Datscan, INN- Ioflupane (123I)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dopamine Reuptake Transporter (DAT) “Inverse Agonism” E Anovel 66 2 67 3 Hypothesis to Explain the Enigmatic Pharmacology of Cocaine 68 4 * 69 5 Q5 David J
NP5526_proof ■ 24 June 2014 ■ 1/22 Neuropharmacology xxx (2014) 1e22 55 Contents lists available at ScienceDirect 56 57 Neuropharmacology 58 59 60 journal homepage: www.elsevier.com/locate/neuropharm 61 62 63 64 65 1 Dopamine reuptake transporter (DAT) “inverse agonism” e Anovel 66 2 67 3 hypothesis to explain the enigmatic pharmacology of cocaine 68 4 * 69 5 Q5 David J. Heal , Jane Gosden, Sharon L. Smith 70 6 71 RenaSci Limited, BioCity, Pennyfoot Street, Nottingham NG1 1GF, UK 7 72 8 73 9 article info abstract 74 10 75 11 76 Article history: The long held view is cocaine's pharmacological effects are mediated by monoamine reuptake inhibition. 12 Available online xxx However, drugs with rapid brain penetration like sibutramine, bupropion, mazindol and tesofensine, 77 13 which are equal to or more potent than cocaine as dopamine reuptake inhibitors, produce no discernable 78 14 Keywords: subjective effects such as drug “highs” or euphoria in drug-experienced human volunteers. Moreover 79 15 Cocaine they are dysphoric and aversive when given at high doses. In vivo experiments in animals demonstrate 80 16 Dopamine reuptake inhibitor that cocaine's monoaminergic pharmacology is profoundly different from that of other prescribed 81 Dopamine releasing agent 17 monoamine reuptake inhibitors, with the exception of methylphenidate. These findings led us to 82 Dopamine transporter fi 18 Inverse agonist conclude that the highly unusual, stimulant pro le of cocaine and related compounds, eg methylphe- 83 19 DAT inverse agonist nidate, is not mediated by monoamine reuptake inhibition alone. 84 We describe the experimental findings which suggest cocaine serves as a negative allosteric 20 Novel mechanism 85 21 modulator to alter the function of the dopamine reuptake transporter (DAT) and reverse its direction of fi 86 22 transport. -
(19) United States (12) Patent Application Publication (10) Pub
US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist. -
Forensic Features of a Fatal Datura Poisoning Case During a Robbery
Forensic Science International 261 (2016) e17–e21 Contents lists available at ScienceDirect Forensic Science International jou rnal homepage: www.elsevier.com/locate/forsciint Case report Forensic features of a fatal Datura poisoning case during a robbery a, a a a a,b E. Le Garff *, Y. Delannoy , V. Mesli , V. He´douin , G. Tournel a Univ Lille, CHU Lille, UTML (EA7367), Service de Me´decine Le´gale, F-59000 Lille, France b Univ Lille, CHU Lille, Laboratoire de Toxicologie, F-59000 Lille, France A R T I C L E I N F O A B S T R A C T Article history: Datura poisonings have been previously described but remain rare in forensic practice. Here, we present Received 2 October 2015 a homicide case involving Datura poisoning, which occurred during a robbery. Toxicological results Received in revised form 28 January 2016 were obtained by second autopsy performed after one previous autopsy and full body embalmment. A Accepted 13 February 2016 35-year-old man presented with severe stomach and digestive pain, became unconscious and ultimately Available online 23 February 2016 died during a trip in Asia. A first autopsy conducted in Asia revealed no trauma, intoxication or pathology. The corpse was embalmed with methanol/formalin. A second autopsy was performed in France, and Keywords: toxicology samples were collected. Scopolamine, atropine, and hyoscyamine were found in the vitreous Forensic humor, in addition to methanol. Police investigators questioned the local travel guide, who admitted to Intoxication Datura having added Datura to a drink to stun and rob his victim. The victim’s death was attributed to disordered Homicide heart rhythm due to severe anticholinergic syndrome following fatal Datura intoxication. -
Aminothiazolones As Estrogen Related
(19) TZZ ¥__T (11) EP 2 536 716 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07D 417/06 (2006.01) C07D 417/14 (2006.01) 21.05.2014 Bulletin 2014/21 A61K 31/427 (2006.01) A61P 5/30 (2006.01) (21) Application number: 11705404.9 (86) International application number: PCT/US2011/024999 (22) Date of filing: 16.02.2011 (87) International publication number: WO 2011/103130 (25.08.2011 Gazette 2011/34) (54) AMINOTHIAZOLONES AS ESTROGEN RELATED RECEPTOR-ALPHA MODULATORS AMINOTHIAZOLONE ALS ERR-ALPHA-MODULATOREN AMINOTHIAZOLONES EN TANT QUE MODULATEURS DE RÉCEPTEUR ALPHA ASSOCIÉ AUX STROGÈNES (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • BIGNAN, Gilles GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Spring House, PA 19477 (US) PL PT RO RS SE SI SK SM TR • GAUL, Micheal Designated Extension States: Spring House, PA 19477 (US) BA ME • XU, Guozhang Spring House, PA 19477 (US) (30) Priority: 17.02.2010 US 305177 P •ZHAO,Bao- ping Spring House, PA 19477 (US) (43) Date of publication of application: 26.12.2012 Bulletin 2012/52 (74) Representative: Carpmaels & Ransford LLP One Southampton Row (73) Proprietor: Janssen Pharmaceutica, N.V. London WC1B 5HA (GB) 2340 Beerse (BE) (56) References cited: WO-A1-2008/109737 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. -
Orange Book Cumulative Supplement 6 June 2011
CUMULATIVE SUPPLEMENT 6 June 2011 APPROVED DRUG PRODUCTS WITH THERAPEUTIC EQUIVALENCE EVALUATIONS 31st EDITION Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research Office of Generic Drugs 2011 Prepared By Office of Generic Drugs Center for Drug Evaluation and Research Food and Drug Administration APPROVED DRUG PRODUCTS with THERAPEUTIC EQUIVALENCE EVALUATIONS 31st EDITION Cumulative Supplement 6 June 2011 CONTENTS PAGE 1.0 INTRODUCTION ........................................................................................................................................ iii 1.1 How to use the Cumulative Supplement ........................................................................................... iii 1.2 Cumulative Supplement Content....................................................................................................... iv 1.3 Applicant Name Changes................................................................................................................... v 1.4 Levothyroxine Sodium........................................................................................................................ v 1.5 Availability of the Edition ................................................................................................................... vi 1.6 Report of Counts for the Prescription Drug Product List .................................................................. vii 1.7 Cumulative Supplement Legend ......................................................................................................viii -
Brain Imaging
Publications · Brochures Brain Imaging A Technologist’s Guide Produced with the kind Support of Editors Fragoso Costa, Pedro (Oldenburg) Santos, Andrea (Lisbon) Vidovič, Borut (Munich) Contributors Arbizu Lostao, Javier Pagani, Marco Barthel, Henryk Payoux, Pierre Boehm, Torsten Pepe, Giovanna Calapaquí-Terán, Adriana Peștean, Claudiu Delgado-Bolton, Roberto Sabri, Osama Garibotto, Valentina Sočan, Aljaž Grmek, Marko Sousa, Eva Hackett, Elizabeth Testanera, Giorgio Hoffmann, Karl Titus Tiepolt, Solveig Law, Ian van de Giessen, Elsmarieke Lucena, Filipa Vaz, Tânia Morbelli, Silvia Werner, Peter Contents Foreword 4 Introduction 5 Andrea Santos, Pedro Fragoso Costa Chapter 1 Anatomy, Physiology and Pathology 6 Elsmarieke van de Giessen, Silvia Morbelli and Pierre Payoux Chapter 2 Tracers for Brain Imaging 12 Aljaz Socan Chapter 3 SPECT and SPECT/CT in Oncological Brain Imaging (*) 26 Elizabeth C. Hackett Chapter 4 Imaging in Oncological Brain Diseases: PET/CT 33 EANM Giorgio Testanera and Giovanna Pepe Chapter 5 Imaging in Neurological and Vascular Brain Diseases (SPECT and SPECT/CT) 54 Filipa Lucena, Eva Sousa and Tânia F. Vaz Chapter 6 Imaging in Neurological and Vascular Brain Diseases (PET/CT) 72 Ian Law, Valentina Garibotto and Marco Pagani Chapter 7 PET/CT in Radiotherapy Planning of Brain Tumours 92 Roberto Delgado-Bolton, Adriana K. Calapaquí-Terán and Javier Arbizu Chapter 8 PET/MRI for Brain Imaging 100 Peter Werner, Torsten Boehm, Solveig Tiepolt, Henryk Barthel, Karl T. Hoffmann and Osama Sabri Chapter 9 Brain Death 110 Marko Grmek Chapter 10 Health Care in Patients with Neurological Disorders 116 Claudiu Peștean Imprint 126 n accordance with the Austrian Eco-Label for printed matters. -
Carbon-I I-D-Threo-Methylphenidate Binding to Dopamine Transporter in Baboon Brain
Carbon-i i-d-threo-Methylphenidate Binding to Dopamine Transporter in Baboon Brain Yu-Shin Ding, Joanna S. Fowler, Nora D. Volkow, Jean Logan, S. John Gatley and Yuichi Sugano Brookhaven National Laboratory, Upton, New York; and Department of Psychiatry, SUNY Stony Brook@Stony Brook@NY children (1). MP is also used to treat narcolepsy (2). The The more active d-enantiomer of methyiphenidate (dI-threo psychostimulant properties of MP have been linked to its methyl-2-phenyl-2-(2-piperidyl)acetate, Ritalin)was labeled with binding to a site on the dopamine transporter, resulting in lic (t1,@:20.4 mm) to characterize its binding, examine its spec inhibition of dopamine reuptake and enhanced levels of ificftyfor the dopamine transporter and evaluate it as a radio synaptic dopamine. tracer forthe presynapticdopaminergicneuron. Methods PET We have developed a rapid synthesis of [11C]dl-threo studies were canied out inthe baboon. The pharmacokinetics of methylphenidate ([“C]MP)to examine its pharmacokinet r1c]d-th@O-msth@ha@idate @f'1C]d-thmo-MP)weremeasured ics and pharmacological profile in vivo and to evaluate its and compared with r1cY-th@o-MP and with fts racemate ff@1C]fl-thmo-meth@1phenidate,r1c]MP). Nonradioact,ve meth suitability as a radiotracer for the presynaptic dopaminergic ylphenidate was used to assess the reveralbilityand saturability neuron (3,4). These first PET studies of MP in the baboon of the binding. GBR 12909, 3@3-(4-iodophenyI)tropane-2-car and human brain demonstrated the saturable [1‘C]MP boxylic acid methyl ester (fi-Cfl), tomoxetine and citalopram binding to the dopamine transporter in the baboon brain were used to assess the binding specificity. -
Radiotracers for SPECT Imaging: Current Scenario and Future Prospects
Radiochim. Acta 100, 95–107 (2012) / DOI 10.1524/ract.2011.1891 © by Oldenbourg Wissenschaftsverlag, München Radiotracers for SPECT imaging: current scenario and future prospects By S. Adak1,∗, R. Bhalla2, K. K. Vijaya Raj1, S. Mandal1, R. Pickett2 andS.K.Luthra2 1 GE Healthcare Medical Diagnostics, John F Welch Technology Center, Bangalore, India 560066 2 GE Healthcare Medical Diagnostics, The Grove Centre, White Lion Road, Amersham, HP7 9LL, UK (Received October 4, 2010; accepted in final form July 18, 2011) Nuclear medicine / 99m-Technetium / 123-Iodine / ton emission computed tomography (SPECT or less com- Oncological imaging / Neurological imaging / monly known as SPET) and positron emission tomogra- Cardiovascular imaging phy (PET). Both techniques use radiolabeled molecules to probe molecular processes that can be visualized, quanti- fied and tracked over time, thus allowing the discrimination Summary. Single photon emission computed tomography of healthy from diseased tissue with a high degree of con- (SPECT) has been the cornerstone of nuclear medicine and today fidence. The imaging agents use target-specific biological it is widely used to detect molecular changes in cardiovascular, processes associated with the disease being assessed both at neurological and oncological diseases. While SPECT has been the cellular and subcellular levels within living organisms. available since the 1980s, advances in instrumentation hardware, The impact of molecular imaging has been on greater under- software and the availability of new radiotracers that are creating a revival in SPECT imaging are reviewed in this paper. standing of integrative biology, earlier detection and charac- The biggest change in the last decade has been the fusion terization of disease, and evaluation of treatment in human of CT with SPECT, which has improved attenuation correction subjects [1–3]. -
Radiopharmaceuticals and Contrast Media – Oxford Clinical Policy
UnitedHealthcare® Oxford Clinical Policy Radiopharmaceuticals and Contrast Media Policy Number: RADIOLOGY 034.19 T0 Effective Date: January 1, 2021 Instructions for Use Table of Contents Page Related Policies Coverage Rationale ....................................................................... 1 • Cardiology Procedures Requiring Prior Definitions .................................................................................... 10 Authorization for eviCore Healthcare Arrangement Prior Authorization Requirements .............................................. 10 • Radiation Therapy Procedures Requiring Prior Applicable Codes ........................................................................ 10 Authorization for eviCore Healthcare Arrangement Description of Services ............................................................... 13 • Radiology Procedures Requiring Prior Authorization References ................................................................................... 13 for eviCore Healthcare Arrangement Policy History/Revision Information ........................................... 14 Instructions for Use ..................................................................... 14 Coverage Rationale eviCore healthcare administers claims on behalf of Oxford Health Plans for the following services that may be billed in conjunction with radiopharmaceuticals and/or contrast media: • Radiology Services: Refer to Radiology Procedures Requiring Prior Authorization for eviCore Healthcare Arrangement for additional information. -
Toxicology Solutions
Toxicology Solutions Contents Biochip Array Technology Overview 04 Benefits 05 Testing Process 06 The Evidence Series 08 Evidence+ 10 Evidence 12 Evidence Investigator 14 Evidence MultiSTAT 16 Matrices 18 Test Menu 20 Customisable Test Menu 24 Catalogue Numbers 26 ELISA 28 Cross Reactivity 30 Technical Support 37 Ordering Information 38 Introduction Randox Toxicology aim to minimise laboratory workflow constraints whilst maximising the scope of quality drug detection. We are the primary manufacturer of Biochip Array Technology, ELISAs, and automated systems for forensic, clinical and workplace toxicology. Biochip Array Technology Moving away from traditional single analyte assays, Biochip Array Technology (BAT) boasts cutting-edge multiplex testing capabilities providing rapid and accurate drug detection from a single sample. Based on ELISA principles, the Biochip is a solid state device with discrete test regions onto which antibodies, specific to different drug compounds, are immobilised and stabilised. Competitive chemiluminescent immunoassays are then employed, offering a highly sensitive screen. Designed to work across a wide variety of matrices, this revolutionary multi- analyte testing platform allows toxicologists to achieve a complete immunoassay profile from the initial screening phase. Offering the most advanced screening technology on the market, Randox Toxicology has transformed the landscape of drugs of abuse (DoA) testing. Our unrivalled toxicology test menu is capable of detecting over 500 drugs and drug metabolites. 4 Benefits Simultaneous detection Multiplex testing facilitates simultaneous screening of various drugs and drug metabolites from a single sample. Accurate testing Biochip Array Technology has a proven high standard of accurate test results with CVs typically <10%. Small sample volume As little as 6μl of sample produces a complete immunoassay profile, leaving more for confirmatory testing. -
The Phytochemistry of Cherokee Aromatic Medicinal Plants
medicines Review The Phytochemistry of Cherokee Aromatic Medicinal Plants William N. Setzer 1,2 1 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected]; Tel.: +1-256-824-6519 2 Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA Received: 25 October 2018; Accepted: 8 November 2018; Published: 12 November 2018 Abstract: Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines. Keywords: Cherokee; Native American; traditional herbal medicine; chemical constituents; pharmacology 1. Introduction Natural products have been an important source of medicinal agents throughout history and modern medicine continues to rely on traditional knowledge for treatment of human maladies [1]. Traditional medicines such as Traditional Chinese Medicine [2], Ayurvedic [3], and medicinal plants from Latin America [4] have proven to be rich resources of biologically active compounds and potential new drugs. -
Monoamine Reuptake Inhibitors in Parkinson's Disease
Hindawi Publishing Corporation Parkinson’s Disease Volume 2015, Article ID 609428, 71 pages http://dx.doi.org/10.1155/2015/609428 Review Article Monoamine Reuptake Inhibitors in Parkinson’s Disease Philippe Huot,1,2,3 Susan H. Fox,1,2 and Jonathan M. Brotchie1 1 Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8 2Division of Neurology, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, University of Toronto, 399BathurstStreet,Toronto,ON,CanadaM5T2S8 3Department of Pharmacology and Division of Neurology, Faculty of Medicine, UniversitedeMontr´ eal´ and Centre Hospitalier de l’UniversitedeMontr´ eal,´ Montreal,´ QC, Canada Correspondence should be addressed to Jonathan M. Brotchie; [email protected] Received 19 September 2014; Accepted 26 December 2014 Academic Editor: Maral M. Mouradian Copyright © 2015 Philippe Huot et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The motor manifestations of Parkinson’s disease (PD) are secondary to a dopamine deficiency in the striatum. However, the degenerative process in PD is not limited to the dopaminergic system and also affects serotonergic and noradrenergic neurons. Because they can increase monoamine levels throughout the brain, monoamine reuptake inhibitors (MAUIs) represent potential therapeutic agents in PD. However, they are seldom used in clinical practice other than as antidepressants and wake-promoting agents. This review article summarises all of the available literature on use of 50 MAUIs in PD. The compounds are divided according to their relative potency for each of the monoamine transporters.