The Foundations for Provenance on the Web
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
D3.3 Initial Technical & Logical Architecture and Future Work
D3.3 Initial Technical & Logical Architecture and future work recommendations ECP 2008 DILI 558001 Europeana v1.0 D3.3 Initial Technical & Logical Architecture and future work recommendations Deliverable number D3.3 Dissemination level Public Delivery date 30 July 2010 Status Final Makx Dekkers, Stefan Gradmann, Jan Author(s) Molendijk eContentplus This project is funded under the eContentplus programme1, a multiannual Community programme to make digital content in Europe more accessible, usable and exploitable. 1 OJ L 79, 24.3.2005, p. 1. 1/14 D3.3 Initial Technical & Logical Architecture and future work recommendations 1. Introduction This deliverable has two tasks: To characterise the technical and logical architecture of Europeana as a system in its 1.0 state (that is to say by the time of the ‘Rhine’ release To outline the future work recommendations that can reasonably be made at that moment. This also provides a straightforward and logical structure to the document: characterisation comes first followed by the recommendations for future work. 2. Technical and Logical Architecture From a high-level architectural point of view, Europeana.eu is best characterized as a search engine and a database. It loads metadata delivered by providers and aggregators into a database, and uses that database to allow users to search for cultural heritage objects, and to find links to those objects. Various methods of searching and browsing the objects are offered, including a simple and an advanced search form, a timeline, and an openSearch API. It is also important to describe what Europeana.eu does not do, even though people sometimes expect it to. -
A Knowledge Discovery Approach
Semantic XML Tagging of Domain-Specific Text Archives: A Knowledge Discovery Approach Dissertation zur Erlangung des akademisches Grades Doktoringenieur (Dr.-Ing.) angenommen durch die Fakult¨at fur¨ Informatik der Otto-von-Guericke-Universit¨at Magdeburg von Diplom-Kaufmann Peter Karsten Winkler, geboren am 1. Oktober 1971 in Berlin Gutachterinnen und Gutachter: Prof. Dr. Myra Spiliopoulou Prof. Dr. Gunter Saake Prof. Dr. Stefan Conrad Ort und Datum des Promotionskolloquiums: Magdeburg, 22. Januar 2009 Karsten Winkler. Semantic XML Tagging of Domain-Specific Text Archives: A Knowl- edge Discovery Approach. Dissertation, Faculty of Computer Science, Otto von Guericke University Magdeburg, Magdeburg, Germany, January 2009. Contents List of Figures v List of Tables vii List of Algorithms xi Abstract xiii Zusammenfassung xv Acknowledgments xvii 1 Introduction 1 1.1 TheAbundanceofText ............................ 1 1.2 Defining Semantic XML Markup . 3 1.3 BenefitsofSemanticXMLMarkup . 9 1.4 ResearchQuestions ............................... 12 1.5 ResearchMethodology ............................. 14 1.6 Outline...................................... 16 2 Literature Review 19 2.1 Storage, Retrieval, and Analysis of Textual Data . ....... 19 2.1.1 Knowledge Discovery in Textual Databases . 19 2.1.2 Information Storage and Retrieval . 23 2.1.3 InformationExtraction. 25 2.2 Discovering Concepts in Textual Data . 26 2.2.1 Topic Discovery in Text Documents . 27 2.2.2 Extracting Relational Tuples from Text . 31 2.2.3 Learning Taxonomies, Thesauri, and Ontologies . 35 2.3 Semantic Annotation of Text Documents . 39 2.3.1 Manual Semantic Text Annotation . 40 2.3.2 Semi-Automated Semantic Text Annotation . 43 2.3.3 Automated Semantic Text Annotation . 47 2.4 Schema Discovery in Marked-Up Text Documents . -
Bibliography [Abiteboul and Kanellakis, 1989] Serge Abiteboul and Paris Kanellakis
507 Bibliography [Abiteboul and Kanellakis, 1989] Serge Abiteboul and Paris Kanellakis. Object identity as a query language primitive. In Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pages 159–173, 1989. [Abiteboul et al., 1995] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison Wesley Publ. Co., Reading, Massachussetts, 1995. [Abiteboul et al., 1997] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and Janet L. Wiener. The Lorel query language for semistructured data. Int. J. on Digital Libraries, 1(1):68–88, 1997. [Abiteboul et al., 2000] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web: from Relations to Semistructured Data and XML. Morgan Kaufmann, Los Altos, 2000. [Abiteboul, 1997] Serge Abiteboul. Querying semi-structured data. In Proc. of the 6th Int. Conf. on Database Theory (ICDT’97), pages 1–18, 1997. [Abrahams et al., 1996] Merryll K. Abrahams, Deborah L. McGuinness, Rich Thomason, Lori Alperin Resnick, Peter F. Patel-Schneider, Violetta Cavalli-Sforza, and Cristina Conati. NeoClassic tutorial: Version 1.0. Technical report, Artificial Intelligence Prin- ciples Research Department, AT&T Labs Research and University of Pittsburgh, 1996. Available as http://www.bell-labs.com/project/classic/papers/NeoTut/NeoTut. html. [Abrett and Burstein, 1987] Glen Abrett and Mark H. Burstein. The KREME knowledge editing environment. Int. J. of Man-Machine Studies, 27(2):103–126, 1987. [Abrial, 1974] J. R. Abrial. Data semantics. In J. W. Klimbie and K. L. Koffeman, editors, Data Base Management, pages 1–59. North-Holland Publ. Co., Amsterdam, 1974. [Achilles et al., 1991] E. Achilles, B. -
Ontology-Based Methods for Analyzing Life Science Data
Habilitation a` Diriger des Recherches pr´esent´ee par Olivier Dameron Ontology-based methods for analyzing life science data Soutenue publiquement le 11 janvier 2016 devant le jury compos´ede Anita Burgun Professeur, Universit´eRen´eDescartes Paris Examinatrice Marie-Dominique Devignes Charg´eede recherches CNRS, LORIA Nancy Examinatrice Michel Dumontier Associate professor, Stanford University USA Rapporteur Christine Froidevaux Professeur, Universit´eParis Sud Rapporteure Fabien Gandon Directeur de recherches, Inria Sophia-Antipolis Rapporteur Anne Siegel Directrice de recherches CNRS, IRISA Rennes Examinatrice Alexandre Termier Professeur, Universit´ede Rennes 1 Examinateur 2 Contents 1 Introduction 9 1.1 Context ......................................... 10 1.2 Challenges . 11 1.3 Summary of the contributions . 14 1.4 Organization of the manuscript . 18 2 Reasoning based on hierarchies 21 2.1 Principle......................................... 21 2.1.1 RDF for describing data . 21 2.1.2 RDFS for describing types . 24 2.1.3 RDFS entailments . 26 2.1.4 Typical uses of RDFS entailments in life science . 26 2.1.5 Synthesis . 30 2.2 Case study: integrating diseases and pathways . 31 2.2.1 Context . 31 2.2.2 Objective . 32 2.2.3 Linking pathways and diseases using GO, KO and SNOMED-CT . 32 2.2.4 Querying associated diseases and pathways . 33 2.3 Methodology: Web services composition . 39 2.3.1 Context . 39 2.3.2 Objective . 40 2.3.3 Semantic compatibility of services parameters . 40 2.3.4 Algorithm for pairing services parameters . 40 2.4 Application: ontology-based query expansion with GO2PUB . 43 2.4.1 Context . 43 2.4.2 Objective . -
AAAI/SSS 2008 Program - SSKI Detailed Program (Stanford University, History Building)
AAAI/SSS 2008 Program - SSKI Detailed Program (Stanford University, History Building). Register at Cummings Hall. Wednesday, March 26 8:00 AM – 9:00 AM: Registration 8:45 AM – 9:00 AM: Semantic Scientific Knowledge Integration: Welcome Deborah L. McGuinness, Peter Fox, Boyan Brodaric 9:00 AM – 10:40 AM: Session I – Integration Foundations (moderator: Peter Fox) 9:00 AM – 9:30 AM: (Oral 17) Grounding the Foundations of Ontology Mapping on the Neglected Interoperability Ambition Hamid Haidarian Shahri, James Hendler, Donald Perlis 9:30 AM – 10:00 AM: (Oral 6) Ontological bridge building – using ontologies to merge spatial datasets Catherine Dolbear, Glen Hart 10:00 AM – 10:05 AM: (Poster 4 Intro) Integrating declarative knowledge: Issues, Algorithms and Future Work Doo Soon Kim, Bruce Porter 10:05 AM – 10:10 AM: (Poster 9 Intro) Improving Semantic Integration By Learning Semantic Interpretation Rules Michael Glass, Bruce Porter 10:10 AM – 10:15 AM: (Poster 16 Intro) Integrating Relational Databases with Semantic Web Ontologies: Reasoning and Query Answering using Views Linhua Zhou, Yuxin Mao. Huajun Chen 10:15 AM – 10:40 AM: Panel on Integration Foundations 10:40 AM – 11:00 AM: Break 11:00 AM – 12:30 PM: Session II - Upper Ontologies (Moderator: Deborah McGuinness) 11:00 AM – 11:30 AM: (Oral 27) DOLCE ROCKS: Integrating Geoscience Ontologies with DOLCE Boyan Brodaric, Florian Probst 11:30 AM – 12:00 PM: (Oral 23) Towards an Ontology for Data-driven Discovery of New Materials Kwok Cheung, John Drennan, Jane Hunter 12:00 PM – 12:30 PM: Panel on Use of Upper Ontologies for Integration 12:30 PM – 2:00 PM: Lunch 2:00 PM – 3:30 PM: Session III – Workflows and Service Composition (Moderator: Boyan Brodaric) 2:00 PM – 2:30 PM: Keynote – Scientific Workflow Design for Mere Mortals Bertram Ludaescher 2:30 PM – 2:35 PM: (Poster 11 Intro) Process-based Planning for Earth Science Data Acquisition Robert Morris, Jennifer Dungan, Petr Votava, Lina Khatib 2:35 PM – 2:40 PM: (Poster 12 Intro) Machine Learning for Earth Observation Flight Planning Optimization Elif Kurklu, Robert A. -
The 8Th ACM Web Science Conference 2016
This is a repository copy of The 8th ACM Web Science Conference 2016. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/103102/ Version: Accepted Version Article: Jäschke, R. (2016) The 8th ACM Web Science Conference 2016. ACM SIGWEB Newsletter (Summer). pp. 1-7. ISSN 1931-1745 https://doi.org/10.1145/2956573.2956574 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ pdfauthor The 8th ACM Web Science Conference 2016 Robert Jaschke¨ L3S Research Center Hannover, Germany This article provides an overview of this year’s ACM Web Science Conference (WebSci’16). It was located in Hannover, Germany, and organized by L3S Research Center and the Web Science Trust. WebSci’16 attracted more than 160 researchers from very different disciplines – ranging from computer science to anthropology. -
Description Logics
Description Logics Franz Baader1, Ian Horrocks2, and Ulrike Sattler2 1 Institut f¨urTheoretische Informatik, TU Dresden, Germany [email protected] 2 Department of Computer Science, University of Manchester, UK {horrocks,sattler}@cs.man.ac.uk Summary. In this chapter, we explain what description logics are and why they make good ontology languages. In particular, we introduce the description logic SHIQ, which has formed the basis of several well-known ontology languages, in- cluding OWL. We argue that, without the last decade of basic research in description logics, this family of knowledge representation languages could not have played such an important rˆolein this context. Description logic reasoning can be used both during the design phase, in order to improve the quality of ontologies, and in the deployment phase, in order to exploit the rich structure of ontologies and ontology based information. We discuss the extensions to SHIQ that are required for languages such as OWL and, finally, we sketch how novel reasoning services can support building DL knowledge bases. 1 Introduction The aim of this section is to give a brief introduction to description logics, and to argue why they are well-suited as ontology languages. In the remainder of the chapter we will put some flesh on this skeleton by providing more technical details with respect to the theory of description logics, and their relationship to state of the art ontology languages. More detail on these and other matters related to description logics can be found in [6]. Ontologies There have been many attempts to define what constitutes an ontology, per- haps the best known (at least amongst computer scientists) being due to Gruber: “an ontology is an explicit specification of a conceptualisation” [47].3 In this context, a conceptualisation means an abstract model of some aspect of the world, taking the form of a definition of the properties of important 3 This was later elaborated to “a formal specification of a shared conceptualisation” [21]. -
Will the Semantic Web Scale?
Panel Discussion P3: Will the Semantic Web scale? New York Sheraton May 19th, 2004 Proposers: Panelists: Organizers: - Raphael Volz - Dr. Cathy Marshall - Raphael Volz - Carole Goble - Prof. Dr. Alon Y. Halevy - Daniel Oberle - Rudi Studer - Prof. Dr. Jürgen Angele - Prof. Dr. Ian Horrocks Panelist 1 Dr. Cathy Marshall Microsoft Corporation Texas A+M University Why the Semantic Web won’t scale the scaled semantic web seen as mass-market product “the Flowbee uses the suction power of your household vacuum to draw the hair up to the desired length, and then gives it a perfect cut.....every time.” Three important questions: • Will it really work? • Who needs it? • Is it safe? 3 will it work? evaluating the semantic web as metadata • compare the semantic web to a widely adopted metadata scheme like the MARC record used for library cataloging – MARC practitioners are members of a community and are trained to create metadata – MARC reduces interpretive load by careful choice of attributes, authority lists, & cataloging rules (AACR, e.g.) to constrain values – MARC records are controlled for interoperability and consistency in various ways (e.g. by clearinghouses like OCLC) – so... on-line catalog (OPAC) users know what to expect 4 will it work? evaluating the semantic web as metadata • by contrast, the semantic web is subject to the following pitfalls as it scales: – social structures for creating universal semantic web metadata are missing (local culture/practices/needs prevail) – semantic web metadata requires substantial interpretation of domain knowledge; underlying assumptions about use are highly situated – no way of ensuring interoperability, consistency, accuracy • e.g. -
3Rd NASA/IEEE Workshop on Formal Approaches to Agent-Based Systems
Proceedings 3rdNASA/IEEE Workshop on Formal Approaches to Agent-Based Systems Springer-Verlag LNCS vol. 3228 Edited by Michael G. Hinchey, James L. Rash, Walter F. Truszkowski and Christopher A. Rouff Please note: This is a complete draft of the text; the publisher will add the correct page numbers, etc. The current formatting, although not very neat, I is the way the publisher requires it from us. Preface Greenbelt, MD October 2004 Organizing Committee Mike Hinchey, NASA Goddard Space Flight Center Jim Rash, NASA Goddard Space Flight Center Walt Truszkowski, NASA Goddard Space Flight Center Chris Rouff, SAIC I- _- Contents Ecology Based Decentralized Agent Management System Maim D. Pqirakhov, VincentA. Cicirello and William C. Regli ........................ 1 From Abstract to Concrete Nomin Agent Institutions Daide Grossi and Frank Dipm ............................................................ 12 Meeting the Deadline: Why, When and How Frank Dignum, Jan Broersen, Virginia Dignurn and John-Jules Meyer ................ 30 Multi-Agent Systems Reliability, Fuzziness, and Deterrence Michel Rudnimki and H&ne Bestougefl.. ................................................ 41 Formalism Challenges of the Cougaar Model Driven Architecture Shawn A. Bohner. Boby George. Denis Gracirnin andMichael G. Hinchey .......... 58 Facilitating the Specification Capture and Transformation Process in the Development of Multi-Agent Systems Aluizio Haendchen Filho, Nuno Caminah, Edward Hermann Haeusler and Arndt von Staa.. ............................................................................ 73 Using Ontologies to Formalize Services Specifications in Multi-Agent Systems Karin Koogan Breitman, Aluizio Haendchen Filho, Edward Hermann Haeusler and Am& von Staa ............................................................................. 93 Two Formal Gas Models For Multi-Agent Sweeping and Obstacle Avoidance Wesley Ken, Diana Spears, William Spears and David Thayer ...................... 1 13 A Formal kysisof Potential Energy in a Multi-agent System William M Spears, Diana F. -
Toward an Open Knowledge Research Graph.Pdf
THE SERIALS LIBRARIAN https://doi.org/10.1080/0361526X.2019.1540272 Toward an Open Knowledge Research Graph Sören Auera and Sanjeet Mann b aPresenter; bRecorder ABSTRACT KEYWORDS Knowledge graphs facilitate the discovery of information by organizing it into Knowledge graph; scholarly entities and describing the relationships of those entities to each other and to communication; Semantic established ontologies. They are popular with search and e-commerce com- Web; linked data; scientific panies and could address the biggest problems in scientific communication, research; machine learning according to Sören Auer of the Technische Informationsbibliothek and Leibniz University of Hannover. In his NASIG vision session, Auer introduced attendees to knowledge graphs and explained how they could make scientific research more discoverable, efficient, and collaborative. Challenges include incentiviz- ing researchers to participate and creating the training data needed to auto- mate the generation of knowledge graphs in all fields of research. Change in the digital world Thank you to Violeta Ilik and the NASIG Program Planning Committee for inviting me to this conference. I would like to show you where I come from. Leibniz University of Hannover has a castle that belonged to a prince, and next to the castle is the Technische Informationsbibliothek (TIB), responsible for supporting the scientific and technology community in Germany with publications, access, licenses, and digital information services. Figure 1 is an example of a knowledge graph about TIB. The basic ingredients of a knowledge graph are entities and relationships. We are the library of Leibniz University of Hannover and we are a member of Leibniz Association (a German research association). -
The Role of Virtual Observatories and Data Frameworks in an Era of Big Data
The Role of Virtual Observatories and Data Frameworks in an Era of Big Data NIST bIG dATA June 14, 2012, Gaithersburg, MD Peter Fox (RPI and WHOI) [email protected] , @taswegian, http://tw.rpi.edu/web/person/PeterFox Tetherless World Constellation http://tw.rpi.edu and AOP&E Virtual Observatories Working premise Scientists – actually ANYONE - should be able to access a global, distributed knowledge base of scientific data that: • appears to be integrated • appears to be locally available Data intensive – volume, complexity, mode, discipline, scale, heterogeneity2 .. Technical advances From: C. Borgman, 2008, NSF Cyberlearning Report Prior to 2005, we built systems • Rough definitions – Systems have very well-define entry and exit points. A user tends to know when they are using one. Options for extensions are limited and usually require engineering – Frameworks have many entry and use points. A user often does not know when they are using one. Extension points are part of the design – Modern platforms are built on frameworks Tetherless World Constellation 4 Early days of VxOs ? VO 2 VO3 VO1 DB DB2 DB3 n DB1 … … … … 5 The Astronomy approach; data-types as a service Limited interoperability VOTable VO App VO App2 3 VO App1 Simple Image Access Protocol Simple Spectrum VO layer Access Protocol Simple Lightweight semantics Time Limited meaning, DB Access DB2 DB3 hard coded n DB1 … … … … Protocol Limited extensibility 6 VO Standards • Creation – largely technical activity • Adoption – largely cultural activity Means of conduct of research* • Induction • Deduction Theory Theory Tentative hyp. Hypothesis Pattern Observation Confirmation Observation Fundamentally though We’ve built capabilities in VOs to support induction or deduction and sometimes both, but does this really enable the breadth of science discoveries we seek in the ERA of bIG dATA? Edges? In-betweens? Discipline mashups? Accidental? … For real discovery – we need abduction! - a method of logical inference introduced by C. -
Scalable Approaches for Auditing the Completeness of Biomedical Ontologies
University of Kentucky UKnowledge Theses and Dissertations--Computer Science Computer Science 2021 Scalable Approaches for Auditing the Completeness of Biomedical Ontologies Fengbo Zheng University of Kentucky, [email protected] Author ORCID Identifier: https://orcid.org/0000-0001-5902-0186 Digital Object Identifier: https://doi.org/10.13023/etd.2021.128 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Zheng, Fengbo, "Scalable Approaches for Auditing the Completeness of Biomedical Ontologies" (2021). Theses and Dissertations--Computer Science. 105. https://uknowledge.uky.edu/cs_etds/105 This Doctoral Dissertation is brought to you for free and open access by the Computer Science at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.