Modelling the Enterprise Data Architecture Copyright © Andrew K
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Integrating ABC and IDEF0 Techniques for the Evaluation of Workflow Management Systems
Proceedings of the 5th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases, Madrid, Spain, February 15-17, 2006 (pp436-440) Integrating ABC and IDEF0 Techniques for the Evaluation of Workflow Management Systems ELIAS A. HADZILIAS IÉSEG School of Management Université Catholique de Lille 3, rue de la Digue, 59800 Lille FRANCE [email protected] Abstract: - This paper addresses the problem of the actual cost of a Workflow Management System that is implemented in order to support a business process in a company. In order to specify this cost, we employ the IDEF0 function modelling method in combination with the Activity-Based Costing (ABC) technique. A workflow is comprised of the activities which are assigned a cost in the context of the implementation of a Workflow Management System. This cost per activity is analysed to its particular elements that refer to all aspects of the system, that is, hardware, software and organisational resources’ costs. Key-Words: - Enterprise modelling, Activity-Based Costing, Workflow Management System 1 Introduction setting problem is important because the efficiency Nowadays, computer applications, such as electronic of overall processes is determined depending on the commerce and collaborative commerce, have been decision. However, the existing WFMS lacks proper driving changes in the traditional relationship among methods of solving the problem. companies. This fact intensifies competition and Workflow is a business process, automated in also it facilitates mutual collaboration. These whole or part, during which documents, information changes have resulted in more complex business or tasks are passed to an appropriate task performer processes in companies. -
Data Model Standards and Guidelines, Registration Policies And
Data Model Standards and Guidelines, Registration Policies and Procedures Version 3.2 ● 6/02/2017 Data Model Standards and Guidelines, Registration Policies and Procedures Document Version Control Document Version Control VERSION D ATE AUTHOR DESCRIPTION DRAFT 03/28/07 Venkatesh Kadadasu Baseline Draft Document 0.1 05/04/2007 Venkatesh Kadadasu Sections 1.1, 1.2, 1.3, 1.4 revised 0.2 05/07/2007 Venkatesh Kadadasu Sections 1.4, 2.0, 2.2, 2.2.1, 3.1, 3.2, 3.2.1, 3.2.2 revised 0.3 05/24/07 Venkatesh Kadadasu Incorporated feedback from Uli 0.4 5/31/2007 Venkatesh Kadadasu Incorporated Steve’s feedback: Section 1.5 Issues -Change Decide to Decision Section 2.2.5 Coordinate with Kumar and Lisa to determine the class words used by XML community, and identify them in the document. (This was discussed previously.) Data Standardization - We have discussed on several occasions the cross-walk table between tabular naming standards and XML. When did it get dropped? Section 2.3.2 Conceptual data model level of detail: changed (S) No foreign key attributes may be entered in the conceptual data model. To (S) No attributes may be entered in the conceptual data model. 0.5 6/4/2007 Steve Horn Move last paragraph of Section 2.0 to section 2.1.4 Data Standardization Added definitions of key terms 0.6 6/5/2007 Ulrike Nasshan Section 2.2.5 Coordinate with Kumar and Lisa to determine the class words used by XML community, and identify them in the document. -
Data Analytics EMEA Insurance Data Analytics Study Contents
A little less conversation, a lot more action – tactics to get satisfaction from data analytics EMEA Insurance data analytics study Contents Foreword 01 Introduction from the authors 04 Vision and strategy 05 A disconnect between analytics and business strategies 05 Articulating a clear business case can be tricky 07 Tactical projects are trumping long haul strategic wins 09 The ever evolving world of the CDO 10 Assets and capability 12 Purple People are hard to find 12 Data is not always accessible or trustworthy 14 Agility and traditional insurance are not natural bedfellows 18 Operationalisation and change management 23 Operating models have no clear winner 23 The message is not always loud and clear 24 Hearts and minds do not change overnight 25 Are you ready to become an IDO? 28 Appendix A – The survey 30 Appendix B – Links to publications 31 Appendix C – Key contacts 32 A little less conversation, a lot more action – tactics to get satisfaction from data analytics | EMEA Insurance data analytics study Foreword The world is experiencing the fastest pace of data expansion and technological change in history. Our work with the World Economic Forum in 2015 identified that, within financial services, insurance is the industry which is most ripe for disruption from innovation owing to the significant pressure across the value chain. To build on this work, our report ‘Turbulence ahead – The future of general insurance’, set out various innovations transforming the industry and subsequent scenarios for The time is now the future. It identified that innovation within the insurance industry is no longer led by insurers themselves. -
Steps in Enterprise Modelling Aroadmap
Steps in Enterprise Modelling aRoadmap Joannis L. Kotsiopoulos\ (Ed.), Torsten Engel2, Frank-Walter Jaekel3, Kurt Kosanke4, Juan Carlos Mendez Barreiro 5, Angel Ortiz Bas6, Michael Petie, and Patrik Raynaud8 1Zenon S.A., Greece, 2Fztr PDE, Germany, 3FhG-IPK, Germany, 4CIMOSA Association, Germany, 5AdN Internacional, S.A. de C. V., Mexico, 6Universidad Politecnica de Valencia, Spain, 7Univ. Notre-Dame de Ia Paix, Namur, Belgium, 8PSA, France, [email protected] Abstract: see Quad Chart on page 2 1 INTRODUCTION Advances in Information Technology have made Enterprise Modelling possible for many enterprises of today. A variety of software tools has ap peared in the market, processing power has dramatically increased, model ling architectures have evolved and even matured. Despite such advances however, widespread use of models, as a strategic decision support tool en compassing large industrial sectors, remains unattainable. The working group analysed the current situation, identified major problems and issues as causes and suggested a roadmap for the next steps in Enterprise Modelling. The following Quad-Chart (Table 1) summarises the work of the group that addressed those requirements. It identifies the approach taken to resolve the issues and proposes a project and ideas for future work for testing and enhancing the proposed solutions. The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35621-1_43 K. Kosanke -
Constructing a Meta Data Architecture
0-471-35523-2.int.07 6/16/00 12:29 AM Page 181 CHAPTER 7 Constructing a Meta Data Architecture This chapter describes the key elements of a meta data repository architec- ture and explains how to tie data warehouse architecture into the architec- ture of the meta data repository. After reviewing these essential elements, I examine the three basic architectural approaches for building a meta data repository and discuss the advantages and disadvantages of each. Last, I discuss advanced meta data architecture techniques such as closed-loop and bidirectional meta data, which are gaining popularity as our industry evolves. What Makes a Good Architecture A sound meta data architecture incorporates five general characteristics: ■ Integrated ■ Scalable ■ Robust ■ Customizable ■ Open 181 0-471-35523-2.int.07 6/16/00 12:29 AM Page 182 182 Chapter 7 It is important to understand that if a company purchases meta data access and/or integration tools, those tools define a significant portion of the meta data architecture. Companies should, therefore, consider these essential characteristics when evaluating tools and their implementation of the technology. Integrated Anyone who has worked on a decision support project understands that the biggest challenge in building a data warehouse is integrating all of the dis- parate sources of data and transforming the data into meaningful informa- tion. The same is true for a meta data repository. A meta data repository typically needs to be able to integrate a variety of types and sources of meta data and turn the resulting stew into meaningful, accessible business and technical meta data. -
Modelling, Analysis and Design of Computer Integrated Manueactur1ng Systems
MODELLING, ANALYSIS AND DESIGN OF COMPUTER INTEGRATED MANUEACTUR1NG SYSTEMS Volume I of II ABDULRAHMAN MUSLLABAB ABDULLAH AL-AILMARJ October-1998 A thesis submitted for the DEGREE OP DOCTOR OF.PHILOSOPHY MECHANICAL ENGINEERING DEPARTMENT, THE UNIVERSITY OF SHEFFIELD 3n ti]S 5íamc of Allai]. ¿Hoot (gractouo. iHHoßt ¿Merciful. ACKNOWLEDGEMENTS I would like to express my appreciation and thanks to my supervisor Professor Keith Ridgway for devoting freely of his time to read, discuss, and guide this research, and for his assistance in selecting the research topic, obtaining special reference materials, and contacting industrial collaborations. His advice has been much appreciated and I am very grateful. I would like to thank Mr Bruce Lake at Brook Hansen Motors who has patiently answered my questions during the case study. Finally, I would like to thank my family for their constant understanding, support and patience. l To my parents, my wife and my son. ABSTRACT In the present climate of global competition, manufacturing organisations consider and seek strategies, means and tools to assist them to stay competitive. Computer Integrated Manufacturing (CIM) offers a number of potential opportunities for improving manufacturing systems. However, a number of researchers have reported the difficulties which arise during the analysis, design and implementation of CIM due to a lack of effective modelling methodologies and techniques and the complexity of the systems. The work reported in this thesis is related to the development of an integrated modelling method to support the analysis and design of advanced manufacturing systems. A survey of various modelling methods and techniques is carried out. The methods SSADM, IDEFO, IDEF1X, IDEF3, IDEF4, OOM, SADT, GRAI, PN, 10A MERISE, GIM and SIMULATION are reviewed. -
Enterprise Modelling: from Early Languages to Models Transformation Bruno Vallespir, Yves Ducq
Enterprise modelling: from early languages to models transformation Bruno Vallespir, Yves Ducq To cite this version: Bruno Vallespir, Yves Ducq. Enterprise modelling: from early languages to models transforma- tion. International Journal of Production Research, Taylor & Francis, 2018, 56 (8), pp.2878 - 2896. 10.1080/00207543.2017.1418985. hal-01836662 HAL Id: hal-01836662 https://hal.archives-ouvertes.fr/hal-01836662 Submitted on 12 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ENTERPRISE MODELLING: FROM EARLY LANGUAGES TO MODELS TRANSFORMATION Bruno Vallespir, Yves Ducq Univ. Bordeaux, CNRS, IMS, UMR 5218, 33405 Talence, France [email protected], [email protected] Abstract During the last thirty years, enterprise modelling has been recognised as an efficient tool to externalise the knowledge of companies in order to understand their operations, to analyse their running and to design new systems from several points of view: functions, processes, decisions, resources, information technology. This paper aims at describing the long evolution of enterprise modelling techniques as well as one of the future challenges of these techniques: the transformation of enterprise models. So, in a first part, the paper describes the evolution of enterprise modelling techniques from the divergence era to the convergence period. -
An Enterprise Information System Data Architecture Guide
An Enterprise Information System Data Architecture Guide Grace Alexandra Lewis Santiago Comella-Dorda Pat Place Daniel Plakosh Robert C. Seacord October 2001 TECHNICAL REPORT CMU/SEI-2001-TR-018 ESC-TR-2001-018 Pittsburgh, PA 15213-3890 An Enterprise Information System Data Architecture Guide CMU/SEI-2001-TR-018 ESC-TR-2001-018 Grace Alexandra Lewis Santiago Comella-Dorda Pat Place Daniel Plakosh Robert C. Seacord October 2001 COTS-Based Systems Unlimited distribution subject to the copyright. This report was prepared for the SEI Joint Program Office HQ ESC/DIB 5 Eglin Street Hanscom AFB, MA 01731-2116 The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of scientific and technical information exchange. FOR THE COMMANDER Norton L. Compton, Lt Col, USAF SEI Joint Program Office This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally funded research and development center sponsored by the U.S. Department of Defense. Copyright 2001 by Carnegie Mellon University. Requests for permission to reproduce this document or to prepare derivative works of this document should be addressed to the SEI Licensing Agent. NO WARRANTY THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT. -
ER Studio Data Architect Quick Start Guide
Product Documentation ER Studio Data Architect Quick Start Guide Version 11.0 © 2015 Embarcadero Technologies, Inc. Embarcadero, the Embarcadero Technologies logos, and all other Embarcadero Technologies product or service names are trademarks or registered trademarks of Embarcadero Technologies, Inc. All other trademarks are property of their respective owners. Embarcadero Technologies, Inc. is a leading provider of award-winning tools for application developers and database professionals so they can design systems right, build them faster and run them better, regardless of their platform or programming language. Ninety of the Fortune 100 and an active community of more than three million users worldwide rely on Embarcadero products to increase productivity, reduce costs, simplify change management and compliance and accelerate innovation. The company's flagship tools include: Embarcadero® Change Manager™, CodeGear™ RAD Studio, DBArtisan®, Delphi®, ER/Studio®, JBuilder® and Rapid SQL®. Founded in 1993, Embarcadero is headquartered in San Francisco, with offices located around the world. Embarcadero is online at www.embarcadero.com. March, 2015 Embarcadero Technologies 2 CONTENTS Introducing ER/Studio Data Architect............................................................................ 5 Notice for Developer Edition Users ................................................................................... 5 Product Benefits by Audience ............................................................................................ 5 What's -
ER/Studio Enterprise Team Edition
ER/Studio Enterprise Team Edition THE ULTIMATE COLLABORATIVE ENTERPRISE DATA ARCHITECTURE AND MODELING SOLUTION With many organizations seeing a significant increase in data, along with more emphasis on compliance to industry and government regulations, it’s clear that having a solid strategy for data management is extremely important. ER/Studio Enterprise Team edition provides a comprehensive solution that empowers users to easily define models and metadata, establish a foundation for data governance initiatives, and define an enterprise architecture to effectively manage data across the whole organization. THE CHALLENGE OF MANAGING AND UTILIZING ENTERPRISE DATA Physically capturing and properly integrating data is challenging, especially for ER/Studio gives data management professionals the metadata unstructured content. Incorporating the new data, interpreting it correctly, and foundation to quickly respond to business process demands, reduce making it available to decision makers in a timely manner poses three distinct the risk of noncompliance, and deliver more actionable insight. challenges for data management professionals: Many organizations must deal with both relational and NoSQL data, • Leveraging enterprise data as an organizational asset as well as a broad landscape of platforms. ER/Studio Enterprise Team • Improving and managing data quality edition continues to build on its support of strategic enterprise systems including Teradata, Netezza, and Azure, as well as Big Data platform • Clearly and effectively communicating data throughout an organization support for Hadoop Hive and MongoDB, giving organizations an To address these issues, ER/Studio Enterprise Team edition gives data modelers interpretive and collaborative enterprise advantage for leveraging their and data architects the capabilities needed to analyze, document, and share data residing in diverse locations, from data centers to mobile platforms. -
Data Architect I Class Code:Class 0317 Code: 0317
State Classification Job Description Data ArchitectSalary Group: I B28 Data Architect I Class Code:Class 0317 Code: 0317 CLASS TITLE CLASS CODE SALARY GROUP SALARY RANGE DATA ARCHITECT I 0317 B28 $83,991 - $142,052 DATA ARCHITECT II 0318 B30 $101,630 - $171,881 GENERAL DESCRIPTION Performs highly complex (senior-level) data analysis and data architecture work. Work involves data modeling; implementing and managing database systems, data warehouses, and data analytics; and designing strategies and setting standards for operations, programming, and security. May supervise the work of others. Works under limited supervision, with moderate latitude for the use of initiative and independent judgment. EXAMPLES OF WORK PERFORMED Determines database requirements by analyzing business operations, applications, and programming; reviewing business objectives; and evaluating current systems. Obtains data model requirements, develops and implements data models for new projects, and maintains existing data models and data architectures. Develops data structures for data warehouses and data mart projects and initiatives; and supports data analytics and business intelligence systems. Implements corresponding database changes to support new and modified applications, and ensures new designs conform to data standards and guidelines; are consistent, normalized, and perform as required; and are secure from unauthorized access or update. Provides guidelines on creating data models and various standards relating to governed data. Reviews changes to technical and business metadata, realizing their impacts on enterprise applications, and ensures the impacts are communicated to appropriate parties. Establishes measures to chart progress related to the completeness and quality of metadata for enterprise information; to support reduction of data redundancy and fragmentation and elimination of unnecessary movement of data; and to improve data quality. -
Ermrest: an Entity-Relationship Data Storage Service for Web-Based, Data-Oriented Collaboration
ERMrest: an entity-relationship data storage service for web-based, data-oriented collaboration. Karl Czajkowski, Carl Kesselman, Robert Schuler, Hongsuda Tangmunarunkit Information Sciences Institute Viterbi School of Engineering University of Southern California Marina del Rey, CA 90292 Email: fkarlcz,carl,schuler,[email protected] Abstract—Scientific discovery is increasingly dependent on a are hard to evolve over time, and make it difficult to search scientist’s ability to acquire, curate, integrate, analyze, and share for specific data values. large and diverse collections of data. While the details vary from domain to domain, these data often consist of diverse digital In previous work, we have argued for an alternative ap- assets (e.g. image files, sequence data, or simulation outputs) that proach based on scientific asset management [5]. We separate are organized with complex relationships and context which may the “science data” (e.g. microscope images, sequence data, evolve over the course of an investigation. In addition, discovery flow cytometry data) from the “metadata” (e.g. references, is often collaborative, such that sharing of the data and its provenance, properties, and contextual relationships). We have organizational context is highly desirable. Common systems for also defined a data-oriented architecture which expresses col- managing file or asset metadata hide their inherent relational laboration as the manipulation of shared data resources housed structures, while traditional relational database systems do not extend to the distributed collaborative environment often seen in complementary object (asset) and relational (metadata) in scientific investigations. To address these issues, we introduce stores [6]. The metadata encode not only properties and refer- ERMrest, a collaborative data management service which allows ences of individual assets, but relationships among assets and general entity-relationship modeling of metadata manipulated other domain-specific elements such as experiments, protocol by RESTful access methods.