Hydrogenation Catalysis Based on Functional Pincer Ligands Lukas Alig‡, Maximilian Fritz‡, Sven Schneider*

Total Page:16

File Type:pdf, Size:1020Kb

Hydrogenation Catalysis Based on Functional Pincer Ligands Lukas Alig‡, Maximilian Fritz‡, Sven Schneider* This document is the Accepted Manuscript version of a Published Work that appeared in final form in Chemical Reviews, copyright © 2018 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see DOI: 10.1021/acs.chemrev.8b00555. First-Row Transition Metal (De)hydrogenation Catalysis based on Functional Pincer Ligands Lukas Alig‡, Maximilian Fritz‡, Sven Schneider* Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077 Göttingen, Germany ABSTRACT: The use of 3d metals in de-/hydrogenation catalysis has emerged as a competitive field with respect to ‘tradi- tional’ precious metal catalyzed transformations. The introduction of functional pincer ligands that can store protons and/or electrons as expressed by metal-ligand cooperativity and ligand redox-activity strongly stimulated this development as conceptual starting point for rational catalyst design. This reviews aims at providing a comprehensive picture of the utilization of functional pincer ligands in first-row transition metal hydrogenation and dehydrogenation catalysis and re- lated synthetic concepts relying on these such as the hydrogen borrowing methodology. Particular emphasis is put on the implementation and relevance of cooperating and redox-active pincer ligands within the mechanistic scenarios. CONTENTS 3.4. Hydrogenation of Nitriles 1. Introduction 3.5. Hydrogenation of Esters 1.1. Metal-ligand Cooperativity (MLC) 3.6. Hydrogenation of CO2 1.2. Redox active ligands 3.6.1. Pyridyl-Based Pincer Catalysts 2. Privileged Pincer Platforms 3.6.2. Diphosphinoamine Pincer Catalysts 2.1. Aminopincer Platforms 3.7. Hydrogenation of Olefins 2.1.1. Diphosphinoamines and Related Ligands 3.7.1. Pyridyl-Based Pincer Catalysts 2.1.2. BPI and Boxmi Ligands 3.7.2. Aminodiphosphine and Related Pincer 2.1.3. Aminophenol Pincer Ligands Catalysts 2.1.4. Dihydrazonopyrroles 3.8. Hydrogenation of Alkynes 2.2. Pyridyl Pincer Ligands 4. Dehydrogenation 2.2.1. Diphosphinopyridine and Related Lig- 4.1. (Acceptorless) Alcohol Dehydrogenation ands 4.1.1. Dialkylamino Pincer Catalysts 2.2.2. Pyridinediimines and Related Ligands 4.1.2. Pyridyl-Based and Related Pincer Cata- 2.2.3. Terpyridine lysts 2.2.4. Pybox 4.2. Formic Acid Dehydrogenation 2.2.5. Pyridyldicarbenes 4.3. Dehydrogenation of Nitrogen-Containing Sub- 2.2.6. Iminopyridine and Related Systems strates 2.2.7. Bipyridine Based Pincer Ligands 4.3.1. Amineboranes 2.2.8. Azaphenyl Ligands and Related Systems 4.3.2. N-Heterocycles 2.2.9. Bis(pyrazolyl)pyridine 4.3.3. Dehydrogenative C-N Coupling 2.2.10. Phosphaalkene Pincer Ligands 4.3.4. Dehydrogenative Aminomethylation 3. Hydrogenation 5. Hydrogen Borrowing Methodology 3.1. Hydrogenation of Ketones and Aldehydes 6. Outlook 3.1.1. Pyridyl-Based and Related Pincer Cata- lysts 3.1.2. Dialkylamino Pincer Catalysts 3.1.3. Asymmetric Hydrogenation of Ketones 3.2. Hydrogenation of Imines and N-Heterocycles 3.3. Hydrogenation of Amides 1 INTRODUCTION many other application.2,32,51–60 However, the term ‘pincer ligand’ has since been considerably widened to a point First-row transition metal compounds have emerged in re- where a precise definition is blurred by the inclusion of cent years as homogeneous catalysts for numerous organic many meridionally binding, mono-, di- and tri-anionic and transformations,1–19 such as de-/hydrogenation,18,20–33 and even neutral tridentate ligands that cover a vast range of cen- other hydroelementation34–38 reactions that were tradition- tral and flanking coordinating groups and ‘backbones’ link- ally the realm of precious metal catalysis. The development ers connecting them. This structural and electronic variabil- of base metal hydrogenation catalysts also inspired sustain- ity allows for versatile fine-tuning of chemical properties, able concepts for the controlled release and fixation of dihy- which strongly contributed to the success of the pincer lig- drogen within chemical energy storage schemes.32,39–46 Due and concept.54,61–64 Importantly, the conceptual utilization of to the generally lower toxicity compared with 4d and 5d functional pincer ligands decisively stimulated base metal metal complexes,47 the use of 3d metals is less environmen- catalyzed de-/hydrogenation catalysis. tally harmful meeting several principles of Green Chemistry. Furthermore, 3d metals are considerably more abundant in Scheme 1. Schematic representations of typical hydrogenation cy- the continental crust than their heavier 4d/5d homologues, cles of olefins and carbonyl groups with and without formal metal redox changes.65,81 ranging from scandium (16 ppm) to iron (43200 ppm), the fourth most abundant element (Figure 1).48 In contrast, some 4d metals (Ru, Rh, Pd) and most of the 5d metals (in partic- ular Re, Os, Ir and Pt) are rare elements with limited deposits suitable for today’s mining technology. Figure 1. Abundance of mid to late transition metals in the earth’s continental crust (concentration in ppm).48 The increasing demand and cost for noble metal precursors The parameters that contribute to the activity of 3d metal hy- sparked a rising interest in their replacement for more abun- drogenation catalysts with respect to their heavier homo- dant homogeneous catalysts. However, the robustness (ex- logues were recently discussed by Zell and Langer.65 Within pressed in the turnover number TON) and the activity (ex- a strongly simplified picture, two ‘conventional’ mechanis- pressed in the turnover frequency TOF) of base metal cata- tic scenarios are well established for hydrogenation of ole- lysts often lacks behind the performance of noble metal cat- fins and carbonyl groups, respectively (Scheme 1): The di- alysts. The emergence of base metal catalysis was therefore hydride mechanisms (right) imply substrate binding, step- strongly driven by the development of sophisticated ligand wise hydrogen transfer to the substrate and H2 oxidative ad- systems as an enabling methodology. The proportional cost dition, associated with formal metal ±2 redox steps. Within of such complex ligand platforms for 3d metal catalysis with monohydride mechanism (left), metal redox events are high activity and selectivity, should not be underestimated. avoided by H2 heterolysis with proton transfer from a dihy- Besides cost considerations, the field of base metal catalysis drogen ligand to alkyl (olefin hydrogenation) or alkoxy (car- is therefore also driven by catalytic transformations that bonyl hydrogenation) ligands. These considerations define have not been realized with precious metal catalysts before. the relevant parameters that determine the thermochemical framework for comparing 3d vs 4/5d metal catalysts, i.e. (1) ‘Pincer’ ligands were introduced by Shaw in 1976.49 Ac- substrate binding constants (2) M–H vs. M–C/O bond cording to the early definition by van Koten and Albrecht, strength as expressed by bond dissociation free energies pincer ligands are tridentate ligands with a central, s-donat- (BDFE) for homolytic processes and M–H hydricity (DGH-) ing phenyl moiety that carries two lateral amino- or phos- and pKa for hydride or proton transfer, respectively, and (3) phinomethyl CH2ER2 (E = N, P) side groups in ortho-posi- acidity of the dihydrogen intermediate as expressed by 50 66–68 tion. As a result of the chelating, rigid binding mode, tran- pKa(M–H2). These parameters will be discussed in the sition metal complexes often exhibit high thermal stability next sections in the context of two ligand design principles and well defined reactivity at the remaining coordination that have been instrumental in the emergence of first-row sites, which has been extensively exploited in catalysis and 2 metal catalysis, i.e. the introduction of redox active pincer in identical coordination environment. No clear trend along 27,69–74,78,142–145 ligands and metal-ligand the group could be found, but the pKa differences between cooperativity.26,27,30,32,39,46,51,77,93 iron and ruthenium are generally small within 1-2 units while osmium compounds are less acidic accounting for This review aims at covering the application of functional stronger 5d M–H bonding.67 In fact, Morris’ increment pincer ligands in 3d metal catalyzed de-/hydrogenation. The methods for estimating M–H acidities does not discriminate term ‘functional ligand’ has been used for a variety of dif- between first- and second-row metals.82 ferent phenomena of active ligand participation both in the first and second coordination sphere around the metal.78 M–H hydricities have a strong dependence on the metal and II + Within this review on de-/hydrogenation catalysis we will ligand sphere. Within a homologous M H(diphosphine)2 focus on redox active and cooperating pincer ligands to dis- group 10 series, the nickel compound exhibited considerably cuss the relevance of reversible reservoirs for protons and/or higher hydricity in the order DGH-(Ni) >> DGH-(Pt) > DGH- electrons in pivotal organic applications of proton coupled (Pd) by more than 40 kcal mol–1, which renders nickel(II) by electron transfer. Both principles have been separately re- far the weakest hydride donor.83 The same general trend is 26,27,30,32,39,46,51,69-74,77,78,93,142–145 III + viewed. However, the direct observed for example for M H2(diphosphine)2 and I 84–87 comparison offers additional insights for catalyst design. M H(diphosphine)2 (M = Co, Rh), or computed hy- dricity values for MH(CO)5 (M = Mn, Re; DDGH- = 11 Scheme 2. Simplified, schematic representations
Recommended publications
  • Stabilization and Reactivity of Low Oxidation State Indium Compounds
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2013 Stabilization and Reactivity of Low Oxidation State Indium Compounds Christopher Allan University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Allan, Christopher, "Stabilization and Reactivity of Low Oxidation State Indium Compounds" (2013). Electronic Theses and Dissertations. 4939. https://scholar.uwindsor.ca/etd/4939 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. STABILIZATION AND REACTIVITY OF LOW OXIDATION STATE INDIUM COMPOUNDS By Christopher J. Allan A Dissertation Submitted to the Faculty of Graduate Studies Through Chemistry and Biochemistry In Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy at the University of Windsor Windsor, Ontario, Canada 2013 ©2013 Christopher J. Allan Declaration of Co-Authorship / Previous Publications I. Declaration of Co-Authorship This thesis incorporates the outcome of joint research undertaken in collaboration with Hugh Cowley under the supervision of Jeremy Rawson.
    [Show full text]
  • The University of Chicago Electronic Correlation In
    THE UNIVERSITY OF CHICAGO ELECTRONIC CORRELATION IN ORGANOMETALLIC CHEMISTRY: REDUCED DENSITY MATRIX APPROACHES A DISSERTATION SUBMITTED TO THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMISTRY BY ANTHONY W. R. SCHLIMGEN CHICAGO, ILLINOIS JUNE 2018 Copyright c 2018 by Anthony W. R. Schlimgen All Rights Reserved To Pat, John, Catherine, and Elizabeth TABLE OF CONTENTS LIST OF FIGURES . vi LIST OF TABLES . vii ACKNOWLEDGMENTS . viii ABSTRACT . ix 1 INTRODUCTION . 1 1.1 N-Electron Wavefunction Theory . 1 1.2 Reduced Density Matrix Formalism . 4 1.3 Electron Correlation . 5 1.4 References . 6 2 AB INIT IO QUANTUM CHEMICAL METHODS FOR COMPUTING ELEC- TRON CORRELATION . 11 2.1 Introduction . 11 2.2 Complete Active Space Self Consistent Field Theory . 12 2.3 Variational 2-RDM Theory . 13 2.4 Anti-Hermitian Contracted Schr¨odingerEquation . 15 2.5 Analytical Gradient Techniques for CASSCF . 16 2.5.1 Analytical Gradient of Variational 2-RDM Theory . 16 2.5.2 Analytical Gradient for CI Wavefunctions . 19 2.6 References . 20 3 ELECTRONIC STRUCTURE METHODS FOR ORGANOMETALLIC CHEMISTRY 30 3.1 Introduction . 30 3.2 Ligand Field Theory . 31 3.3 Density Functional Theory and ab initio Methods . 33 3.4 References . 34 4 EXAMPLES OF ELECTRON CORRELATION IN ORGANOMETALLIC CHEM- ISTRY . 36 4.1 Vanadium oxo 2,6-bis[1,1-bis(2-pyridyl)ethyl]pyridine . 36 4.1.1 Introduction . 36 4.1.2 Results and Discussion . 39 4.1.3 Conclusions . 44 4.1.4 References . 45 4.2 Nickel Dithiolates .
    [Show full text]
  • Diiminopyridine Complexes of Ti, Zr and Hf
    Diiminopyridine Complexes of Ti, Zr and Hf By Naser Rahimi A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of the requirements for the degree of Doctor of Philosophy Department of Chemistry University of Manitoba Winnipeg, MB, Canada, R3T 2N2 ã Copyright by Naser Rahimi 2018 i To my beloved parents for their endless sacrifices ii Abstract This thesis focuses on the electronic and chemical noninnocence of diiminepyridine (DIP) ligand in its group IV metals complexes. A series of mono- and dialkyl titanium complexes of DIP were synthesized and the oxidation state of the metal and the ligand were characterized by a combination of techniques such as nuclear magnetic resonance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and density functional theory. It was elucidated that the unpaired electron in III (DIP)TiCl3 is mostly residing in the metal d orbital giving a Ti . Interestingly, one electron III IV reduction of (DIP)TiCl3 to (DIP)TiCl2 led into oxidation of Ti to Ti , subsequently 0 2- reduction of DIP to DIP . The two dialkyl titanium complexes (DIP)TiMe2 and (DIP)Ti(CH2SiMe3)2 was shown to be stable at elevated temperature. Variable temperature (VT) 1H-NMR of the former exhibited a thermal population of the triplet state while the latter displayed a normal dynamic behavior. The formation of (DIP)ZrCl4 was accompanied by a yellow precipitate, but (DIP)HfCl4 stayed in solution. This difference in solubility could very well be due to formation of six- + - coordinate ionic [(DIP)HfCl3] Cl . In contrast to (DIP)TiCl3, attempts to manufacture (DIP)MCl3 (M: Zr, Hf) were unsuccessful.
    [Show full text]
  • Novel Redox Non-Innocent Bis(Phenoxide) Pincer Complexes of Cobalt: Connecting Electronic Structures and Reactivity
    NOVEL REDOX NON-INNOCENT BIS(PHENOXIDE) PINCER COMPLEXES OF COBALT: CONNECTING ELECTRONIC STRUCTURES AND REACTIVITY A Dissertation Presented to The Academic Faculty by Caleb Frank Harris In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Chemistry and Biochemistry Georgia Institute of Technology August 2017 COPYRIGHT © 2017 BY CALEB F. HARRIS NOVEL REDOX NON-INNOCENT BIS(PHENOXIDE) PINCER COMPLEXES OF COBALT: CONNECTING ELECTRONIC STRUCTURES AND REACTIVITY Approved by: Dr. Jake D. Soper, Advisor Dr. Z. John Zhang School of Chemistry and Biochemistry School of Chemistry and Biochemistry Georgia Institute of Technology Georgia Institute of Technology Dr. Joseph P. Sadighi Dr. Julia Kubanek School of Chemistry and Biochemistry School of Biology Georgia Institute of Technology Georgia Institute of Technology Dr. E. Kent Barefield School of Chemistry and Biochemistry Georgia Institute of Technology Date Approved: July 28, 2017 In loving memory of my father, Marvin F. Harris. TABLE OF CONTENTS LIST OF TABLES viii LIST OF FIGURES ix LIST OF SCHEMES xiii LIST OF SYMBOLS AND ABBREVIATIONS xv SUMMARY xvii CHAPTER 1. Introduction 1 1.1 Metal Catalyzed C-C Bond Forming Reactions and Their Significance 1 1.1.1 Cross-Coupling 1 1.1.2 Oxidative Coupling 3 1.2 Importance of Earth-Abundant 3d Metals for C–C Bond Forming Reactions 3 1.3 Introduction to Redox Non-Innocent Ligands 4 1.4 Determination of Ligand and Metal Physical Oxidations States 5 1.5 Electronic Isomers/Valence Tautomerism 6 1.6 Redox-Active Ligated Metal Complexes in Organic Transformations 8 1.7 Project Aims 9 1.8 References 10 CHAPTER 2.
    [Show full text]
  • Reactions of Bcl3 with Diiminopyridine Ligands John R
    EurJIC Communication European Journal of Inorganic Chemistry doi.org/10.1002/ejic.202000533 Diiminopyridine Ligands Reactions of BCl3 with Diiminopyridine Ligands John R. Tidwell,[a] Abigail K. Africa,[a] Thomas Dunnam,[a] and Caleb D. Martin*[a] – Abstract: The reactions of boron trichloride with diimino- BCl2 complexes with BCl4 counteranions were isolated with the pyridine ligands featuring 2,6-diisopropylphenyl groups on the hydrogen and phenyl-substituted ligands while a mixture was imine nitrogen atoms and varying groups on the α-carbon obtained for the methyl variant. atoms (H, CH3, and Ph) were investigated. N,N′-chelated cationic Introduction InCl3 with a DIMPY ligand furnished an InCl2 complex analo- gous to A with an InCl anion but with indium triflate, a InI Transition metal complexes with diiminopyridine ligands 4 species was obtained that had weak interactions with the two (DIMPY) have been widely studied with many compounds be- imine nitrogens (C).[14c] No example of a TlIII compound exists ing implicated in catalysis,[1] including olefin polymerization,[2] butaTlI species has been prepared from TlOTf akin to the InI borylation,[3] cycloaddition,[4] hydrogenation,[5] and hydrosilyla- species but with even weaker interactions with the DIMPY tion reactions.[5,6] The rigidity of the conjugated imine and pyr- framework.[14l] In all of known examples, the three nitrogens idine tridentate framework typically results in meridional coor- interact with the group 13 element. No boron DIMPY complexes dination and serves as a redox reservoir for the metal center to have been prepared to date. We herein report the reactions of engender unique properties and reactivity.[7] The substituents diiminopyridine ligands with boron trichloride.
    [Show full text]
  • Unsymmetric Redoxactive Ligands for Mono- and Bimetallic Complexes; Synthesis and Characterisation
    Technische Universität München Fachgebiet Bioanorganische Chemie Unsymmetric Redoxactive Ligands for Mono- and Bimetallic Complexes; Synthesis and Characterisation Ruth Marlen Haas Vollständiger Abdruck der von der Fakultät Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzende(r): Hon.-Prof. Dr. Richard W. Fischer Prüfer der Dissertation: 1. Prof. Dr. Corinna Hess 2. Prof. Dr. Klaus Köhler Die Dissertation wurde am 12.12.2017 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 16.01.2018 angenommen. Die vorliegende Arbeit wurde im Fachgebiet Bioanorganische Chemie der Technischen Universität München in der Zeit von November 2014 bis Dezember 2017 angefertigt. Teile dieser Arbeit wurden bereits veröffentlicht: Haas, R. M., Arshad, M., Anthony, J. A., Altmann, P. J., Pöthig, A., Köhler, F. H., Hess, C. R. “Six- and seven-coordinate Fe(II) and Zn(II) compounds ligated by unsymmetrical xanthene- based ligands: characterization and magnetic properties.” Inorg. Chem. Front., 2016, 3, 616. Haas, R. M., Hern, Z., Sproules, S., Hess, C. R. “An unsymmetric ligand framework for non- coupled homo- and heterobimetallic complexes.” Inorg. Chem., 2017, doi:10.1021/acs.inorgchem.7b02294. Besonders danken möchte ich meiner Doktormutter Frau Professor Corinna R. Hess Für die Aufnahme in den Lehrstuhl und das interessante Forschungsthema, welches mir vorgeschlagen wurde. Acknowledgment Mein Dank gilt: Meinem Mitstarter am Lehrstuhl Manuel Kaspar, der alles mit mir aufgebaut hat. Ich hätte es auch gerne mit dir beendet. Sophia Stark, die in der letzten Halbzeit eine großartige Rücken- an-Rücken Bürostuhlnachbarin war. Unsere Diskussionen waren immer sehr verwirrend, haben uns aber oft weitergebracht und auch die Kaffee-/Teepausen waren immer erholsam.
    [Show full text]
  • Heterolytic H–H and H–B Bond Cleavage Reactions of {(Ipr)Ni(Μ-S)}2
    Article pubs.acs.org/IC Heterolytic H−H and H−B Bond Cleavage Reactions of {(IPr)Ni(μ-S)}2 Frank Olechnowicz,† Gregory L. Hillhouse,†,§ Thomas R. Cundari,‡ and Richard F. Jordan*,† †Department of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States ‡Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, P.O. Box 305070, Denton, Texas 76203-5070, United States *S Supporting Information ABSTRACT: Kinetic and DFT computational studies reveal that the reaction of {(IPr)Ni(μ-S)}2 (1, IPr = 1,3-bis(2,6-diisopropyl-phenyl)- imidazolin-2-ylidene) with dihydrogen to produce {(IPr)Ni(μ-SH)}2 (2) proceeds by rate-limiting heterolytic addition of H2 across a Ni−S bond of intact dinuclear 1, followed by cis/trans isomerization at Ni and subsequent H migration from Ni to S, to produce the bis-hydrosulfide product 2. Complex 1 reacts in a similar manner with pinacolborane to produce {(IPr)Ni}2(μ-SH)(μ-SBPin) (3), showing that heterolytic activation by this nickel μ-sulfide complex can be generalized to other H−E bonds. ■ INTRODUCTION DFT computations predict that this reaction proceeds by initial The removal of sulfur compounds from petroleum fractions by oxidative addition of H2 at one Ir center, followed by H catalytic hydrodesulfurization is an important step in the migration to the second Ir center, which produces two terminal production of clean fuels.1,2 The catalysts employed are based hydride ligands and oxidizes the Ir centers from the formal 2+ to the 3+ oxidation state.
    [Show full text]
  • Synthesis, Properties, and Catalysis of P-Block Complexes Supported by Bis
    REVIEW ARTICLE https://doi.org/10.1038/s42004-020-00359-0 OPEN Synthesis, properties, and catalysis of p-block complexes supported by bis(arylimino) acenaphthene ligands ✉ ✉ Jingyi Wang1, Han Sen Soo 1 & Felipe Garcia 1 1234567890():,; Bis(arylimino)acenaphthene (Ar-BIAN) ligands have been recognized as robust scaffolds for metal complexes since the 1990 s and most of their coordination chemistry was developed with transition metals. Notably, there have been relatively few reports on complexes com- prising main group elements, especially those capitalizing on the redox non-innocence of Ar- BIAN ligands supporting p-block elements. Here we present an overview of synthetic approaches to Ar-BIAN ligands and their p-block complexes using conventional solution- based methodologies and environmentally-benign mechanochemical routes. This is followed by a discussion on their catalytic properties, including comparisons to transition metal counterparts, as well as key structural and electronic properties of p-block Ar-BIAN complexes. uring the last decade, the development of metal complexes supported by redox-active Dligands has attracted considerable interest in both academic and industrial settings, owing to their versatile electronic structures and potential applications in catalysis. The demonstrated ability of these ligands to display multiple consecutive oxidation states, together with their coordination to metal centers, induces both radical reactivity and electron-reservoir behavior, making them ideal ligands to support a wide range of catalytic transformations, examples of which are illustrated in Fig. 1. Bis(imino)acenaphthene (BIAN) is a family of diimine ligands that can be considered as a fusion product between 1,4-diaza-1,3-butadiene (DAB) and a naphthalene unit with great potential as redox noninnocent ligands.
    [Show full text]
  • N-Heterocyclic Carbene (NHC) Ligands Are Described
    Article pubs.acs.org/IC Redox-Active Bis(phenolate) N‑Heterocyclic Carbene [OCO] Pincer Ligands Support Cobalt Electron Transfer Series Spanning Four Oxidation States Caleb F. Harris,† Michael B. Bayless,† Nicolaas P. van Leest,‡ Quinton J. Bruch,† Brooke N. Livesay,§ John Bacsa,†,∥ Kenneth I. Hardcastle,∥ Matthew P. Shores,*,§ Bas de Bruin,*,‡ and Jake D. Soper*,† † School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States ‡ Van ’tHoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands § Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States ∥ X-ray Crystallography Center, Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States *S Supporting Information ABSTRACT: A new family of low-coordinate Co complexes supported by three redox-noninnocent tridentate [OCO] pincer- type bis(phenolate) N-heterocyclic carbene (NHC) ligands are described. Combined experimental and computational data suggest that the charge-neutral four-coordinate complexes are best formulated as Co(II) centers bound to closed-shell [OCO]2− dianions, of the general formula [(OCO)CoIIL] (where L is a solvent-derived MeCN or THF). Cyclic voltammograms of the [(OCO)CoIIL] complexes reveal three oxidations accessible at potentials below 1.2 V vs Fc+/Fc, corresponding to generation of formally Co(V) species, but the true physical/spectroscopic oxidation states
    [Show full text]
  • Program and Abstracts
    Program and Abstracts 8-11 December, 2015 The University of Sydney Sydney, AUSTRALIA SPONSORS WELCOME TO OZOM IX Welcome to OZOM IX, the 9th Australasian Organometallics meeting of the Royal Australian Chemical Institute, focussing on the cross-divisional discipline of organometallic chemistry. The program again caters for all applications of the field. In keeping with the common theme of all the previous highly successful meetings in this series, the program also maintains its strong student and early career researcher focus through both contributed oral and poster presentations. In addition, a number of eminent researchers from Germany will be delivering plenary lectures at the meeting amongst a further list of international delegates attending the meeting. The organising committees would like to extend a warm welcome to all delegates. Enjoy your time in Sydney! Local Organising Committee Lou Rendina (Chair) Rob Baker (Treasurer) Peter Lay Tony Masters Peter Rutledge Ant Ward National Organising Committee Phil Andrews, Marie Cifuentes, Michael Gardiner, Mark Humphrey, Peter Junk, and George Koutsantonis DETAILED PROGRAM TUESDAY 8 DECEMBER 17.30 - 18.30 Registration (The Grandstand) 18.30 - 20.30 Opening Mixer (The Grandstand) WEDNESDAY 9 DECEMBER 8.50 - 9.00 Welcome (Lou Rendina, Chair) 9.00 - 10.00 Plenary Lecture 1 (PL1): Prof. F. E. Hahn LECTURE SESSION Synthesis and Reactivity of Complexes Bearing Protic NHC Session Chair: Ligands George Koutsantonis 10.00 - 10.20 Oral Lecture 1 (OL1): N. Camasso Design, Synthesis, and Reactivity of Organometallic Ni(IV) Complexes 10.20 - 10.40 Oral Lecture 2 (OL2): S. Scottwell The Synthesis and Switching of a Molecular Folding Ruler 10.40 - 11.10 morning tea LECTURE SESSION 11.10 - 11.30 Oral Lecture 3 (OL3): S.
    [Show full text]
  • Pyridinediimine Complexes with Coordination Sphere Interactions Relevant to Copper and Non-Heme Iron Enzymes
    Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship Spring 2021 Pyridinediimine Complexes with Coordination Sphere Interactions Relevant to Copper and Non-Heme Iron Enzymes Pui Man Audrey Cheung Western Washington University, [email protected] Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Chemistry Commons Recommended Citation Cheung, Pui Man Audrey, "Pyridinediimine Complexes with Coordination Sphere Interactions Relevant to Copper and Non-Heme Iron Enzymes" (2021). WWU Graduate School Collection. 1039. https://cedar.wwu.edu/wwuet/1039 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. Pyridinediimine Complexes with Coordination Sphere Interactions Relevant to Copper and Non-Heme Iron Enzymes By Pui Man Audrey Cheung Accepted in Partial Completion of the Requirements for the Degree Master of Chemistry ADVISORY COMMITTEE Chair, Dr. John D. Gilbertson Dr. Margaret L. Scheuermann Dr. Tim Kowalczyk GRADUATE SCHOOL Dr. David L. Patrick, Dean MASTER’S THESIS In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Western Washington University, I grant to Western Washington University the non-exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWU. I represent and warrant this is my original work, and does not infringe or violate any rights of others.
    [Show full text]
  • TRIFLATE and RELATED LOW OXIDATION STATE INDIUM SALTS Benjamin Cooper University of Windsor
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations 2011 EXPLORING THE REACTIVITY OF INDIUM(I) TRIFLATE AND RELATED LOW OXIDATION STATE INDIUM SALTS Benjamin Cooper University of Windsor Follow this and additional works at: http://scholar.uwindsor.ca/etd Recommended Citation Cooper, Benjamin, "EXPLORING THE REACTIVITY OF INDIUM(I) TRIFLATE AND RELATED LOW OXIDATION STATE INDIUM SALTS" (2011). Electronic Theses and Dissertations. Paper 388. This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. EXPLORING THE REACTIVITY OF INDIUM(I) TRIFLATE AND RELATED LOW OXIDATION STATE INDIUM SALTS By Benjamin F. T. Cooper A Dissertation Submitted to the Faculty of Graduate Studies Through Chemistry and Biochemistry in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the University of Windsor Windsor, Ontario, Canada 2011 © 2011 Benjamin F. T. Cooper “Exploring the reactivity of indium(I) triflate and related low oxidation state indium salts” By Benjamin F.
    [Show full text]