like to thank my parents, family, and friends, who have always been there for me and provided endless support. iii Vita 2010 . .B.S. Mathematics Ohio State University. 2013 . .M.S. Mathematics University of British Columbia. 2013-present . .Graduate Teaching Associate, Ohio State University. Publications Research Publications M. Carnovale \A relative Roth theorem in dense subsets of pseudorandom fractals." Online Journal of Analytic Combinatorics, 27{55, June. 2015. Fields of Study Major Field: Mathematics iv Table of Contents Page Abstract . ii Vita............................................. iv List of Tables . vii 1. Introduction . .1 1.1 Notation . .2 1.2 A selected history of additive combinatorics . .4 1.3 A selected history of geometric measure theory . .6 1.4 A selected history of harmonic analysis . .9 1.4.1 The Restriction Conjecture . 10 1.4.2 The multilinear Hilbert transform . 12 1.5 Content of this thesis. 14 2. A relative Roth theorem in dense subsets of sparse pseudorandom fractals . 16 2.1 Notation and approach . 19 2.2 Existence of the restricted measure on 3APs . 21 2.3 The Main Estimate : Proof of Lemma 2.3.2 . 25 2.4 3APs in dense subsets : Proof of Theorem 2.0.1 . 32 2.5 Existence of the measure on 3APs . 33 2.6 Further Remarks . 40 3. On the number of 3APs in fractal subsets of Euclidean Space . 42 3.0.1 Integer sets . 43 3.0.2 Fractal sets . 44 3.0.3 Finite fields . 50 3.1 Integer results . 51 3.1.1 3AP counts of L2 functions . 58 v 3.2 Fractal results . 62 3.2.1 Proof of Theorem 3.0.7 . 63 3.2.2 Proof of Theorem 3.0.8 . 73 3.3 Finite field results . 77 3.3.1 Proof of Corollary 3.0.11 . 77 3.3.2 Gauss sums . 78 3.3.3 Circular bounds and the proof of Theorem 3.0.14 . 82 3.3.4 Decay and the proof of Theorem 3.0.12 . 83 4. 3APs in dense subsets of Euclidean Space . 86 4.1 Introduction . 86 4.2 Large gauges without 3APs . 88 4.3 Almost flat fractals . 89 4.4 Counting 3APs in almost-flat fractals . 90 4.4.1 Counting 3APs between three progressions . 90 4.4.2 The counting lemma . 95 4.5 An (L1, U 2) regularity lemma . 98 4.5.1 The regularity lemma . 98 4.5.2 Bohr sets . 104 4.6 Decomposing a large fractal into an almost-flat portion and a small pseu- dorandom error . 106 4.7 Counting 3APs in large fractals . 108 Bibliography . 109 vi List of Tables Table Page 1.1 Comparison of discrete versus fractal results on 3APs. 15 vii Chapter 1: Introduction This thesis explores applications of additive combinatorics to Euclidean harmonic analysis and geometric measure theory through the lens of one very specific family of structures: arithmetic progressions. We are particularly interested in the study of their presence within subsets of Hausdorff dimension less than d of d-dimensional Euclidean space (we will refer to such subsets as `fractals'). Such a study was initiated by the seminal 2009 paper ofLaba and Pramanik [35] (see Theorem 1.4.1 in Section 1.4 below). There are several reasons such a study may be of interest. First, a number of recent advances in Harmonic Analysis have seen connections to questions about the distribution of arithmetic progressions. Second, it is natural to count the number of k-term arithmetic progressions (kAPs for short) in a set A with characteristic function 1A by introducing the multilinear functional ZZ Λk(f0; : : : ; fk−1) := f0(x)f1(x − r) : : : fk−1(x + (k − 1)r) dx dr and applying it to the tuple (f0; : : : ; fk−1) = (1A;:::; 1A); it is the consequence of monu- mental advances in combinatorial number theory, additive combinatorics, and ergodic theory that in many contexts these multilinear funtionals are fairly well-understood compared to two to three decades ago. Finally, many of the tools being developed in additive combina- torics to understand discrete problems are of a finitistic Fourier-analytic nature but largely novel to Euclidean harmonic analysis, and extending them to this setting is often non-trivial. 1 It is our belief that important future advances in Euclidean harmonic analysis will continue to benefit from tools developed in additive combinatorics. 1.1 Notation Given quantities A and B which may depend on auxiliary parameters ~s = hs1; : : : ; ski we write A . B to indicate the existence of a finite positive constant C (independent of these parameters unless otherwise noted) such that A ≤ CB: uniformly in these parameters. N Similarly, when A = A , B = B , and lim (1+As) = 0 for some power N > 1, we s s s ! 1 Bs will write A B. We use also the notation A & B when B . A and A B when B A, and we write A ≈ B when both A . B and B . A hold. Given an integer N 2 N, write [N] to denote the set [N] := fn 2 N : 0 ≤ n < Ng ; (note that this differs from standard usage where [N] denotes the integers from 1 to N). d Define the Fourier transform of a function f or Borel measure µ on R by Z f^(ξ) = f(x)e−2πiξ·x dx; d R Z µ(ξ) = e−2πiξ·x dµ(x) b d R d for ξ 2 R . 2 For a function f on ZN := Z =N Z define for ξ 2 ZN 1 X f^(ξ) = f(x)e−2πinξ=N : N x2ZN ^ For a function f :[N] ! C, we define f(ξ) via first identifying f with a function on Zp for p a prime between 3N and 6N via the embedding [N] 7! Zp, n 7! (n mod p) 2 Zp and then taking the Fourier transform on this group. That such a prime, p, always exists is guaranteed by Bertrand's postulate. Given functions f; g : G 7! C on an abelian group, G with Haar measure m, we denote convolution with an asterisk: Z f ∗ g(x) = f(x − y)g(y) dm(y); G and extend this to finite Borel measures in the usual way, R f dµ∗ν := R f(x+y) dµ(x) dν(y). We will denote the Lebesgue measure of a set, E, by jEj. We will at times write L^q to refer to the space of functions whose Fourier transforms possess finite Lq norms. d Denote the ball of radius r centered at a point x in R by B(x; r), and let σ denote the surface measure on the unit sphere. In this thesis, we will very often be interested in positive Borel measures µ on [0; 1]d satisfying the following Hausdorff dimension and Fourier decay conditions α (a) µ(B(x; r)) ≤ CH r and −β=2 (b) jµb(ξ)j ≤ CF (1 + jξj) for some positive constants CH and CF . We will refer back to conditions (a) and (b) frequently. 3 1.2 A selected history of additive combinatorics The study of the distribution of kAPs within various subsets of abelian groups is one of the central questions in combinatorial number theory and additive combinatorics, dating back to a 1927 theorem of van der Waerden, [53], stating that any parition of the natu- ral numbers into finitely many subsets must contain a cell which contains arbitrarily long arithmetic progressions, and a later conjecture of Erd}osand Tur´an,[14], asking whether any large enough subset, A, of the natural numbers must contain arbitrarily long arithmetic progressions.
Recommended publications
  • Geometric Integration Theory Contents
    Steven G. Krantz Harold R. Parks Geometric Integration Theory Contents Preface v 1 Basics 1 1.1 Smooth Functions . 1 1.2Measures.............................. 6 1.2.1 Lebesgue Measure . 11 1.3Integration............................. 14 1.3.1 Measurable Functions . 14 1.3.2 The Integral . 17 1.3.3 Lebesgue Spaces . 23 1.3.4 Product Measures and the Fubini–Tonelli Theorem . 25 1.4 The Exterior Algebra . 27 1.5 The Hausdorff Distance and Steiner Symmetrization . 30 1.6 Borel and Suslin Sets . 41 2 Carath´eodory’s Construction and Lower-Dimensional Mea- sures 53 2.1 The Basic Definition . 53 2.1.1 Hausdorff Measure and Spherical Measure . 55 2.1.2 A Measure Based on Parallelepipeds . 57 2.1.3 Projections and Convexity . 57 2.1.4 Other Geometric Measures . 59 2.1.5 Summary . 61 2.2 The Densities of a Measure . 64 2.3 A One-Dimensional Example . 66 2.4 Carath´eodory’s Construction and Mappings . 67 2.5 The Concept of Hausdorff Dimension . 70 2.6 Some Cantor Set Examples . 73 i ii CONTENTS 2.6.1 Basic Examples . 73 2.6.2 Some Generalized Cantor Sets . 76 2.6.3 Cantor Sets in Higher Dimensions . 78 3 Invariant Measures and the Construction of Haar Measure 81 3.1 The Fundamental Theorem . 82 3.2 Haar Measure for the Orthogonal Group and the Grassmanian 90 3.2.1 Remarks on the Manifold Structure of G(N,M).... 94 4 Covering Theorems and the Differentiation of Integrals 97 4.1 Wiener’s Covering Lemma and its Variants .
    [Show full text]
  • Weak and Norm Approximate Identities Are Different
    Pacific Journal of Mathematics WEAK AND NORM APPROXIMATE IDENTITIES ARE DIFFERENT CHARLES ALLEN JONES AND CHARLES DWIGHT LAHR Vol. 72, No. 1 January 1977 PACIFIC JOURNAL OF MATHEMATICS Vol. 72, No. 1, 1977 WEAK AND NORM APPROXIMATE IDENTITIES ARE DIFFERENT CHARLES A. JONES AND CHARLES D. LAHR An example is given of a convolution measure algebra which has a bounded weak approximate identity, but no norm approximate identity. 1* Introduction* Let A be a commutative Banach algebra, Ar the dual space of A, and ΔA the maximal ideal space of A. A weak approximate identity for A is a net {e(X):\eΛ} in A such that χ(e(λ)α) > χ(α) for all αei, χ e A A. A norm approximate identity for A is a net {e(λ):λeΛ} in A such that ||β(λ)α-α|| >0 for all aeA. A net {e(X):\eΛ} in A is bounded and of norm M if there exists a positive number M such that ||e(λ)|| ^ M for all XeΛ. It is well known that if A has a bounded weak approximate identity for which /(e(λ)α) —>/(α) for all feA' and αeA, then A has a bounded norm approximate identity [1, Proposition 4, page 58]. However, the situation is different if weak convergence is with re- spect to ΔA and not A'. An example is given in § 2 of a Banach algebra A which has a weak approximate identity, but does not have a norm approximate identity. This algebra provides a coun- terexample to a theorem of J.
    [Show full text]
  • On Stochastic Distributions and Currents
    NISSUNA UMANA INVESTIGAZIONE SI PUO DIMANDARE VERA SCIENZIA S’ESSA NON PASSA PER LE MATEMATICHE DIMOSTRAZIONI LEONARDO DA VINCI vol. 4 no. 3-4 2016 Mathematics and Mechanics of Complex Systems VINCENZO CAPASSO AND FRANCO FLANDOLI ON STOCHASTIC DISTRIBUTIONS AND CURRENTS msp MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS Vol. 4, No. 3-4, 2016 dx.doi.org/10.2140/memocs.2016.4.373 ∩ MM ON STOCHASTIC DISTRIBUTIONS AND CURRENTS VINCENZO CAPASSO AND FRANCO FLANDOLI Dedicated to Lucio Russo, on the occasion of his 70th birthday In many applications, it is of great importance to handle random closed sets of different (even though integer) Hausdorff dimensions, including local infor- mation about initial conditions and growth parameters. Following a standard approach in geometric measure theory, such sets may be described in terms of suitable measures. For a random closed set of lower dimension with respect to the environment space, the relevant measures induced by its realizations are sin- gular with respect to the Lebesgue measure, and so their usual Radon–Nikodym derivatives are zero almost everywhere. In this paper, how to cope with these difficulties has been suggested by introducing random generalized densities (dis- tributions) á la Dirac–Schwarz, for both the deterministic case and the stochastic case. For the last one, mean generalized densities are analyzed, and they have been related to densities of the expected values of the relevant measures. Ac- tually, distributions are a subclass of the larger class of currents; in the usual Euclidean space of dimension d, currents of any order k 2 f0; 1;:::; dg or k- currents may be introduced.
    [Show full text]
  • A Direct Approach to Plateau's Problem 1
    A DIRECT APPROACH TO PLATEAU'S PROBLEM C. DE LELLIS, F. GHIRALDIN, AND F. MAGGI Abstract. We provide a compactness principle which is applicable to different formulations of Plateau's problem in codimension 1 and which is exclusively based on the theory of Radon measures and elementary comparison arguments. Exploiting some additional techniques in geometric measure theory, we can use this principle to give a different proof of a theorem by Harrison and Pugh and to answer a question raised by Guy David. 1. Introduction Since the pioneering work of Reifenberg there has been an ongoing interest into formulations of Plateau's problem involving the minimization of the Hausdorff measure on closed sets coupled with some notion of \spanning a given boundary". More precisely consider any closed set H ⊂ n+1 n+1 R and assume to have a class P(H) of relatively closed subsets K of R nH, which encodes a particular notion of \K bounds H". Correspondingly there is a formulation of Plateau's problem, namely the minimum for such problem is n m0 := inffH (K): K 2 P(H)g ; (1.1) n and a minimizing sequence fKjg ⊂ P(H) is characterized by the property H (Kj) ! m0. Two good motivations for considering this kind of approach rather than the one based on integer rectifiable currents are that, first, not every interesting boundary can be realized as an integer 3 rectifiable cycle and, second, area minimizing 2-d currents in R are always smooth away from their boundaries, in contrast to what one observes with real world soap films.
    [Show full text]
  • Harmonic Analysis Meets Geometric Measure Theory
    Geometry of Measures: Harmonic Analysis meets Geometric Measure Theory T. Toro ∗ 1 Introduction One of the central questions in Geometric Measure Theory is the extend to which the regularity of a measure determines the geometry of its support. This type of question was initially studied by Besicovitch, and then pursued by many authors among others Marstrand, Mattila and Preiss. These authors focused their attention on the extend to which the behavior of the density ratio of a m given Radon measure µ in R with respect to Hausdorff measure determines the regularity of the µ(B(x;r)) m support of the measure, i.e. what information does the quantity rs for x 2 R , r > 0 and s > 0 encode. In the context of the study of minimizers of area, perimeter and similar functionals the correct density ratio is monotone, the density exists and its behavior is the key to study the regularity and structure of these minimizers. This question has also been studied in the context of Complex Analysis. In this case, the Radon measure of interest is the harmonic measure. The general question is to what extend the structure of the boundary of a domain can be fully understood in terms of the behavior of the harmonic measure. Some of the first authors to study this question were Carleson, Jones, Wolff and Makarov. The goal of this paper is to present two very different type of problems, and the unifying techniques that lead to a resolution of both. In Section 2 we look at the history of the question initially studied by Besicovitch in dimension 2, as well as some of its offsprings.
    [Show full text]
  • Operator Algebras with Contractive Approximate Identities
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Functional Analysis 261 (2011) 188–217 www.elsevier.com/locate/jfa Operator algebras with contractive approximate identities David P. Blecher a,∗,1, Charles John Read b a Department of Mathematics, University of Houston, Houston, TX 77204-3008, United States b Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, England, United Kingdom Received 15 November 2010; accepted 24 February 2011 Available online 21 March 2011 Communicated by S. Vaes Abstract We give several applications of a recent theorem of the second author, which solved a conjecture of the first author with Hay and Neal, concerning contractive approximate identities; and another of Hay from the theory of noncommutative peak sets, thereby putting the latter theory on a much firmer foundation. From this theorem it emerges there is a surprising amount of positivity present in any operator algebras with contractive approximate identity. We exploit this to generalize several results previously available only for ∗ C -algebras, and we give many other applications. © 2011 Elsevier Inc. All rights reserved. Keywords: Operator algebras; One-sided ideals; Hereditary subalgebra; Approximate identity; Peak set; Pseudo-invertible elements; Completely positive operator 1. Introduction An operator algebra is a closed subalgebra of B(H), for a Hilbert space H . We recall that by a theorem due to Ralf Meyer, every operator algebra A has a unique unitization A1 (see [30] or [10, Section 2.1]). Below 1 always refers to the identity of A1 if A has no identity.
    [Show full text]
  • Geometric Measure Theory
    Encyclopedia of Mathematical Physics, [version: May 19, 2007] Vol. 2, pp. 520–527 (J.-P. Fran¸coiseet al. eds.). Elsevier, Oxford 2006. Geometric Measure Theory Giovanni Alberti Dipartimento di Matematica, Universit`adi Pisa L.go Pontecorvo 5, 56127 Pisa Italy e-mail: [email protected] 1. Introduction The aim of these pages is to give a brief, self-contained introduction to that part of Geometric Measure Theory which is more directly related to the Calculus of Variations, namely the theory of currents and its applications to the solution of Plateau problem. (The theory of finite perimeter sets, which is closely related to currents and to the Plateau problem, is treated in the article “Free interfaces and free discontinuities: variational problems”). Named after the belgian physicist J.A.F. Plateau (1801-1883), this problem was originally formulated as follows: find the surface of minimal area spanning a given curve in the space. Nowadays, it is mostly intended in the sense of developing a mathematical framework where the existence of k-dimensional surfaces of minimal volume that span a prescribed boundary can be rigorously proved. Indeed, several solutions have been proposed in the last century, none of which is completely satisfactory. One difficulty is that the infimum of the area among all smooth surfaces with a certain boundary may not be attained. More precisely, it may happen that all minimizing sequences (that is, sequences of smooth surfaces whose area approaches the infimum) converge to a singular surface. Therefore one is forced to consider a larger class of admissible surfaces than just smooth ones (in fact, one might want to do this also for modelling reasons—this is indeed the case with soap films, soap bubbles, and other capillarity problems).
    [Show full text]
  • A Covariance Function Approach to Prior Specification for Bayesian
    Journal of Machine Learning Research 22 (2021) 1-57 Submitted 11/20; Revised 5/21; Published 6/21 The Ridgelet Prior: A Covariance Function Approach to Prior Specification for Bayesian Neural Networks Takuo Matsubara [email protected] School of Mathematics, Statistics & Physics Newcastle University Newcastle upon Tyne, NE1 7RU, United Kingdom Chris J. Oates [email protected] School of Mathematics, Statistics & Physics Newcastle University Newcastle upon Tyne, NE1 7RU, United Kingdom Fran¸cois-Xavier Briol [email protected] Department of Statistical Science University College London London, WC1E 6BT, United Kingdom Editor: Pierre Alquier Abstract Bayesian neural networks attempt to combine the strong predictive performance of neural networks with formal quantification of uncertainty associated with the predictive output in the Bayesian framework. However, it remains unclear how to endow the parameters of the network with a prior distribution that is meaningful when lifted into the output space of the network. A possible solution is proposed that enables the user to posit an appropriate Gaussian process covariance function for the task at hand. Our approach constructs a prior distribution for the parameters of the network, called a ridgelet prior, that approximates the posited Gaussian process in the output space of the network. In contrast to existing work on the connection between neural networks and Gaussian processes, our analysis is non-asymptotic, with finite sample-size error bounds provided. This establishes the universality property that a Bayesian neural network can approximate any Gaussian process whose covariance function is sufficiently regular. Our experimental assessment is limited to a proof-of-concept, where we demonstrate that the ridgelet prior can out-perform an unstructured prior on regression problems for which a suitable Gaussian process prior can be provided.
    [Show full text]
  • Approximate Identities in Banach Function Algebras H. G. Dales
    Approximate identities in Banach function algebras H. G. Dales, Lancaster National University of Ireland, Maynooth, 19 June 2013 In honour of the retirement of Anthony G. O'Farrell Work in progress with Ali Ulger,¨ Istanbul 1 Definitions Let K be a locally compact space. Then C0(K) is the space of all complex-valued, continuous functions on K that vanish at infinity. This is a commutative Banach algebra with respect to the uniform norm j · jK. A function algebra on K is a subalgebra of C0(K) such that, for x; y 2 K with x 6= y, there is f 2 A with f(x) 6= f(y), and, for each x 2 K, there is f 2 A with f(x) 6= 0. A Banach function algebra on K is a function algebra A that is a Banach algebra for a norm k · k, so that kfgk ≤ kfk kgk for f; g 2 A. Necessarily, kfk ≥ jfjK for f 2 A. The algebra A is a uniform algebra if it is closed in C0(K). 2 Natural Banach function algebras A Banach function algebra A on K is natural if every character on A has the form f 7! f(x) = "x(f) for some x 2 K. Equiv- alently, every maximal modular ideal has the form Mx = ff 2 A : f(x) = 0g for some x 2 K. Every commutative, semisimple Banach algebra is a Banach function algebra on its character space. 3 Approximate identities Let (A; k · k) be a natural Banach function algebra on K.
    [Show full text]
  • Rapid Course on Geometric Measure Theory and the Theory of Varifolds
    Crash course on GMT Sławomir Kolasiński Rapid course on geometric measure theory and the theory of varifolds I will present an excerpt of classical results in geometric measure theory and the theory of vari- folds as developed in [Fed69] and [All72]. Alternate sources for fragments of the theory are [Sim83], [EG92], [KP08], [KP99], [Zie89], [AFP00]. Rectifiable sets and the area and coarea formulas (1) Area and coarea for maps between Euclidean spaces; see [Fed69, 3.2.3, 3.2.10] or [KP08, 5.1, 5.2] (2) Area and coarea formula for maps between rectifiable sets; see [Fed69, 3.2.20, 3.2.22] or [KP08, 5.4.7, 5.4.8] (3) Approximate tangent and normal vectors and approximate differentiation with respect to a measure and dimension; see [Fed69, 3.2.16] (4) Approximate tangents and densities for Hausdorff measure restricted to an (H m; m) recti- fiable set; see [Fed69, 3.2.19] (5) Characterization of countably (H m; m)-rectifiable sets in terms of covering by submanifolds of class C 1; see [Fed69, 3.2.29] or [KP08, 5.4.3] Sets of finite perimeter (1) Gauss-Green theorem for sets of locally finite perimeter; see [Fed69, 4.5.6] or [EG92, 5.7–5.8] (2) Coarea formula for real valued functions of locally bounded variation; see [Fed69, 4.5.9(12)(13)] or [EG92, 5.5 Theorem 1] (3) Differentiability of approximate and integral type for real valued functions of locally bounded variation; see [Fed69, 4.5.9(26)] or [EG92, 6.1 Theorems 1 and 4] (4) Characterization of sets of locally finite perimeter in terms of the Hausdorff measure of the measure theoretic boundary; see [Fed69, 4.5.11] or [EG92, 5.11 Theorem 1] Varifolds (1) Notation and basic facts for submanifolds of Euclidean space, see [All72, 2.5] or [Sim83, §7] (2) Definitions and notation for varifolds, push forward by a smooth map, varifold disintegration; see [All72, 3.1–3.3] or [Sim83, pp.
    [Show full text]
  • An Introduction to Varifolds
    AN INTRODUCTION TO VARIFOLDS DANIEL WESER These notes are from a talk given in the Junior Analysis seminar at UT Austin on April 27th, 2018. 1 Introduction Why varifolds? A varifold is a measure-theoretic generalization of a differentiable submanifold of Euclidean space, where differentiability has been replaced by rectifiability. Varifolds can model almost any surface, including those with singularities, and they've been used in the following applications: 1. for Plateau's problem (finding area-minimizing soap bubble-like surfaces with boundary values given along a curve), varifolds can be used to show the existence of a minimal surface with the given boundary, 2. varifolds were used to show the existence of a generalized minimal surface in given compact smooth Riemannian manifolds, 3. varifolds were the starting point of mean curvature flow, after they were used to create a mathematical model of the motion of grain boundaries in annealing pure metals. 2 Preliminaries We begin by covering the needed background from geometric measure theory. Definition 2.1. [Mag12] n Given k 2 N, δ > 0, and E ⊂ R , the k-dimensional Hausdorff measure of step δ is k k X diam(F ) Hδ = inf !k ; F 2 F 2F n where F is a covering of E by sets F ⊂ R such that diam(F ) < δ. Definition 2.2. [Mag12] The k-dimensional Hausdorff measure of E is k lim Hδ (E): δ!0+ 1 Definition 2.3. [Mag12] n k k Given a set M ⊂ R , we say that M is k-rectifiable if (1) M is H measurable and H (M) < k n +1, and (2) there exists countably many Lipschitz maps fj : R ! R such that k [ k H M n fj(R ) = 0: j2N Remark.
    [Show full text]
  • Classics in Mathematics Herbert Federer Geometric Measure Theory Springer-Verlag Berlin Heidelberg Gmbh Herbert Federer Was Born on July 23, 1920, in Vienna
    Classics in Mathematics Herbert Federer Geometric Measure Theory Springer-Verlag Berlin Heidelberg GmbH Herbert Federer was born on July 23, 1920, in Vienna. After emigrating to the US in 1938, he studied mathematics and physics at the University of California, Berkeley. Affiliated to Brown University, Providence since 1945, he is now Professor Emeritus there. The major part of Professor Federer's scientific effort has been directed to the development of the subject of Geometric Measure Theory, with its roots and applications in classical geometry and analysis, yet in the functorial spirit of modern topology and algebra. His work includes more than thirty research papers published between 1943 and 1986, as well as this book. Herbert Federer Geometric Measure Theory Reprint of the 1969 Edition " Springer Herbert Federer (Professor Emeritus) Department of Mathematics Brown University Providence, RI 02912 USA Originally published as VoI. 153 of the Grundlehren der mathematischen Wissenschaften Cataloging-in-Publication Data applied for Die Deutsche Bibliothek - CIP-Einheitsaufnahme Federer, Herbert: Geometric measure theory / Herbert Federer. - Reprint of the 1969 ed. - Berlin; Heidelberg ; New York; Barcelona ; Budapest ; Hong Kong ; London ; Milan ; Paris; Santa Clara; Singapore; Tokyo: Springer, 1996 (Grundlehren der mathematischen Wissenschaften ; VoI. 153) (Classies in mathematics) NE: 1. GT Mathematics Subject Classification (1991): 53C65, 46AXX ISBN 978-3-540-60656-7 ISBN 978-3-642-62010-2 (eBook) DOI 10.1007/978-3-642-62010-2 This work is subject to copyright. AlI rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustration, recitation, broadcasting, reproduction on microfIlm or in any other way, and storage in data banks.
    [Show full text]