Evaluating Singleplayer and Multiplayer in Human Computation Games

Total Page:16

File Type:pdf, Size:1020Kb

Evaluating Singleplayer and Multiplayer in Human Computation Games Evaluating Singleplayer and Multiplayer in Human Computation Games Kristin Siu Mahew Guzdial Mark O. Riedl School of Interactive Computing School of Interactive Computing School of Interactive Computing Georgia Institute of Technology Georgia Institute of Technology Georgia Institute of Technology [email protected] [email protected] [email protected] ABSTRACT alternative to traditional crowdsourcing platforms while providing Human computation games (HCGs) can provide novel solutions to potentially-entertaining experiences for their participants. intractable computational problems, help enable scientic break- However, the process of developing a human computation game throughs, and provide datasets for articial intelligence. However, is oen daunting. Choosing to build a game requires signicant our knowledge about how to design and deploy HCGs that appeal time and investment, especially for scientists and task providers to players and solve problems eectively is incomplete. We present who may not have experience designing and developing games. an investigatory HCG based on Super Mario Bros. We used this Complicating this is the fact that, unlike other games designed game in a human subjects study to investigate how dierent social primarily for entertainment, HCGs serve dual purposes. First, they conditions—singleplayer and multiplayer—and scoring mechanics— must provide an engaging player experience. Second, they must collaborative and competitive—aect players’ subjective experi- solve the corresponding human computation task eectively. ese ences, accuracy at the task, and the completion rate. In doing so, two design goals reect the preferences of players and the needs of we demonstrate a novel design approach for HCGs, and discuss the human computation task providers (e.g., scientists or researchers) benets and tradeos of these mechanics in HCG design. respectively. Ideally, HCGs aord both. Optimizing only for an engaging player experience may result in a game that does not prop- CCS CONCEPTS erly or eectively solve the underlying task. However, optimizing only for solving the underlying task may result in an uninteresting •Human-centered computing →Computer supported coop- game that will not aract or retain players, thus yielding few or erative work; •Applied computing →Computer games; poor task results. KEYWORDS When executed poorly, these games garner a reputation for be- ing unengaging for players and ineective for task providers [28]. human computation games; multiplayer; singleplayer; collabora- is is in spite of evidence that HCGs are an eective interface tion; competition; games with a purpose; game design for crowdsourced work, even when compared directly with other ACM Reference format: crowdsourcing platforms [13]. Understanding how gameplay me- Kristin Siu, Mahew Guzdial, and Mark O. Riedl. 2017. Evaluating Single- chanics aect both the player experience and completion of the player and Multiplayer in Human Computation Games. In Proceedings of human computation task is imperative in order to create eec- FDG’17, Hyannis, MA, USA, August 14-17, 2017, 10 pages. tive games. However, current HCG design is generally limited to DOI: 10.1145/3102071.3102077 templates and anecdotal examples of successful games, lacking generalized design knowledge or guidelines about how to develop 1 INTRODUCTION games for new kinds of tasks and changing player audiences. We need a beer understanding of how to design and develop Human computation games (HCGs) have been used to tackle vari- human computation games. is means exploring the HCG design ous computationally-intractable problems, such as classifying in- space and understanding how the elements of these games aect formation and discovering scientic solutions, by leveraging the both the player experience and completion of the underlying task. skills of human players. ese games, also known as Games with Specically, we want to understand and focus on game mechanics, a Purpose, scientic discovery games, or citizen science games, the rules that dictate what interactions players can have with the ask players to complete crowdsourcing problems or tasks by inter- game, as these are directly related to both the player experience acting with the mechanics of a game. e successful solutions to and the process of solving the human computation task. problems such as image labeling, protein folding, and more have In this paper, we explore the question of how human computation helped to demonstrate how games can be considered an eective games could benet from co-located multiplayer game mechanics Permission to make digital or hard copies of all or part of this work for personal or through a study comparing mechanical variations. Many mechanics classroom use is granted without fee provided that copies are not made or distributed in HCGs are designed to facilitate consensus and agreement as a for prot or commercial advantage and that copies bear this notice and the full citation on the rst page. Copyrights for components of this work owned by others than the way to verify the results (e.g., two players providing answers to author(s) must be honored. Abstracting with credit is permied. To copy otherwise, or the same problem and geing rewarded with in-game points if republish, to post on servers or to redistribute to lists, requires prior specic permission they agree). Traditionally, HCG players are isolated (i.e., prohibited and/or a fee. Request permissions from [email protected]. FDG’17, Hyannis, MA, USA from real-time communication during play) to prevent collusion © 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM. that may impact results. On the other hand, co-located multiplayer 978-1-4503-5319-9/17/08...$15.00 experiences have been shown to be strongly-engaging for players DOI: 10.1145/3102071.3102077 FDG’17, August 14-17, 2017, Hyannis, MA, USA Kristin Siu, Mahew Guzdial, and Mark O. Riedl [32], including in domains such as education (where games are While human computation games have been shown to be an intended to both teach and engage) [12, 22]. Ultimately, we want eective interface for solving crowdsourcing tasks, current design to understand if co-located gameplay mechanics, based on their knowledge for developing these games remains limited. Commonly- success in other dual-purpose domains, might generalize to HCGs utilized guidelines for designing these games are oen based on while verifying if, and how, collusion may negatively impact human templates or anecdotal examples from successful games. ese computation task results. include von Ahn and Dabbish’s three game templates for classica- To beer examine these questions, we built a human compu- tion and labeling tasks [31] derived from their early successes with tation game based on the classic game Super Mario Bros. Using HCGs, and the design of the game mechanics in the protein-folding this game, we ran a user study to compare singleplayer and co- game Foldit [4]. However, it is not clear how these generalize to located (i.e., local) multiplayer gameplay experiences. Within the new kinds of tasks or changing player audiences. multiplayer experience, we also compare two variants: one using a Furthermore, there are no guidelines for ensuring game me- collaborative scoring system and one using a competitive scoring chanics will guarantee both an engaging player experience and system. successful completion of the task. Some researchers claim that hu- We evaluate these variations in gameplay mechanics using a hu- man computation games should use mechanics that directly map to man computation task with a known solution to see how changes in the process of solving the underlying task [11, 28], while others ar- mechanics aect the aspects of the player experience and the results gue that incorporating familiar or recognizable mechanics popular of the human computation task (which we refer to as task comple- in digital games will keep players more engaged [15]. is ongoing tion). We also report on the results of a survey asking experts in debate highlights the challenge of designing HCGs that optimize HCGs for their opinions and perceptions of these specic mechan- for both the player experience and the human computation task. ics. Using our study results and reported expert opinions, we high- light and discuss four design implications of our work—adaptation 2.2 Singleplayer and Multiplayer of successful gameplay mechanics to HCGs, use of direct player Researchers have studied the eects of singleplayer and multiplayer communication, synchronous competitive play, and synchronous in the context of mainstream digital games, but not human compu- collaborative play—and how these impact the player experience tation games. e gameplay of most HCGs is limited to singleplayer and the task completion. or networked multiplayer experiences; HCG players are generally e remainder of this paper is broken down as follows. First, not allowed to directly communicate during gameplay to avoid we review relevant work in the space of HCGs, game design, and potential collusion [31]. studies of player behavior. Next, we describe our Super Mario Bros.- Research on co-location in games validates that players respond inspired HCG, Gwario, and the methodology of our study. We then dierently when playing with or against other human players, present our results of the study, and report on expert opinions compared with singleplayer experiences or play against an articial on relevant HCG mechanics. is is followed by discussion of agent.
Recommended publications
  • The Poetics of Reflection in Digital Games
    © Copyright 2019 Terrence E. Schenold The Poetics of Reflection in Digital Games Terrence E. Schenold A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2019 Reading Committee: Brian M. Reed, Chair Leroy F. Searle Phillip S. Thurtle Program Authorized to Offer Degree: English University of Washington Abstract The Poetics of Reflection in Digital Games Terrence E. Schenold Chair of the Supervisory Committee: Brian Reed, Professor English The Poetics of Reflection in Digital Games explores the complex relationship between digital games and the activity of reflection in the context of the contemporary media ecology. The general aim of the project is to create a critical perspective on digital games that recovers aesthetic concerns for game studies, thereby enabling new discussions of their significance as mediations of thought and perception. The arguments advanced about digital games draw on philosophical aesthetics, media theory, and game studies to develop a critical perspective on gameplay as an aesthetic experience, enabling analysis of how particular games strategically educe and organize reflective modes of thought and perception by design, and do so for the purposes of generating meaning and supporting expressive or artistic goals beyond amusement. The project also provides critical discussion of two important contexts relevant to understanding the significance of this poetic strategy in the field of digital games: the dynamics of the contemporary media ecology, and the technological and cultural forces informing game design thinking in the ludic century. The project begins with a critique of limiting conceptions of gameplay in game studies grounded in a close reading of Bethesda's Morrowind, arguing for a new a "phaneroscopical perspective" that accounts for the significance of a "noematic" layer in the gameplay experience that accounts for dynamics of player reflection on diegetic information and its integral relation to ergodic activity.
    [Show full text]
  • Learning Board Game Rules from an Instruction Manual Chad Mills A
    Learning Board Game Rules from an Instruction Manual Chad Mills A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 2013 Committee: Gina-Anne Levow Fei Xia Program Authorized to Offer Degree: Linguistics – Computational Linguistics ©Copyright 2013 Chad Mills University of Washington Abstract Learning Board Game Rules from an Instruction Manual Chad Mills Chair of the Supervisory Committee: Professor Gina-Anne Levow Department of Linguistics Board game rulebooks offer a convenient scenario for extracting a systematic logical structure from a passage of text since the mechanisms by which board game pieces interact must be fully specified in the rulebook and outside world knowledge is irrelevant to gameplay. A representation was proposed for representing a game’s rules with a tree structure of logically-connected rules, and this problem was shown to be one of a generalized class of problems in mapping text to a hierarchical, logical structure. Then a keyword-based entity- and relation-extraction system was proposed for mapping rulebook text into the corresponding logical representation, which achieved an f-measure of 11% with a high recall but very low precision, due in part to many statements in the rulebook offering strategic advice or elaboration and causing spurious rules to be proposed based on keyword matches. The keyword-based approach was compared to a machine learning approach, and the former dominated with nearly twenty times better precision at the same level of recall. This was due to the large number of rule classes to extract and the relatively small data set given this is a new problem area and all data had to be manually annotated.
    [Show full text]
  • Games and Rules
    Requirements for a General Game Mechanics Framework Imre Hofmann In this article I will apply a meta-theoretical approach to the question of how a game mechanics framework has to be designed in order to fulfil its task of ade- quately depicting or modeling the reality of game mechanics. I had two aims in mind when starting my research. I studied existing game theories and three game mechanics theories in particular in order to evaluate the state of the art of game mechanics theory. (Descriptive aim) The second aim followed on from these studies. With the results of my research I wanted to define the attributes a com- prehensive and general game mechanics theory might or – rather – needed to have. What are the general properties that such a theory should display? (Norma- tive aim) In my opinion the underlying mechanics of a game may be regarded in some way as its centerpiece. The reasons for this shall become clear over the course of this article. To begin with, I would like to make two terminological clarifications. First, I am not going to examine different game mechanics and typologies or categories of game mechanics. Instead, I will take a theoretical step backwards, so to speak, on the meta-level by analyzing and comparing different theories of game me- chanics (which themselves suggest categories and typologies). Secondly, I will use the expressions “game mechanics theory” “(game mechanics) framework” and “(game mechanics) model” synonymously. In my research I focused mainly on the following three key theories of game mechanics: 1. Carlo Fabricatore’s Gameplay and Game Mechanics Design (2007) 2.
    [Show full text]
  • Week 3 Day 1: Designing Games with Conditionals
    INTRODUCTION | CYBER ARCADE: PROGRAMMING AND MAKING WITH MICRO:BIT 3-1 | ELEMENTARY WEEK 3 DAY 1: DESIGNING GAMES WITH CONDITIONALS INTRODUCTION This week makers continue to use the Micro:bit microcontroller and begin coding and designing interactive games and art. ESSENTIAL QUESTIONS • How can we use code and math to create a fun game? • What is a conditional statement? • How do artists, engineers, and makers solve problems when they’re working? LEARNING OUTCOMES 1. Learn how to use code and conditionals to create a game. 2. Engage in project-based learning through problem-solving and troubleshooting by creating a game using a Micro:bit microcontroller and code. TEACHERLESSON | RESOURCE CYBER ARCADE: | CYBER PROGRAMMING ARCADE: PROGRAMMING AND MAKING AND WITH MAKING MICRO:BIT WITH MICRO:BIT 3-23-2 | | ELEMENTARY ELEMENTARY VOCABULARY Conditional: Set of rules performed if a certain condition is met Game mechanics: Basic actions, processes, visuals, and control mechanisms that are used to make a game Game designer: Person responsible for designing game storylines, plots, objectives, scenarios, the degree of difficulty, and character development Game engineer: Specialized software engineers who design and program video games Troubleshooting: Using resources to solve issues as they arise TEACHERLESSON | RESOURCE CYBER ARCADE: | CYBER PROGRAMMING ARCADE: PROGRAMMING AND MAKING AND WITH MAKING MICRO:BIT WITH MICRO:BIT 3-33-3 | | ELEMENTARY ELEMENTARY MATERIALS LIST EACH PAIR OF MAKERS NEEDS: • Micro:bit microcontroller • Laptop with internet connection • USB to micro-USB cord • USB flash drive • External battery pack • AAA batteries (2) • Notebook TEACHER RESOURCE | CYBER ARCADE: PROGRAMMING AND MAKING WITH MICRO:BIT 3-4 | ELEMENTARY They can also use the Troubleshooting Tips, search the internet for help, TEACHER PREP WORK or use the tutorial page on the MakeCode website.
    [Show full text]
  • Computer Game Flow Design, ACM Computers in Entertainment, 4, 1
    LJMU Research Online Taylor, MJ, Baskett, M, Reilly, D and Ravindran, S Game theory for computer games design http://researchonline.ljmu.ac.uk/id/eprint/7332/ Article Citation (please note it is advisable to refer to the publisher’s version if you intend to cite from this work) Taylor, MJ, Baskett, M, Reilly, D and Ravindran, S (2017) Game theory for computer games design. Games and Culture, 14 (7-8). pp. 843-855. ISSN 1555-4139 LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain. The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription. For more information please contact [email protected] http://researchonline.ljmu.ac.uk/ Game theory for computer games design Abstract Designing and developing computer games can be a complex activity that may involve professionals from a variety of disciplines. In this article, we examine the use of game theory for supporting the design of game play within the different sections of a computer game, and demonstrate its application in practice via adapted high-level decision trees for modelling the flow in game play and payoff matrices for modelling skill or challenge levels.
    [Show full text]
  • Games and Rules
    Games as a Special Zone Motivation Mechanics of Games René Bauer PLAY AS POSSIBILITY SPACE In games, sheep might speak, mountains fly, spaces move, moons disappear and faces morph; men can shrink, avatars can be moved, time rewound or frogs blown up. What would be regarded as delusional laws, imaginations and crazy ideas in other areas, as described for example in Dr. Daniel Schreber’s 1903 book “Denkwürdigkeiten eines Nervenkranken” (Memories of a Neuropath), is a tangible and interactive reality in many games. It is the special zone in which games operate that makes these divergent rules and laws culturally possible. Huizinga identified a number of playful special zones such as arenas, card tables, “Magic Circles”, stages or temples. They are all playgrounds. “The arena, the card-table, the magic circle, the temple, the stage, the screen, the tennis court, the court of justice, etc, are all in form and function play-grounds, i.e. forbidden spots, isolated, hedged round, hallowed, within which special rules obtain. All are tempo- rary worlds within the ordinary world, dedicated to the performance of an act apart.” (Huizinga 1955: 5) Thus, games (temporarily) position themselves against the ‘analog’ world with its fixed continuous rules that are based on atoms and their properties. The ana- log space surrounding us is bijective and continuous. It comes with three spatial dimensions, a continuous time and various resulting ‘laws’. The same applies to social and cultural conditions, which can also override or subvert games. This analog space and its rules become a complex, special set of rules in the much 36 | René Bauer more powerful possibility space of the games – or in other words: the analog space turns into another one of many game systems.
    [Show full text]
  • Security in Online Gaming Bachelor Thesis Information Science
    RADBOUD UNIVERSITY NIJMEGEN Security in online gaming Bachelor Thesis Information Science Rens van Summeren January 26, 2011 Online gaming has gone through an explosive growth in popularity during the last decade, and continues to grow at a great speed. With this growth in popularity and thus in the amount of players, the need for security also becomes increasingly clear. This thesis aims to provide a definition of security in online gaming, as well as security analysis for the various threats with examples and countermeasures. The goal is to help players and game developers assess online gaming security, and inform security experts about existing issues. CONTENTS 1 Introduction ................................................................................................................................... 1 Definition ............................................................................................................................... 1 Preface .................................................................................................................................. 1 2 Online Gaming ............................................................................................................................... 2 2.1 Why Look at the Security of Online Games? ................................................................... 2 2.2 Types of Online Games and Business Models ................................................................. 2 2.3 Massive Multiplayer Online Games ................................................................................
    [Show full text]
  • Learning Mechanics and Game Mechanics Under the Perspective of Self-Determination Theory to Foster Motivation in Digital Game Based Learning
    Proulx, J. N., Romero, M., & Arnab, S. (2016). Learning Mechanics and Game Mechanics Under the Perspective of Self-Determination Theory to Foster Motivation in Digital Game Based Learning. Simulation & Gaming, 1046878116674399. Learning Mechanics and Game Mechanics Under the Perspective of Self-Determination Theory to Foster Motivation in Digital Game Based Learning. Jean-Nicolas Proulx1, Margarida Romero1, Sylvester Arnab2 Abstract Background: Using digital games for educational purposes has been associated with higher levels of motivation among learners of different educational levels. However, the underlying psychological factors involved in digital game based learning (DGBL) have been rarely analyzed considering self-determination theory (SDT, Ryan & Deci, 2000b); the relation of SDT with the flow experience (Csikszentmihalyi, 1990) has neither been evaluated in the context of DGBL. Aim: This article evaluates DGBL under the perspective of SDT in order to improve the study of motivational factors in DGBL. Results: In this paper, we introduce the LMGM-SDT theoretical framework, where the use of DGBL is analyzed through the Learning Mechanics and Game Mechanics mapping model (LM-GM, Arnab et al., 2015) and its relation with the components of the SDT. The implications for the use of DGBL in order to promote learners’ motivation are also discussed. Keywords Digital game based learning, DGBL, education, flow, game mechanics, learning mechanics, LM-GM, LMGM-SDT, motivation, self-determination theory, SDT. 1 Université Laval, Québec, Canada 2 Disruptive Media Learning Lab, Coventry University, UK Corresponding Author: Jean-Nicolas Proulx, Department of Teaching and Learning Studies, Université Laval, Québec, Canada. Email : [email protected] Educational technologies and motivation One of the persistent educational myths is that technology fosters learners’ motivation by itself (Kleiman, 2000).
    [Show full text]
  • Florin Gheorghe Filip Constantin-Bălă Zamfirescu Cristian Ciurea Computer‐ Supported Collaborative Decision‐ Making Automation, Collaboration, & E-Services
    Automation, Collaboration, A C E S & E-Services Florin Gheorghe Filip Constantin-Bălă Zamfirescu Cristian Ciurea Computer‐ Supported Collaborative Decision‐ Making Automation, Collaboration, & E-Services Volume 4 Series editor Shimon Y. Nof, Purdue University, West Lafayette, USA e-mail: [email protected] About this Series The Automation, Collaboration, & E-Services series (ACES) publishes new devel- opments and advances in the fields of Automation, collaboration and e-services; rapidly and informally but with a high quality. It captures the scientific and engineer- ing theories and techniques addressing challenges of the megatrends of automation, and collaboration. These trends, defining the scope of the ACES Series, are evident with wireless communication, Internetworking, multi-agent systems, sensor networks, and social robotics – all enabled by collaborative e-Services. Within the scope of the series are monographs, lecture notes, selected contributions from spe- cialized conferences and workshops. More information about this series at http://www.springer.com/series/8393 Florin Gheorghe Filip • Constantin-Bălă Zamfirescu Cristian Ciurea Computer-Supported Collaborative Decision-Making 123 Florin Gheorghe Filip Cristian Ciurea Information Science and Technology Department of Economic Informatics Section, INCE and BAR and Cybernetics The Romanian Academy ASE Bucharest—The Bucharest University Bucharest of Economic Studies Romania Bucharest Romania Constantin-Bălă Zamfirescu Faculty of Engineering, Department of Computer Science and Automatic Control Lucian Blaga University of Sibiu Sibiu Romania ISSN 2193-472X ISSN 2193-4738 (electronic) Automation, Collaboration, & E-Services ISBN 978-3-319-47219-5 ISBN 978-3-319-47221-8 (eBook) DOI 10.1007/978-3-319-47221-8 Library of Congress Control Number: 2016953309 © Springer International Publishing AG 2017 This work is subject to copyright.
    [Show full text]
  • Classification of Games for Computer Science Education
    Classification of Games for Computer Science Education Peter Drake Lewis & Clark College Overview Major Categories Issues in the CS Classroom Resources Major Categories Classical Abstract Games Children’s Games Family Games Simulation Games Eurogames (”German Games”) Classical Abstract Games Simple rules Often deep strategy Backgammon, Bridge, Checkers, Chess, Go, Hex, Mancala, Nine Men’s Morris, Tic-Tac-Toe Children’s Games Simple rules Decisions are easy and rare Candyland, Cootie, Go Fish, Snakes and Ladders, War Family Games Moderately complex rules Often a high luck factor Battleship, Careers, Clue, Game of Life, Risk, Scrabble, Sorry, Monopoly, Trivial Pursuit, Yahtzee Simulation Games Extremely complex rules Theme is usually war or sports Blood Bowl, Panzer Blitz, Star Fleet Battles, Strat-o-Matic Baseball, Twilight Imperium, Wizard Kings Eurogames (”German Games”) Complexity comparable to family games Somewhat deeper strategy Carcassonne, El Grande, Puerto Rico, Ra, Samurai, Settlers of Catan, Ticket to Ride Issues in the CS Classroom Game mechanics Programming issues Cultural and thematic issues Games for particular topics Game Mechanics Time to play Number of players Number of piece types Board morphology Determinism Programming Issues Detecting or enumerating legal moves Hidden information Artificially intelligent opponent Testing Proprietary games Cultural and Thematic Issues Students may be engaged by games from their own culture Theme may attract or repel various students Religious objections A small number of students just don’t like games Games for Particular Topics Quantitative reasoning: play some games! Stacks and queues: solitaire card games Sets: word games Graphs: complicated boards OOP: dice, cards, simulations Networking: hidden information, multiplayer games AI: classical abstract games Resources http://www.boardgamegeek.com http://www.funagain.com International Computer Games Association, http://www.cs.unimaas.nl/ icga/.
    [Show full text]
  • Towards Swift and Accurate Collusion Detection
    Towards Swift and Accurate Collusion Detection Jouni Smed Timo Knuutila Harri Hakonen Department of Information Technology FI-20014 University of Turku, Finland {jouni.smed, timo.knuutila, harri.hakonen}@utu.fi ABSTRACT on how the model presented in this paper helps the research and what are the steps for future work. Collusion is covert co-operation between participants of a game. It poses serious technical, game design, and com- CLASSIFYING COLLUSION munal problems to multiplayer games that do not allow the players to share knowledge or resources with other players. When the players of a game decide to collude, they make a In this paper, we review different types of collusion and intro- agreement on the terms of collusion [7]. This agreement has duce two measures for collusion detection. We also propose four components: a model and a simple game, implemented in a testbench, for studying collusion detection. Consent How do the players agree on collusion? • Express collusion: The colluders make an explicit INTRODUCTION hidden agreement on co-operation before or dur- When the rules of a game forbid the players to co-operate, ing the game. collusion any attempt of covert co-operation is called . The • Tacit collusion: The colluders have made no players who are colluding (i.e., whose goal is to win together agreement but act towards a mutually beneficial colluders or to help one another to win) are called . Collusion goal (e.g., try to force the weakest player out of poses a major threat to games that assume that the players the game). aim at individual goals individually, because many types of collusion are impossible to prevent in real time.
    [Show full text]
  • How Does the Complexity of Game Mechanics Affect the Understanding of the Gameplay in Serious Games
    How Does the Complexity of Game Mechanics Affect the Understanding of the Gameplay in Serious Games SUBMITTED IN PARTIAL FULLFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE NAVDEEP SINGH 10004603 MASTER INFORMATION STUDIES GAME STUDIES FACULTY OF SCIENCE UNIVERSITY OF AMSTERDAM August 28, 2017 1st Supervisor 2nd Supervisor Dr. Frank Nack Mr. Daniel Buzzo ISLA, UvA ISLA, UvA How Does the Complexity of Game Mechanics Affect the Understanding of the Gameplay in Serious Games Navdeep Singh University of Amsterdam 10004603 Supervisor: Dr. F. Nack [email protected] ABSTRACT However, the rise of serious games was met with failure as 80 In this paper it is hypothesized that the understanding of percent of the serious games predicted not to work by 2014 gameplay is affected by the complexity of game mechanics due to poor design [3]. Research also showed that serious in serious games. Complex game mechanics are considered games are effective in terms of learning and retention, but here as complex systems consisting of smaller mechanics that not more motivational than conventional instruction meth- influence each other. In this article it is investigated if the ods [1]. complexity of the game mechanics in Minecraft1 influence the understanding of the gameplay within the context of Serious games try to tackle a problem by either designing a a serious game that addresses the teaching of digital root game that intrinsically merges the gameplay with the prob- in math. Two versions of a Minecraft custom map will be lem domain (mainly tasks) or design gameplay that incor- created and tested. This custom map will be known as Num- porates the addressed problem in some loose metaphorical bers Prison, and there will be a complex and a simple ver- manner.
    [Show full text]