Biofilm Cue for Larval Settlement in Hydroides Elegans (Polychaeta): Is Contact Necessary?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Benthic Invertebrate Community Monitoring and Indicator Development for Barnegat Bay-Little Egg Harbor Estuary
July 15, 2013 Final Report Project SR12-002: Benthic Invertebrate Community Monitoring and Indicator Development for Barnegat Bay-Little Egg Harbor Estuary Gary L. Taghon, Rutgers University, Project Manager [email protected] Judith P. Grassle, Rutgers University, Co-Manager [email protected] Charlotte M. Fuller, Rutgers University, Co-Manager [email protected] Rosemarie F. Petrecca, Rutgers University, Co-Manager and Quality Assurance Officer [email protected] Patricia Ramey, Senckenberg Research Institute and Natural History Museum, Frankfurt Germany, Co-Manager [email protected] Thomas Belton, NJDEP Project Manager and NJDEP Research Coordinator [email protected] Marc Ferko, NJDEP Quality Assurance Officer [email protected] Bob Schuster, NJDEP Bureau of Marine Water Monitoring [email protected] Introduction The Barnegat Bay ecosystem is potentially under stress from human impacts, which have increased over the past several decades. Benthic macroinvertebrates are commonly included in studies to monitor the effects of human and natural stresses on marine and estuarine ecosystems. There are several reasons for this. Macroinvertebrates (here defined as animals retained on a 0.5-mm mesh sieve) are abundant in most coastal and estuarine sediments, typically on the order of 103 to 104 per meter squared. Benthic communities are typically composed of many taxa from different phyla, and quantitative measures of community diversity (e.g., Rosenberg et al. 2004) and the relative abundance of animals with different feeding behaviors (e.g., Weisberg et al. 1997, Pelletier et al. 2010), can be used to evaluate ecosystem health. Because most benthic invertebrates are sedentary as adults, they function as integrators, over periods of months to years, of the properties of their environment. -
Macrofouler Community Succession in South Harbor, Manila Bay, Luzon Island, Philippines During the Northeast Monsoon Season of 2017–2018
Philippine Journal of Science 148 (3): 441-456, September 2019 ISSN 0031 - 7683 Date Received: 26 Mar 2019 Macrofouler Community Succession in South Harbor, Manila Bay, Luzon Island, Philippines during the Northeast Monsoon Season of 2017–2018 Claire B. Trinidad1, Rafael Lorenzo G. Valenzuela1, Melody Anne B. Ocampo1, and Benjamin M. Vallejo, Jr.2,3* 1Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Padre Faura Street, Ermita, Manila 1000 Philippines 2Institute of Environmental Science and Meteorology, College of Science, University of the Philippines Diliman, Diliman, Quezon City 1101 Philippines 3Science and Society Program, College of Science, University of the Philippines Diliman, Diliman, Quezon City 1101 Philippines Manila Bay is one of the most important bodies of water in the Philippines. Within it is the Port of Manila South Harbor, which receives international vessels that could carry non-indigenous macrofouling species. This study describes the species composition of the macrofouling community in South Harbor, Manila Bay during the northeast monsoon season. Nine fouler collectors designed by the North Pacific Marine Sciences Organization (PICES) were submerged in each of five sampling points in Manila Bay on 06 Oct 2017. Three collection plates from each of the five sites were retrieved every four weeks until 06 Feb 2018. Identification was done via morphological and CO1 gene analysis. A total of 18,830 organisms were classified into 17 families. For the first two months, Amphibalanus amphitrite was the most abundant taxon; in succeeding months, polychaetes became the most abundant. This shift in abundance was attributed to intraspecific competition within barnacles and the recruitment of polychaetes. -
Epibiota of the Spider Crab Schizophrys Dahlak (Brachyura: Majidae) from the Suez Canal with Special Reference to Epizoic Diatoms Fedekar F
Marine Biodiversity Records, page 1 of 7. # Marine Biological Association of the United Kingdom, 2012 doi:10.1017/S1755267212000437; Vol. 5; e64; 2012 Published online Epibiota of the spider crab Schizophrys dahlak (Brachyura: Majidae) from the Suez Canal with special reference to epizoic diatoms fedekar f. madkour1, wafaa s. sallam2 and mary k. wicksten3 1Department of Marine Science, Faculty of Science, Port Said University, Port Said, Egypt, 2Department of Marine Science, Faculty of Science, Suez Canal University, 41522, Ismailia, Egypt, 3Department of Biology, Texas A&M University, College Station, TX 77843-3257, USA This study aims to describe the epibiota of the spider crab, Schizophrys dahlak with special reference to epizoic diatoms. Specimens were collected from the Suez Canal between autumn 2008 and summer 2009. Macro-epibionts consisted of the tube worm Hydroides elegans, the barnacles Balanus amphitrite and B. eburneus, the bivalve Brachidontes variabilis and the urochordate Styela plicata. Total coverage of macro-epibionts was greater on females’ carapaces than those of males with apparent seasonal variations. The highest coverage was noticed in spring and winter for both males and females. Sixty-five diatoms taxa were recorded as epibionts belonging to 25 genera. The maximal total averages of cell count were observed during summer and spring with the highest average of 10.9 and 4.4 × 103 cells dm22 for males and females, respect- ively. A single diatom taxon, Fragilaria intermedia, comprising 73.5% of all epizoic diatoms, was the most dominant species during spring, whereas Amphora coffeaeformis and Cocconeis placentula were the dominants during summer. The masking behaviour of S. -
Download Full Article 2.4MB .Pdf File
Memoirs of Museum Victoria 71: 217–236 (2014) Published December 2014 ISSN 1447-2546 (Print) 1447-2554 (On-line) http://museumvictoria.com.au/about/books-and-journals/journals/memoirs-of-museum-victoria/ Original specimens and type localities of early described polychaete species (Annelida) from Norway, with particular attention to species described by O.F. Müller and M. Sars EIVIND OUG1,* (http://zoobank.org/urn:lsid:zoobank.org:author:EF42540F-7A9E-486F-96B7-FCE9F94DC54A), TORKILD BAKKEN2 (http://zoobank.org/urn:lsid:zoobank.org:author:FA79392C-048E-4421-BFF8-71A7D58A54C7) AND JON ANDERS KONGSRUD3 (http://zoobank.org/urn:lsid:zoobank.org:author:4AF3F49E-9406-4387-B282-73FA5982029E) 1 Norwegian Institute for Water Research, Region South, Jon Lilletuns vei 3, NO-4879 Grimstad, Norway ([email protected]) 2 Norwegian University of Science and Technology, University Museum, NO-7491 Trondheim, Norway ([email protected]) 3 University Museum of Bergen, University of Bergen, PO Box 7800, NO-5020 Bergen, Norway ([email protected]) * To whom correspondence and reprint requests should be addressed. E-mail: [email protected] Abstract Oug, E., Bakken, T. and Kongsrud, J.A. 2014. Original specimens and type localities of early described polychaete species (Annelida) from Norway, with particular attention to species described by O.F. Müller and M. Sars. Memoirs of Museum Victoria 71: 217–236. Early descriptions of species from Norwegian waters are reviewed, with a focus on the basic requirements for re- assessing their characteristics, in particular, by clarifying the status of the original material and locating sampling sites. A large number of polychaete species from the North Atlantic were described in the early period of zoological studies in the 18th and 19th centuries. -
SPECIAL PUBLICATION 6 the Effects of Marine Debris Caused by the Great Japan Tsunami of 2011
PICES SPECIAL PUBLICATION 6 The Effects of Marine Debris Caused by the Great Japan Tsunami of 2011 Editors: Cathryn Clarke Murray, Thomas W. Therriault, Hideaki Maki, and Nancy Wallace Authors: Stephen Ambagis, Rebecca Barnard, Alexander Bychkov, Deborah A. Carlton, James T. Carlton, Miguel Castrence, Andrew Chang, John W. Chapman, Anne Chung, Kristine Davidson, Ruth DiMaria, Jonathan B. Geller, Reva Gillman, Jan Hafner, Gayle I. Hansen, Takeaki Hanyuda, Stacey Havard, Hirofumi Hinata, Vanessa Hodes, Atsuhiko Isobe, Shin’ichiro Kako, Masafumi Kamachi, Tomoya Kataoka, Hisatsugu Kato, Hiroshi Kawai, Erica Keppel, Kristen Larson, Lauran Liggan, Sandra Lindstrom, Sherry Lippiatt, Katrina Lohan, Amy MacFadyen, Hideaki Maki, Michelle Marraffini, Nikolai Maximenko, Megan I. McCuller, Amber Meadows, Jessica A. Miller, Kirsten Moy, Cathryn Clarke Murray, Brian Neilson, Jocelyn C. Nelson, Katherine Newcomer, Michio Otani, Gregory M. Ruiz, Danielle Scriven, Brian P. Steves, Thomas W. Therriault, Brianna Tracy, Nancy C. Treneman, Nancy Wallace, and Taichi Yonezawa. Technical Editor: Rosalie Rutka Please cite this publication as: The views expressed in this volume are those of the participating scientists. Contributions were edited for Clarke Murray, C., Therriault, T.W., Maki, H., and Wallace, N. brevity, relevance, language, and style and any errors that [Eds.] 2019. The Effects of Marine Debris Caused by the were introduced were done so inadvertently. Great Japan Tsunami of 2011, PICES Special Publication 6, 278 pp. Published by: Project Designer: North Pacific Marine Science Organization (PICES) Lori Waters, Waters Biomedical Communications c/o Institute of Ocean Sciences Victoria, BC, Canada P.O. Box 6000, Sidney, BC, Canada V8L 4B2 Feedback: www.pices.int Comments on this volume are welcome and can be sent This publication is based on a report submitted to the via email to: [email protected] Ministry of the Environment, Government of Japan, in June 2017. -
Bacterial Lipopolysaccharide Induces Settlement and Metamorphosis in a Marine Larva
bioRxiv preprint doi: https://doi.org/10.1101/851519; this version posted November 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Main Manuscript for Bacterial lipopolysaccharide induces settlement and metamorphosis in a marine larva. Marnie L Freckelton1, Brian T. Nedved1, You-Sheng Cai2,3, Shugeng Cao2, Helen Turano4, Rosanna A. Alegado4,5 and Michael G. Hadfield1* 1 Kewalo Marine Laboratory, University of Hawaii, Honolulu, Hawaii, United States, 96813. 2 Department of Pharmaceutical Sciences, Daniel K Inouye College of Pharmacy, University of Hawaii at Hilo, 200 W. Kawili Street, Hilo, Hawaii 96720 3 Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430071, People’s Republic of China 4 Department of Oceanography, University of Hawaiʻi Mānoa, Honolulu, Hawaii, United States, 96813. 5 Sea Grant College Program, University of Hawaiʻi Mānoa, Honolulu Hawaii, United States, 96813. *correspondence: [email protected] Classification Major: Biological Sciences Minor: Ecology 1 bioRxiv preprint doi: https://doi.org/10.1101/851519; this version posted November 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Keywords Hydroides elegans, metamorphosis, lipopolysaccharide, Cellulophaga lytica, biofilms Author Contributions Conceptualization, M.L.F, M.G.H., Y.C., S.C., R.A.A., B.T.N.; Methodology, M.L.F., M.G.H., B.T.N., H.T., R.A.A.; Investigation, M.L.F, B.T.N., Y.C., H.T.; Resources, M.G.H., S.C., R.A.A.; Writing – Original Draft, M.L.F. -
A New Species of Horseshoe Worm Discovered in Japan After a 62 Year Gap 4 April 2014
A new species of horseshoe worm discovered in Japan after a 62 year gap 4 April 2014 Phoronis vancouverensis that has long been disputed. This is Phoronis emigi, preserved in formalin. Credit: Dr. Masato Hirose The horseshoe worm is a worm-like marine invertebrate inhabiting both hard and soft substrates such as rock, bivalve shells, and sandy bottom. The name "horseshoe" refers to the U- shaped crown of tentacles which is called "lophophore." Horseshoe worms comprise a small This is a living Phoronis ijimai, extending its lophophore. phylum Phoronida, which contains only ten species Credit: Dr. Masato Hirose. decorating the bottom of the oceans. The new species Phoronis emigi, the eleventh member of the group described in the open access "It is necessary to use both internal anatomy and journal ZooKeys, comes after a long 62 year gap molecular data for reveal the global diversity of of new discoveries in the phylum. It is unique in the horseshoe worm. The known phoronid diversity still number and arrangement of body-wall muscle remains low, with all specimens reported from bundles and the position of the nephridia which is limited habitats and the localities by the limited the excretory organ of some invertebrates. The reports. Investigations at new localities or habitats new species is morphologically similar to sand- may yield additional species in the future", explains dwelling species Phoronis psammophila and it is Dr Masato Hirose, Atmosphere and Ocean also closely related to Phoronis hippocrepia, which Research Institute, The University of Tokyo, Japan. inhabits hard substrate. The morphology of the topotypes for Phoronis More information: Hirose M, Fukiage R, Katoh T, ijimai is also described in this study after 117 years Kajihara H (2014) Description and molecular since its original description. -
Notes on Reproductive Biology of Some Serpulid Polychaetes At
付 着 生 物 研 究 Marine Fouling 10 (1) 11-16, 1993 Notes on Reproductive Biology of Some Serpulid Polychaetes at Sesoko Island, Okinawa, with Brief Accounts of Setal Morphology of Three Species of Salmacina and Filograna implexa Eijiroh NISHI Amakusa Marine BiologicalLaboratory, Kyushu University, Tomioka, Amakusa, Kumamoto863-25 (ReceivedOctober 19, 1992) Abstract: On the vertical walls of an aquarium and shells of Streptopinna saccata, 20 serpulid species were observed. Among them, 7 species perform brooding, 7 did asexual reproduction. Brooding was separated into 3 types, branchial-brooding, brood pouch-incubation and tube incubation. Asexual reproduction of them is terminal and single, bud completes their external morphology within 5 to 8 days. Descriptions of specialized collar setae of Filograna implexa and 3 species of Salmacina were given. The ecoiogy of serpulid species is well known used in the observations of polychaete, partic- in some fouling species (WISELY, 1956; ARA- ularly on setal morphology (e. g., EYBINE- KAWA, 1973; ARAKAWA and KUBOTA, 1973; JACOBSEN, 1991), among the genera Salmacina ABBOTT and REISH, 1980; MIURA and KAJIHARA, and Filograna, only KNIGHT-JONES (1981) ob- 1981). Among ecological characteristics, dis- served collar setae of Filograna implexa with tribution, reproduction and larval ecology were scanning electron microscope in my knowledge. well studied. Most serpulid species show Thus I observed collar setal morphology, which separate sexes and their larvae are plank- usually available in identification of the genus totrophic, others brood lecithotrophic larvae in Salmacina, using scanning electron microscope. various ways (TEN HOVE, 1979; BEN-ELIAHU Then I found notable difference among 3 Sal- and TEN HOVE, 1989; NISHI, 1992; NISHI and macina species and Filograna implexa. -
Documenting Neotropical Diversity of Phoronids with DNA Barcoding of Planktonic Larvae
Received: 30 April 2018 | Revised: 25 January 2019 | Accepted: 17 February 2019 DOI: 10.1111/ivb.12242 ORIGINAL ARTICLE Documenting neotropical diversity of phoronids with DNA barcoding of planktonic larvae Rachel Collin1 | Dagoberto E. Venera‐Pontón1 | Amy C. Driskell2 | Kenneth S. Macdonald2 | Kit‐Yu Karen Chan3 | Michael J. Boyle4 1Smithsonian Tropical Research Institute, Balboa, Ancon, Panama Abstract 2Laboratories of Analytical Biology, National Phoronid larvae, actinotrochs, are beautiful and complicated organisms which have Museum of Natural History, Smithsonian attracted as much, if not more, attention than their adult forms. We collected acti‐ Institution, Washington, DC 3Division of Life Science, The Hong Kong notrochs from the waters of the Pacific and Caribbean coasts of Panama, and used University of Science and Technology, Clear DNA barcoding of mtCOI, as well as 16S and 18S sequences, to estimate the diversity Water Bay, Hong Kong of phoronids in the region. We discovered three operational taxonomic units (OTUs) 4Smithsonian Marine Station, Fort Pierce, Florida in the Bay of Panama on the Pacific coast and four OTUs in Bocas del Toro on the Caribbean coast. Not only did all OTUs differ from each other by >10% pairwise dis‐ Correspondence Rachel Collin, Smithsonian Tropical tance in COI, but they also differed from all phoronid sequences in GenBank, includ‐ Research, Institute, Unit 9100, Box 0948, ing the four species for which adults have been reported for the Pacific of Panama, DPO AA 34002, USA Email: [email protected] Phoronopsis harmeri, Phoronis psammophila, Phoronis muelleri, and Phoronis hippocre‐ pia. In each ocean region, one common OTU was more abundant and occurred more Present Address Kit‐Yu Karen Chan, Biology frequently than other OTUs in our samples. -
Monitoring and Surveillance for Non-Indigenous Species in UK Marine Waters
Cefas contract report C5955 (objective 2) Monitoring and surveillance for non-indigenous species in UK marine waters Authors: Paul Stebbing, Joanna Murray, Paul Whomersley and Hannah Tidbury Issue date: 21/10/14 Cefas Document Control Monitoring and surveillance for non-indigenous species in UK marine waters Submitted to: Deborah Hembury (Defra) Date submitted: 21/10/14 Project Manager: Paul Stebbing Report compiled by: Paul Stebbing Quality control by: Paul Stebbing, Joanne Murray, Hannah Tidbury, Paul Whomersley Approved by & date: Dr. Edmund Peeler Version: 3 Version Control History Author Date Comment Version J. Murray et al. 11/04/14 Comments received 1 from Defra and NRW P. Stebbing et al 23/6/14 Response to 2 comments from NRW and Defra P.Stebbing et al 21/10/14 Response to 3 comments from NRW and project steering group Monitoring and surveillance for non-indigenous species in the marine environment Page i Monitoring and surveillance for non-indigenous species in UK marine waters Page ii Monitoring and surveillance for non-indigenous species in UK marine waters Paul Stebbing, Joanna Murray, Paul Whomersley and Hannah Tidbury Issue date: 21/10/14 Head office Centre for Environment, Fisheries & Aquaculture Science Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK Tel +44 (0) 1502 56 2244 Fax +44 (0) 1502 51 3865 www.cefas.co.uk Cefas is an executive agency of Defra Monitoring and surveillance for non-indigenous species in UK marine waters Page iii Executive Summary The threat non-indigenous species (NIS) pose to global biodiversity loss is considered to be second only to habitat destruction since NIS have devastated terrestrial, freshwater and marine ecosystems across all continents. -
Stepwise Metamorphosis of the Tubeworm Hydroides Elegans Is Mediated by a Bacterial Inducer and MAPK Signaling
Stepwise metamorphosis of the tubeworm Hydroides elegans is mediated by a bacterial inducer and MAPK signaling Nicholas J. Shikumaa,1,2,3, Igor Antoshechkina,1, João M. Medeirosb, Martin Pilhoferb, and Dianne K. Newmana,c aDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125; bInstitute of Molecular Biology and Biophysics, Department of Biology, Eidgenössische Technische Hochschule Zürich, 8093 Zürich, Switzerland; and cHoward Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125 Edited by Linda Z. Holland, University of California, San Diego, La Jolla, CA, and accepted by Editorial Board Member Nancy Knowlton July 13, 2016 (received for review February 24, 2016) Diverse animal taxa metamorphose between larval and juvenile phases (12–15). These systems include hormones (16–18), neurotransmit- in response to bacteria. Although bacteria-induced metamorphosis is ters (19–21), and nitric oxide (22–24). Additionally, diverse animals widespread among metazoans, little is known about the molecular regulate metamorphosis at the transcriptional and posttranslational changes that occur in the animal upon stimulation by bacteria. Larvae levels, such as differential expression of metamorphosis-associated of the tubeworm Hydroides elegans metamorphose in response to genes (25–27) and MAPK signaling (28–31), respectively. Although surface-bound Pseudoalteromonas luteoviolacea bacteria, producing a number of signaling systems and regulatory networks orchestrate ordered arrays -
The Fouling Serpulids (Polychaeta: Serpulidae) from the Coasts of United States Coastal Waters: an Overview
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/319159713 The Fouling serpulids (Polychaeta: Serpulidae) from the coasts of United States coastal waters: an overview. Article in European Journal of Taxonomy · August 2017 DOI: 10.5852/ejt.2017.344 CITATIONS READS 10 1,144 4 authors: Rolando Bastida-Zavala Linda Mccann Universidad del Mar (Mexico), campus Puerto Ángel Smithsonian Environmental Research Center (SERC) Tiburon, California 64 PUBLICATIONS 635 CITATIONS 19 PUBLICATIONS 453 CITATIONS SEE PROFILE SEE PROFILE Erica Keppel Gregory Ruiz Smithsonian Institution Smithsonian Environmental Research Center (SERC) 47 PUBLICATIONS 221 CITATIONS 267 PUBLICATIONS 12,704 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: High resolution mapping of the Venice Lagoon View project THE EXPERIMENTAL FIELD IN THE ADRIATIC SEA View project All content following this page was uploaded by Erica Keppel on 17 August 2017. The user has requested enhancement of the downloaded file. European Journal of Taxonomy 344: 1–76 ISSN 2118-9773 https://doi.org/10.5852/ejt.2017.344 www.europeanjournaloftaxonomy.eu 2017 · Bastida-Zavala J.R. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:27AA4538-407D-470A-8141-365124193D85 The fouling serpulids (Polychaeta: Serpulidae) from United States coastal waters: an overview J. Rolando BASTIDA-ZAVALA 1, *, Linda D. McCANN 2, Erica KEPPEL 3 & Gregory M. RUIZ 4 1 Universidad del Mar, campus Puerto Ángel, Laboratorio de Sistemática de Invertebrados Marinos (LABSIM), Ciudad Universitaria, Puerto Ángel, Oaxaca, México, 70902, Apdo.