Comprehensive Evaluation of the Association Between Prostate Cancer and Genotypes/Haplotypes in CYP17A1, CYP3A4, and SRD5A2

Total Page:16

File Type:pdf, Size:1020Kb

Comprehensive Evaluation of the Association Between Prostate Cancer and Genotypes/Haplotypes in CYP17A1, CYP3A4, and SRD5A2 European Journal of Human Genetics (2004) 12, 321–332 & 2004 Nature Publishing Group All rights reserved 1018-4813/04 $25.00 www.nature.com/ejhg ARTICLE Comprehensive evaluation of the association between prostate cancer and genotypes/haplotypes in CYP17A1, CYP3A4, and SRD5A2 Anu Loukola1, Monica Chadha1, Sharron G Penn1, David Rank1, David V Conti2, Deborah Thompson3, Mine Cicek4, Brad Love1, Vesna Bivolarevic1, Qiner Yang1, Yalin Jiang1, David KHanzel1, Katherine Dains1,PamelaLParis4,GrahamCasey4 and John S Witte*,2,3 1Amersham Biosciences, Sunnyvale, CA 94085, USA; 2Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH 44106, USA; 3International Agency for Cancer Research, Lyon, France; 4Department of Cancer Biology, Cleveland Clinic Foundation, Cleveland, OH 44195, USA Genes involved in the testosterone biosynthetic pathway – such as CYP17A1, CYP3A4, and SRD5A2 – represent strong candidates for affecting prostate cancer. Previous work has detected associations between individual variants in these three genes and prostate cancer risk and aggressiveness. To more comprehensively evaluate CYP17A1, CYP3A4, and SRD5A2, we undertook a two-phase study of the relationship between their genotypes/haplotypes and prostate cancer. Phase I of the study first searched for single-nucleotide polymorphisms (SNPs) in these genes by resequencing 24 individuals from the Coriell Polymorphism Discovery Resource, 92–110 men from prostate cancer case–control sibships, and by leveraging public databases. In all, 87 SNPs were discovered and genotyped in 276 men from case–control sibships. Those SNPs exhibiting preliminary case–control allele frequency differences, or distinguishing (ie, ‘tagging’) common haplotypes across the genes, were identified for further study (24 SNPs in total). In Phase II of the study, the 24 SNPs were genotyped in an additional 841 men from case–control sibships. Finally, associations between genotypes/haplotypes in CYP17A1, CYP3A4, and SRD5A2 and prostate cancer were evaluated in the total case–control sample of 1117 brothers from 506 sibships. Family-based analyses detected associations between prostate cancer risk or aggressiveness and a number of CYP3A4 SNPs (P- values between 0.006 and 0.05), a CYP3A4 haplotype (P-values 0.05 and 0.009 in nonstratified and stratified analysis, respectively), and two SRD5A2 SNPs in strong linkage disequilibrium (P ¼ 0.02). Undertaking a two-phase study comprising SNP discovery, haplotype tagging, and association analyses allowed us to more fully decipher the relation between CYP17A1, CYP3A4, and SRD5A2 and prostate cancer. European Journal of Human Genetics (2004) 12, 321–332. doi:10.1038/sj.ejhg.5201101 Published online 15 October 2003 Keywords: prostate cancer; association; CYP17A1; CYP3A4; SRD5A2; haplotyping; genetic susceptibility Introduction Society, 1 89 000 US men were diagnosed with prostate Prostate cancer is the most common noncutaneous cancer in the year 2002, and approximately 30 000 US men neoplasm among men. According to the American Cancer died from this disease. A clear risk factor for prostate cancer is age, suggesting an important role of exposure to *Correspondence: Dr J Witte, Department of Epidemiology and Biosta- endogenous and/or exogenous factors (eg, hormones or tistics, University of California San Francisco, 500 Parnassus Ave, MU-420 environmental agents). Another known risk factor is West, San Francisco, CA 94143-0560, USA. Tel: þ 1 415 476 1374; ethnicity: prostate cancer is almost two times more Fax: þ 1 415 476 6014; E-mail: [email protected] Received 6 May 2003; revised 18 August 2003; accepted 11 September common in African Americans than in Caucasians, 1,2 2003 whereas Asians have the lowest risk. Finally, there is an Prostate cancer and the androgen pathway A Loukola et al 322 increased risk among men with a positive family history of contributed information for calculating allele frequencies, prostate cancer.3 These factors suggest that both genes and only the 440 cases and 480 controls (920 men total) from environment predispose men to this disease. discordant families were informative for the conditional Substantial evidence from linkage studies supports the logistic regression analysis of association. existence of genetic factors for prostate cancer develop- The study population was recruited between January ment and progression. A number of chromosomal regions 1998 and January 2001 from the major medical institu- have been linked to prostate cancer, including 1q24–q25, tions in the greater Cleveland area and from the Henry 1q42.2–q43, 1p36, 8p22–23, 16q23, 17p11, 19q, 20q13, Ford Health System in Detroit. The study was approved by and Xq27–28.4 On 17p11, ELAC2 was the first prostate the collaborating institution’s Review Boards, and in- cancer-susceptibility gene cloned.5 Common allelic var- formed consent was obtained from all participating men. iants of ELAC2 were shown associated with prostate cancer Characteristics of the study population have been de- in some studies,6,7 but not all.8–11 Another candidate scribed elsewhere.13 prostate cancer-susceptibility gene, RNASEL, was identified Men diagnosed with histologically confirmed prostate in the HPC1 locus on 1q24–25.12 Subsequent studies cancer at age 73 or younger were invited to join the study if support a role both for inactivating mutations and variants they had a living unaffected brother who was either older in RNASEL and prostate cancer risk.13 – 15 than the proband, or at most 8 years younger than the age Since prostate growth depends on active testosterone,16 at diagnosis of the proband. This age restriction was and testosterone administration leads to the development selected in an attempt to increase the potential for finding of prostate adenocarcinomas in rats,17 studies of genes a genetic association with disease and to substantiate that involved in androgen metabolism have provided further the controls were not unaffected simply due to being of a insight into the genetic basis of this disease. Three such younger age. To help confirm that the controls were not genes are CYP17A1, CYP3A4, and SRD5A2. CYP17A1 is diseased, we tested the prostate-specific antigen (PSA) involved with the biosynthesis of testosterone in the levels in their blood (see discussion). Information on the gonads and adrenals, and is involved with catalyzing cases’ Gleason score and tumor stage (TNM) was deter- steroid 17a-hydroxylase and 17,20-lyase activities at key mined from their medical records. The study population points in this process.18 CYP3A4 catalyzes the 6b-hydro- was comprised of 90% Caucasians (European Americans), xylation of testosterone, suggesting that it may be involved and the remainder primarily African American (9%). in the metabolism and oxidative deactivation of this steroid.19 The SRD5A2 gene product catalyzes the conver- SNP discovery sion of testosterone to dihydrotestosterone,20 a highly A complementary approach was used to identify SNPs active form of this androgen. within CYP17A1, CYP3A4, and SRD5A2. We performed SNP Numerous previous studies have detected associations discovery by sequencing individuals from two populations: between variants in CYP17A1, CYP3A4, and SRD5A2 and (1) the Coriell Polymorphism Discovery Resource (Collins prostate cancer.21 – 31 These studies have focused only on et al32; Coriell Cell Repositories, Camden, NJ, USA); and (2) specific individual variants in the candidate genes. How- prostate cancer case–control sibships. The Coriell popula- ever, fully deciphering the impact of these genes on tion includes 24 individuals: six European Americans, six prostate cancer may require the evaluation of multiple African Americans, three Hispanic Americans, three Native variants or haplotypes. Therefore, we present here a two- Americans, and six Asian Americans. The prostate cancer phase comprehensive analysis of the association between case–control sibships used for SNP discovery were two multiple single-nucleotide polymorphism (SNP) geno- randomly selected subsets of our entire study population, types/haplotypes in CYP17A1, CYP3A4, and SRD5A2 and and included 67 cases and 43 controls for CYP17A1 and prostate cancer. CYP3A4, and 51 cases and 41 controls for SRD5A2. There was no overlap between the two subgroups. Of the 110 individuals sequenced for CYP17A1 and CYP3A4, 106 were Materials and methods European American, two were Hispanic American, and two Study population were African American. Of the 92 individuals sequenced A total of 1117 men (637 cases and 480 controls) from 506 for SRD5A2, 84 were European American and eight were sibships were included in the study. In total, 92 sibships African American. were concordant (ie, where all included men were For sequencing, PCR primers amplifying most of the diagnosed with prostate cancer, and there was no control coding regions, splice sites, 50 and 30 regions, and parts of sibling) and contained altogether 197 men. The remaining introns of CYP17A1, CYP3A4, and SRD5A2 were designed 414 sibships were discordant (ie, at least one control using the Primer3 program (http://www.genome.wi.mit. sibling) and contained 440 cases and 480 controls. edu/cgi-bin/primer/primer3.cgi). PCR products were Altogether, 52 discordant sibships had more than one sequenced using energy DYEnamict ET Terminator Kit control sib. Hence, while all of the 1117 study subjects on the MegaBACEt DNA Analysis System (Amersham European Journal of Human Genetics Prostate cancer and the androgen pathway
Recommended publications
  • Impaired Hepatic Drug and Steroid Metabolism in Congenital Adrenal
    European Journal of Endocrinology (2010) 163 919–924 ISSN 0804-4643 CLINICAL STUDY Impaired hepatic drug and steroid metabolism in congenital adrenal hyperplasia due to P450 oxidoreductase deficiency Dorota Tomalik-Scharte1, Dominique Maiter2, Julia Kirchheiner3, Hannah E Ivison, Uwe Fuhr1 and Wiebke Arlt School of Clinical and Experimental Medicine, Centre for Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, UK, 1Department of Pharmacology, University Hospital, University of Cologne, 50931 Cologne, Germany, 2Department of Endocrinology, University Hospital Saint Luc, 1200 Brussels, Belgium and 3Department of Pharmacology of Natural Products and Clinical Pharmacology, University of Ulm, 89019 Ulm, Germany (Correspondence should be addressed to W Arlt; Email: [email protected]) Abstract Objective: Patients with congenital adrenal hyperplasia due to P450 oxidoreductase (POR) deficiency (ORD) present with disordered sex development and glucocorticoid deficiency. This is due to disruption of electron transfer from mutant POR to microsomal cytochrome P450 (CYP) enzymes that play a key role in glucocorticoid and sex steroid synthesis. POR also transfers electrons to all major drug- metabolizing CYP enzymes, including CYP3A4 that inactivates glucocorticoid and oestrogens. However, whether ORD results in impairment of in vivo drug metabolism has never been studied. Design: We studied an adult patient with ORD due to homozygous POR A287P, the most frequent POR mutation in Caucasians, and her clinically unaffected, heterozygous mother. The patient had received standard dose oestrogen replacement from 17 until 37 years of age when it was stopped after she developed breast cancer. Methods: Both subjects underwent in vivo cocktail phenotyping comprising the oral administration of caffeine, tolbutamide, omeprazole, dextromethorphan hydrobromide and midazolam to assess the five major drug-metabolizing CYP enzymes.
    [Show full text]
  • Association Between Two Polymorphisms in the SRD5A2 Gene and Serum Androgen Concentrations in British Men1
    578 Vol. 12, 578–581, June 2003 Cancer Epidemiology, Biomarkers & Prevention Short Communication Association between Two Polymorphisms in the SRD5A2 Gene and Serum Androgen Concentrations in British Men1 Naomi E. Allen,2 Juergen K. V. Reichardt, are needed to additionally clarify the role of the A49T Hannah Nguyen, and Timothy J. Key polymorphism in androgen metabolism. Cancer Research United Kingdom Epidemiology Unit, University of Oxford, Gibson Building, Radcliffe Infirmary, Oxford, OX2 6HE, United Kingdom Introduction [N. E. A., T. J. K.], and Institute for Genetic Medicine, Departments of Biochemistry and Molecular Biology and Preventive Medicine, University of It is well established that the steroid 5 ␣-reductase type II Southern California School of Medicine, University of Southern California, enzyme, which irreversibly converts testosterone to its more Los Angeles, California 90089-9075 [J. K. V. R., H. N.] potent metabolite DHT3 in prostatic cells, is required for the normal growth and development of the prostate gland (1). A meta-analysis of prospective studies suggests that the serum Abstract concentration of A-diol-g, a serum marker of the abundance of Androgens are essential for the growth of the prostate 5 ␣-reductase type II and intraprostatic DHT, is slightly higher gland and have been implicated in the development of in men who subsequently develop prostate cancer compared prostate cancer. Little is known about the determinants with healthy individuals (2). The circulating A-diol-g concen- of androgen levels in men, although observed ethnic tration is believed to be a more accurate serum marker of 5 differences suggest they may have a genetic basis.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Cytochrome P450
    COVID-19 is an emerging, rapidly evolving situation. Get the latest public health information from CDC: https://www.coronavirus.gov . Get the latest research from NIH: https://www.nih.gov/coronavirus. Share This Page Search Health Conditions Genes Chromosomes & mtDNA Classroom Help Me Understand Genetics Cytochrome p450 Enzymes produced from the cytochrome P450 genes are involved in the formation (synthesis) and breakdown (metabolism) of various molecules and chemicals within cells. Cytochrome P450 enzymes Learn more about the cytochrome play a role in the synthesis of many molecules including steroid hormones, certain fats (cholesterol p450 gene group: and other fatty acids), and acids used to digest fats (bile acids). Additional cytochrome P450 enzymes metabolize external substances, such as medications that are ingested, and internal substances, such Biochemistry (Ofth edition, 2002): The as toxins that are formed within cells. There are approximately 60 cytochrome P450 genes in humans. Cytochrome P450 System is Widespread Cytochrome P450 enzymes are primarily found in liver cells but are also located in cells throughout the and Performs a Protective Function body. Within cells, cytochrome P450 enzymes are located in a structure involved in protein processing Biochemistry (fth edition, 2002): and transport (endoplasmic reticulum) and the energy-producing centers of cells (mitochondria). The Cytochrome P450 Mechanism (Figure) enzymes found in mitochondria are generally involved in the synthesis and metabolism of internal substances, while enzymes in the endoplasmic reticulum usually metabolize external substances, Indiana University: Cytochrome P450 primarily medications and environmental pollutants. Drug-Interaction Table Common variations (polymorphisms) in cytochrome P450 genes can affect the function of the Human Cytochrome P450 (CYP) Allele enzymes.
    [Show full text]
  • Effects on Steroid 5-Alpha Reductase Gene Expression of Thai Rice Bran Extracts and Molecular Dynamics Study on SRD5A2
    biology Article Effects on Steroid 5-Alpha Reductase Gene Expression of Thai Rice Bran Extracts and Molecular Dynamics Study on SRD5A2 Chiranan Khantham 1 , Wipawadee Yooin 1,2 , Korawan Sringarm 2,3 , Sarana Rose Sommano 2,4 , Supat Jiranusornkul 1, Francisco David Carmona 5,6 , Wutigri Nimlamool 7 , Pensak Jantrawut 1,2, Pornchai Rachtanapun 8,9 and Warintorn Ruksiriwanich 1,2,8,* 1 Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; [email protected] (C.K.); [email protected] (W.Y.); [email protected] (S.J.); [email protected] (P.J.) 2 Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand; [email protected] (K.S.); [email protected] (S.R.S.) 3 Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 4 Plant Bioactive Compound Laboratory (BAC), Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 5 Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; [email protected] 6 Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain 7 Citation: Khantham, C.; Yooin, W.; Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Sringarm, K.; Sommano, S.R.; [email protected] 8 Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Jiranusornkul, S.; Carmona, F.D.; Chiang Mai 50100, Thailand; [email protected] Nimlamool, W.; Jantrawut, P.; 9 School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand Rachtanapun, P.; Ruksiriwanich, W.
    [Show full text]
  • Crystal Structure of Steroid Reductase SRD5A Reveals Conserved Steroid Reduction Mechanism
    ARTICLE https://doi.org/10.1038/s41467-020-20675-2 OPEN Crystal structure of steroid reductase SRD5A reveals conserved steroid reduction mechanism Yufei Han 1,9, Qian Zhuang2,9, Bo Sun3,9, Wenping Lv 4,9, Sheng Wang5,9, Qingjie Xiao6, Bin Pang1, ✉ Youli Zhou1, Fuxing Wang1, Pengliang Chi6, Qisheng Wang3, Zhen Li7, Lizhe Zhu 4, Fuping Li8, Dong Deng6 , ✉ ✉ ✉ Ying-Chih Chiang 1 , Zhenfei Li 2 & Ruobing Ren 1 Steroid hormones are essential in stress response, immune system regulation, and repro- 1234567890():,; duction in mammals. Steroids with 3-oxo-Δ4 structure, such as testosterone or progesterone, are catalyzed by steroid 5α-reductases (SRD5As) to generate their corresponding 3-oxo-5α steroids, which are essential for multiple physiological and pathological processes. SRD5A2 is already a target of clinically relevant drugs. However, the detailed mechanism of SRD5A- mediated reduction remains elusive. Here we report the crystal structure of PbSRD5A from Proteobacteria bacterium, a homolog of both SRD5A1 and SRD5A2, in complex with the cofactor NADPH at 2.0 Å resolution. PbSRD5A exists as a monomer comprised of seven transmembrane segments (TMs). The TM1-4 enclose a hydrophobic substrate binding cavity, whereas TM5-7 coordinate cofactor NADPH through extensive hydrogen bonds network. Homology-based structural models of HsSRD5A1 and -2, together with biochemical char- acterization, define the substrate binding pocket of SRD5As, explain the properties of disease-related mutants and provide an important framework for further understanding of the mechanism of NADPH mediated steroids 3-oxo-Δ4 reduction. Based on these analyses, the design of therapeutic molecules targeting SRD5As with improved specificity and therapeutic efficacy would be possible.
    [Show full text]
  • Bioactivity of Curcumin on the Cytochrome P450 Enzymes of the Steroidogenic Pathway
    International Journal of Molecular Sciences Article Bioactivity of Curcumin on the Cytochrome P450 Enzymes of the Steroidogenic Pathway Patricia Rodríguez Castaño 1,2, Shaheena Parween 1,2 and Amit V Pandey 1,2,* 1 Pediatric Endocrinology, Diabetology, and Metabolism, University Children’s Hospital Bern, 3010 Bern, Switzerland; [email protected] (P.R.C.); [email protected] (S.P.) 2 Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland * Correspondence: [email protected]; Tel.: +41-31-632-9637 Received: 5 September 2019; Accepted: 16 September 2019; Published: 17 September 2019 Abstract: Turmeric, a popular ingredient in the cuisine of many Asian countries, comes from the roots of the Curcuma longa and is known for its use in Chinese and Ayurvedic medicine. Turmeric is rich in curcuminoids, including curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Curcuminoids have potent wound healing, anti-inflammatory, and anti-carcinogenic activities. While curcuminoids have been studied for many years, not much is known about their effects on steroid metabolism. Since many anti-cancer drugs target enzymes from the steroidogenic pathway, we tested the effect of curcuminoids on cytochrome P450 CYP17A1, CYP21A2, and CYP19A1 enzyme activities. When using 10 µg/mL of curcuminoids, both the 17α-hydroxylase as well as 17,20 lyase activities of CYP17A1 were reduced significantly. On the other hand, only a mild reduction in CYP21A2 activity was observed. Furthermore, CYP19A1 activity was also reduced up to ~20% of control when using 1–100 µg/mL of curcuminoids in a dose-dependent manner. Molecular docking studies confirmed that curcumin could dock onto the active sites of CYP17A1, CYP19A1, as well as CYP21A2.
    [Show full text]
  • Original Article Genetic Polymorphisms in the Androgen Metabolism Pathway and Risk of Prostate Cancer in Low Incidence Malaysian Ethnic Groups
    Int J Clin Exp Med 2015;8(10):19232-19240 www.ijcem.com /ISSN:1940-5901/IJCEM0011564 Original Article Genetic polymorphisms in the androgen metabolism pathway and risk of prostate cancer in low incidence Malaysian ethnic groups Prevathe Poniah1, Zahurin Mohamed2, Yamunah Devi Apalasamy2, Shamsul Mohd Zain2, Shanggar Kuppusamy1, Azad HA Razack1 Departments of 1Surgery, 2Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malay- sia Received June 17, 2015; Accepted September 22, 2015; Epub October 15, 2015; Published October 30, 2015 Abstract: Androgens are involved in prostate cancer (PCa) cell growth. Genes involved in androgen metabolism mediate key steps in sex steroid metabolism. This study attempted to investigate whether single nucleotide poly- morphisms (SNPs) in the androgen metabolism pathway are associated with PCa risk in low incidence Asian ethnic groups. We genotyped 172 Malaysian subjects for cytochrome P450 family 17 (CYP17A1), steroid-5-alpha-reduc- tase, polypeptide 1 and 2 (SRD5A1 and SRD5A2), and insulin-like growth factor 1 (IGF-1) genes of the androgen metabolism pathway and assessed the testosterone, dihydrotestosterone and IGF-1 levels. SNPs in the CYP17A1, SRD5A1, SRD5A2, and IGF-1 genes were genotyped using real-time polymerase chain reaction. Although we did not find significant association between SNPs analysed in this study with PCa risk, we observed however, signifi- cant association between androgen levels and the IGF-1 and several SNPs. Men carrying the GG genotype for SNP rs1004467 (CYP17A1) had significantly elevated testosterone (P = 0.012) and dihydrotestosterone (DHT) levels (P = 0.024) as compared to carriers of the A allele. The rs518673 of the SRD5A1 was associated with prostate spe- cific antigen (PSA) levels.
    [Show full text]
  • Bridging Cell Surface Receptor with Nuclear Receptors in Control of Bile Acid Homeostasis Shuangwei LI§ , *, Andrew NI, Gen-Sheng FENG
    Acta Pharmacologica Sinica (2015) 36: 113–118 npg © 2015 CPS and SIMM All rights reserved 1671-4083/15 $32.00 www.nature.com/aps Review Bridging cell surface receptor with nuclear receptors in control of bile acid homeostasis Shuangwei LI§ , *, Andrew NI, Gen-sheng FENG Department of Pathology and Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0864, USA Bile acids (BAs) are traditionally considered as “physiological detergents” for emulsifying hydrophobic lipids and vitamins due to their amphipathic nature. But accumulating clinical and experimental evidence shows an association between disrupted BA homeostasis and various liver disease conditions including hepatitis infection, diabetes and cancer. Consequently, BA homeostasis regulation has become a field of heavy interest and investigation. After identification of the Farnesoid X Receptor (FXR) as an endogenous receptor for BAs, several nuclear receptors (SHP, HNF4α, and LRH-1) were also found to be important in regulation of BA homeostasis. Some post-translational modifications of these nuclear receptors have been demonstrated, but their physiological significance is still elusive. Gut secrets FGF15/19 that can activate hepatic FGFR4 and its downstream signaling cascade, leading to repressed hepatic BA biosynthesis. However, the link between the activated kinases and these nuclear receptors is not fully elucidated. Here, we review the recent literature on signal crosstalk in BA homeostasis. Keywords: bile acids; FXR; HNF4α; LXR; FGFR4; FGF15/19; Shp2; phosphorylation Acta Pharmacologica Sinica (2015) 36: 113–118; doi: 10.1038/aps.2014.118; published online 15 Dec 2014 Introduction Na+-taurocholate cotransporting polypeptide (NTCP)[3]. HBV Cholesterol is directly converted by a series of chemical reac- infection causes increased BA biosynthesis[4].
    [Show full text]
  • ERG/AKR1C3/AR Constitutes a Feed-Forward Loop for AR Signaling in Prostate Cancer Cells Katelyn Powell1, Louie Semaan1, M
    Published OnlineFirst March 9, 2015; DOI: 10.1158/1078-0432.CCR-14-2352 Biology of Human Tumors Clinical Cancer Research ERG/AKR1C3/AR Constitutes a Feed-Forward Loop for AR Signaling in Prostate Cancer Cells Katelyn Powell1, Louie Semaan1, M. Katie Conley-LaComb1, Irfan Asangani2, Yi-Mi Wu2, Kevin B. Ginsburg1, Julia Williams3, Jeremy A. Squire4, Krishna R. Maddipati5, Michael L. Cher1,5,6, and Sreenivasa R. Chinni1,5,6 Abstract Purpose: Intratumoral androgen synthesis in prostate cancer Results: We found that ERG regulated the expression of the ABE contributes to the development of castration-resistant prostate AKR1C3 in prostate cancer cells via direct binding to the AKR1C3 cancer (CRPC). Several enzymes responsible for androgen bio- gene. Knockdown of ERG resulted in reduced AKR1C3 expression, synthesis have been shown to be overexpressed in CRPC, thus which caused a reduction in both DHT synthesis and PSA expres- contributing to CRPC in a castrated environment. The TMPRSS2– sion in VCaP prostate cancer cells treated with 5a-androstane- ERG transcription factor has been shown to be present in primary dione (5a-Adione), a DHT precursor metabolite. Immunohisto- prostate cancer tumors as well as CRPC tumors. We hypothesize chemical staining revealed that ERG was coexpressed with that TMPRSS2–ERG fusions regulate androgen biosynthetic AKR1C3 in prostate cancer tissue samples. enzyme (ABE) gene expression and the production of androgens, Conclusions: These data suggest that AKR1C3 catalyzes the which contributes to the development of CRPC. biochemical reduction of 5a-Adione to DHT in prostate cancer Experimental design: We used a panel of assays, including cells, and that ERG regulates this step through upregulation of lentivirus transduction, gene expression, chromatin immunopre- AKR1C3 expression.
    [Show full text]
  • Characterization of Precursor-Dependent Steroidogenesis in Human Prostate Cancer Models
    cancers Article Characterization of Precursor-Dependent Steroidogenesis in Human Prostate Cancer Models Subrata Deb 1 , Steven Pham 2, Dong-Sheng Ming 2, Mei Yieng Chin 2, Hans Adomat 2, Antonio Hurtado-Coll 2, Martin E. Gleave 2,3 and Emma S. Tomlinson Guns 2,3,* 1 Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA; [email protected] 2 The Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; [email protected] (S.P.); [email protected] (D.-S.M.); [email protected] (M.Y.C.); [email protected] (H.A.); [email protected] (A.H.-C.); [email protected] (M.E.G.) 3 Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada * Correspondence: [email protected]; Tel.: +1-604-875-4818 Received: 14 August 2018; Accepted: 17 September 2018; Published: 20 September 2018 Abstract: Castration-resistant prostate tumors acquire the independent capacity to generate androgens by upregulating steroidogenic enzymes or using steroid precursors produced by the adrenal glands for continued growth and sustainability. The formation of steroids was measured by liquid chromatography-mass spectrometry in LNCaP and 22Rv1 prostate cancer cells, and in human prostate tissues, following incubation with steroid precursors (22-OH-cholesterol, pregnenolone, 17-OH-pregnenolone, progesterone, 17-OH-progesterone). Pregnenolone, progesterone, 17-OH-pregnenolone, and 17-OH-progesterone increased C21 steroid (5-pregnan-3,20-dione, 5-pregnan-3,17-diol-20-one, 5-pregnan-3-ol-20-one) formation in the backdoor pathway, and demonstrated a trend of stimulating dihydroepiandrosterone or its precursors in the backdoor pathway in LNCaP and 22Rv1 cells.
    [Show full text]
  • Novel Insights Into P450 BM3 Interactions with FDA-Approved Antifungal Azole Drugs Received: 1 August 2018 Laura N
    www.nature.com/scientificreports OPEN Novel insights into P450 BM3 interactions with FDA-approved antifungal azole drugs Received: 1 August 2018 Laura N. Jefreys1, Harshwardhan Poddar1, Marina Golovanova1, Colin W. Levy2, Accepted: 14 November 2018 Hazel M. Girvan1, Kirsty J. McLean1, Michael W. Voice3, David Leys1 & Andrew W. Munro1 Published: xx xx xxxx Flavocytochrome P450 BM3 is a natural fusion protein constructed of cytochrome P450 and NADPH- cytochrome P450 reductase domains. P450 BM3 binds and oxidizes several mid- to long-chain fatty acids, typically hydroxylating these lipids at the ω-1, ω-2 and ω-3 positions. However, protein engineering has led to variants of this enzyme that are able to bind and oxidize diverse compounds, including steroids, terpenes and various human drugs. The wild-type P450 BM3 enzyme binds inefciently to many azole antifungal drugs. However, we show that the BM3 A82F/F87V double mutant (DM) variant binds substantially tighter to numerous azole drugs than does the wild-type BM3, and that their binding occurs with more extensive heme spectral shifts indicative of complete binding of several azoles to the BM3 DM heme iron. We report here the frst crystal structures of P450 BM3 bound to azole antifungal drugs – with the BM3 DM heme domain bound to the imidazole drugs clotrimazole and tioconazole, and to the triazole drugs fuconazole and voriconazole. This is the frst report of any protein structure bound to the azole drug tioconazole, as well as the frst example of voriconazole heme iron ligation through a pyrimidine nitrogen from its 5-fuoropyrimidine ring. Te cytochromes P450 (P450s or CYPs) are a superfamily of heme b-binding enzymes that catalyze the oxidative modifcation of a huge number of organic substrates1.
    [Show full text]