Mycology Syllabus

Total Page:16

File Type:pdf, Size:1020Kb

Mycology Syllabus Biology 5425 Fall 2018 Mycology Syllabus Instructor: Bryn Dentinger Office: LS 207 & NHMU Office: 801-585-1506 Lab: 801-587-5729 Email: [email protected] Office hours: by appointment Teaching Assistant: Alex Bradshaw Office: LS 207 Phone: Email: Office hours: by appointment Text: there is no officially assigned text for the class. However, these are recommended for general reference and some readings will be assigned from them (made available through Canvas): Webster, J. & Weber, R.W.S. 2007. Introduction to Fungi. 3rd Edition, J. Webster & R.W.S. Weber. Cambridge University Press. Alexopolous CJ, Mims CW, & Blackwell MM. 1996. Introductory Mycology. 4th Edition. Wiley Press. + updated chapters Esser, K. The mycota: a comprehensive treatise on fungi as experimental systems for basic and applied research. Multiple volume series. Springer Press. Course Web site: Canvas (https://utah.instructure.com/courses/517082) Class meets: Tu, Th 9:10-10:30 am, CSC 25 (lecture) Fr 12:55-5:00 pm, BIOL 140 (lab) Grading: 3 Lecture exams (100 points each) 2 Lab practical exams (25 points each) 5 Quizzes (10 points each) 1 Class presentation (50 points) 1 Lab report (100 points) 1 Fungus collection (50 points) TOTAL: 600 points 1 Biology 5425 Fall 2018 % of total % of total Grade Grade points points 100-93 A 77.9-73 C 92.9-90 A- 72.9-70 C- 89.9-88 B+ 69.9-68 D+ 87.9-83 B 67.9-60 D 82.9-80 B- 59.9- 0 F 79.9-78 C+ Final Exam: none Exams: Lecture exams will be based on lecture material and assigned reading. The best study guide for the exams is your own lecture and discussion notes. Exams may include short essay questions. Exams will be graded as quickly as possible and returned to you in class. There will be no makeup exams. In the event of a true emergency (e.g., you are hit by a car on the way to the exam and are in the process of a blood transfusion during the scheduled exam period), OBTAIN WRITTEN DOCUMENTATION of the emergency and contact me as soon as you are able and I will try to work something out with you. You can arrange to take an exam early if you have a legitimate scheduling conflict, but you cannot take an exam after it is given to the class. Quizzes and practical exams will be based on the lab and lecture material and will test practical knowledge of fungus manipulation and identification. The class presentation will be on a taxon assigned to you during a class. The lab report will be a formal document written in the form of a scientific manuscript and will be based on an analysis of samples collected during the required field trip. This will include a data analysis component which will be completed as a practical lab session. Every student will make a fungus collection using 5 samples collected during the field trip augmented where needed by independently collected specimens. Evaluation of each collection will be based on accuracy and completeness of collection information entered into a database (5 points/specimen), the number of correctly identified specimens (2 points/genus), and proper preparation and organization of the specimens (3 points). Regrade policy: Lecture and laboratory exams are graded with care against a predetermined key, which will be presented in class at the time exams are returned to you. We will correct any addition errors on exams, but we will NOT regrade exams. Course Drop Policy: The course withdrawal policy is the same as the University of Utah policy described in the Class Schedule. September 4 is the last day to drop with no tuition and no notation on the transcript, or elect the CR/NC or audit option. October 19 is the last day students 2 Biology 5425 Fall 2018 can withdraw from classes, but tuition will be assessed. November 30 is the last day to reverse a CR/NC option. Withdrawal from the course after October 19 requires special permission from the instructor. It will NOT be allowed except in cases of significant medical or personal emergency that must be documented by a medical professional or other relevant person. Americans with Disabilities Act (ADA): The University of Utah Department of Biology seeks to provide equal access to its programs, services and activities for people with disabilities. If you will need accommodations in this class, reasonable prior notice needs to be given to the instructor and to the Center for Disability Services, http://disability.utah.edu/, 162 Olpin Union Bldg, 581-5020 (V/TDD) to make arrangements for accommodations. This information is available in alternative format with prior notification. 3 Biology 5425 Fall 2018 Expected Learning Outcomes Students in Mycology should have the following Expected Learning Outcomes (ELOs). 1. Learn how to collect fungi from the environment and how to preserve, process and curate specimens in a fungus collection. 2. Learn how to isolate and manipulate fungal cultures on/in agar and liquid media using aseptic technique. 3. Learn how to interpret and discuss phylogenetic relationships of major groups within Fungi and of Fungi to other clades in the Tree of Life. 4. Learn how to identify fungi using a combination of morphological and molecular (DNA- based) techniques, including light microscopy, BLAST and basic phylogenetic analysis. 5. Learn the ecological roles of fungi and how these relate to ecosystem health and global carbon cycles. 6. Learn to use critical reading and thinking skills to interpret and critique research papers from the primary mycological literature. 7. Learn how to discuss the coevolutionary interactions between fungi and other organisms, both mutualistic and antagonistic. 8. Demonstrate an appreciation of the diversity and importance of fungi to human well- being. 4 Biology 5425 Fall 2018 Mycology Lecture & Lab Schedule Date Topic Reading Assignment Other Readings Lab Introduction Aug 21 Tu Taxonomy and Systematics 23 Th McLaughlin et al. 2009 Adl et al. 2012 24 F Field Trip Fungal-like organisms (slime molds, water molds) 28 Tu Stephenson 2014 Yoshida et al. 2013 Basidiomycota I. Introduction to Basidiomycota 30 Th Alexopolous et al. 1996, Chapter 16 Bennett 2015 31 F Field Trip Basidiomycota II. Form and function of basidiomata Webster & Weber, Chapter 18 - QUIZ 1 (http://lib.myilibrary.com/Open.aspx? Money 1998, Fischer et Sep 4 Tu id=95622) al. 2010 Basidiomycota III. Sexual reproduction, life cycles Banuett 2015, James 6 Th Heitman 2015 2015 7 F Field Trip - PRACTICAL 1 Basidiomycota IV. Litter and wood decomposition 11 Tu Floudas et al. 2012, Riley et al. 2014 Basidiomycota V. Coevolution: Plant and animal 13 Th relationships Plett et al. 2012 14 F Field Trip 18 Tu Basidiomycota : Agaricomycetes I. Hibbett et al. 2014 20 Th Basidiomycota : Agaricomycetes II. 21 F Field Trip 25 Tu Basidiomycota : Agaricomycetes III. - QUIZ 2 Gould 1992 Basidiomycota : Jellies (Dacrymycetes & 27 Th Tremellomycetes) 28 F Field Trip Basidiomycota : Ustilaginomycotina, & Pucciniomycotina Oct 2 Tu Begerow et al. 2014 Weiss et al. 2014 1ST EXAM 4 Th 5 Fr Field Trip fall break 7-14 FALL BREAK Webster & Weber, Chapter 8 Ascomycota I. Introduction to Ascomycota (http://lib.myilibrary.co 16 Tu Alexopolous et al. 1996, Chapter 7 m/Open.aspx?id=9562 Ascomycota II: Sexual & asexual reproduction; life cycles 18 Th LeTacon et al. 2016 19 F PCR & DNA Sequencing Ascomycota III. Coevolution: Plant and animal 23 Tu relationships - QUIZ 3 de Bekker et al. 2014 Ascomycota : Saccharomycotina & Taphrinomycotina 25 Th Kurtzman & Sugiyama 2015 26 F DNA sequence analysis, phylogenetics 30 Tu Ascomycota : Pezizomycotina I - Presentations Pfister 2015, Zhang & Wang 2015 1 Th Ascomycota : Pezizomycotina II - Presentations Gueidan et al. 2015 Nov 2 F isolating fungi from environmental samples 6 Tu Ascomycota : Pezizomycotina III - Presentations Geiser et al. 2015 8 Th Ascomycota : Pezizomycotina IV - Presentations Schoch & Grube 2015 9 F microscopy of ascos & zygos - PRACTICAL 2 13 Tu 2ND EXAM 15 Th "Zygomycota" & "Glomeromycota" Spatafora et al. 2016 Benny et al. 2015, 16 F Curate collections - NHMU 20 Tu Early diverging fungi (chytrids et al.) - QUIZ 4 Powell & Letcher 2015 James et al. 2015, Thanksgiving 22-25 Thanksgiving 27 Tu Guest Lecture: TBA TBD 29 Th Guest Lecture: TBA 30 F Food Lab - Lab repot due Dec 4 Tu Fungi & Society - QUIZ 5 TBD 6 Th 3RD EXAM 5 .
Recommended publications
  • Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina)
    | YEASTBOOK GENOME ORGANIZATION AND INTEGRITY Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina) Bernard A. Dujon*,†,1 and Edward J. Louis‡,§ *Department Genomes and Genetics, Institut Pasteur, Centre National de la Recherche Scientifique UMR3525, 75724-CEDEX15 Paris, France, †University Pierre and Marie Curie UFR927, 75005 Paris, France, ‡Centre for Genetic Architecture of Complex Traits, and xDepartment of Genetics, University of Leicester, LE1 7RH, United Kingdom ORCID ID: 0000-0003-1157-3608 (E.J.L.) ABSTRACT Considerable progress in our understanding of yeast genomes and their evolution has been made over the last decade with the sequencing, analysis, and comparisons of numerous species, strains, or isolates of diverse origins. The role played by yeasts in natural environments as well as in artificial manufactures, combined with the importance of some species as model experimental systems sustained this effort. At the same time, their enormous evolutionary diversity (there are yeast species in every subphylum of Dikarya) sparked curiosity but necessitated further efforts to obtain appropriate reference genomes. Today, yeast genomes have been very informative about basic mechanisms of evolution, speciation, hybridization, domestication, as well as about the molecular machineries underlying them. They are also irreplaceable to investigate in detail the complex relationship between genotypes and phenotypes with both theoretical and practical implications. This review examines these questions at two distinct levels offered by the broad evolutionary range of yeasts: inside the best-studied Saccharomyces species complex, and across the entire and diversified subphylum of Saccharomycotina. While obviously revealing evolutionary histories at different scales, data converge to a remarkably coherent picture in which one can estimate the relative importance of intrinsic genome dynamics, including gene birth and loss, vs.
    [Show full text]
  • Introduction to Mycology
    INTRODUCTION TO MYCOLOGY The term "mycology" is derived from Greek word "mykes" meaning mushroom. Therefore mycology is the study of fungi. The ability of fungi to invade plant and animal tissue was observed in early 19th century but the first documented animal infection by any fungus was made by Bassi, who in 1835 studied the muscardine disease of silkworm and proved the that the infection was caused by a fungus Beauveria bassiana. In 1910 Raymond Sabouraud published his book Les Teignes, which was a comprehensive study of dermatophytic fungi. He is also regarded as father of medical mycology. Importance of fungi: Fungi inhabit almost every niche in the environment and humans are exposed to these organisms in various fields of life. Beneficial Effects of Fungi: 1. Decomposition - nutrient and carbon recycling. 2. Biosynthetic factories. The fermentation property is used for the industrial production of alcohols, fats, citric, oxalic and gluconic acids. 3. Important sources of antibiotics, such as Penicillin. 4. Model organisms for biochemical and genetic studies. Eg: Neurospora crassa 5. Saccharomyces cerviciae is extensively used in recombinant DNA technology, which includes the Hepatitis B Vaccine. 6. Some fungi are edible (mushrooms). 7. Yeasts provide nutritional supplements such as vitamins and cofactors. 8. Penicillium is used to flavour Roquefort and Camembert cheeses. 9. Ergot produced by Claviceps purpurea contains medically important alkaloids that help in inducing uterine contractions, controlling bleeding and treating migraine. 10. Fungi (Leptolegnia caudate and Aphanomyces laevis) are used to trap mosquito larvae in paddy fields and thus help in malaria control. Harmful Effects of Fungi: 1.
    [Show full text]
  • Chapter 13: Ecosystem Mycology: Saprotrophs, and Mutualisms Between Plants and Fungi
    21st Century Guidebook to Fungi, Second Edition of the online version, by David Moore, Geoffrey D. Robson and Anthony P. J. Trinci [URL: http://www.davidmoore.org.uk/21st_Century_Guidebook_to_Fungi_PLATINUM/] Chapter 13: Ecosystem mycology: saprotrophs, and mutualisms between plants and fungi 13.1 Ecosystem mycology 13.2 Fungi as recyclers and saprotrophs 13.3 Make the earth move 13.4 Fungal toxins: food contamination and deterioration 13.5 Decay of structural timber in dwellings 13.6 Using fungi to remediate toxic and recalcitrant wastes 13.7 Release of chlorohydrocarbons to the atmosphere by wood decay fungi 13.8 Introduction to mycorrhizas 13.9 Types of mycorrhiza 13.10 Arbuscular (AM) endomycorrhizas 13.11 Ericoid endomycorrhizas 13.12 Arbutoid endomycorrhizas 13.13 Monotropoid endomycorrhizas 13.14 Orchidaceous endomycorrhizas 13.15 Ectomycorrhizas 13.16 Ectendomycorrhizas 13.17 The effects of mycorrhizas and their commercial applications, and the impact of environmental and climate changes 13.18 Introduction to lichens 13.19 Introduction to endophytes 13.20 Epiphytes 13.21 Chapter 13 References and further reading Chapter 13: Ecosystem mycology: saprotrophs, and mutualisms between plants and fungi In this Chapter on ecosystem mycology we cover fungi as saprotrophs, and the mutualisms between plants and fungi, concentrating on fungi as recyclers that can make the earth move. Fungi also cause food contamination and deterioration through their formation of toxins, although some of these, like statins and strobilurins, are exploited commercially for our own practical purposes. The ability of fungi to degrade wood makes them responsible for the decay of structural timber in dwellings, but on the other hand enables them to be used to remediate toxic and recalcitrant wastes.
    [Show full text]
  • Biology of Fungi, Lecture 2: the Diversity of Fungi and Fungus-Like Organisms
    Biology of Fungi, Lecture 2: The Diversity of Fungi and Fungus-Like Organisms Terms You Should Understand u ‘Fungus’ (pl., fungi) is a taxonomic term and does not refer to morphology u ‘Mold’ is a morphological term referring to a filamentous (multicellular) condition u ‘Mildew’ is a term that refers to a particular type of mold u ‘Yeast’ is a morphological term referring to a unicellular condition Special Lecture Notes on Fungal Taxonomy u Fungal taxonomy is constantly in flux u Not one taxonomic scheme will be agreed upon by all mycologists u Classical fungal taxonomy was based primarily upon morphological features u Contemporary fungal taxonomy is based upon phylogenetic relationships Fungi in a Broad Sense u Mycologists have traditionally studied a diverse number of organisms, many not true fungi, but fungal-like in their appearance, physiology, or life style u At one point, these fungal-like microbes included the Actinomycetes, due to their filamentous growth patterns, but today are known as Gram-positive bacteria u The types of organisms mycologists have traditionally studied are now divided based upon phylogenetic relationships u These relationships are: Q Kingdom Fungi - true fungi Q Kingdom Straminipila - “water molds” Q Kingdom Mycetozoa - “slime molds” u Kingdom Fungi (Mycota) Q Phylum: Chytridiomycota Q Phylum: Zygomycota Q Phylum: Glomeromycota Q Phylum: Ascomycota Q Phylum: Basidiomycota Q Form-Phylum: Deuteromycota (Fungi Imperfecti) Page 1 of 16 Biology of Fungi Lecture 2: Diversity of Fungi u Kingdom Straminiplia (Chromista)
    [Show full text]
  • Comparative Genome Analysis Across a Kingdom of Eukaryotic Organisms: Specialization and Diversification in the Fungi
    Downloaded from genome.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Resource Comparative genome analysis across a kingdom of eukaryotic organisms: Specialization and diversification in the Fungi Michael J. Cornell,1,2 Intikhab Alam,1 Darren M. Soanes,3 Han Min Wong,3 Cornelia Hedeler,1 Norman W. Paton,1 Magnus Rattray,1 Simon J. Hubbard,2 Nicholas J. Talbot,3 and Stephen G. Oliver2,4,5,6 1School of Computer Science, University of Manchester, Manchester M13 9PL, United Kingdom; 2Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, United Kingdom; 3Department of Biosciences, University of Exeter EX4 4QD, United Kingdom; 4Department of Biochemistry, University of Cambridge, Cambridge CB2 1 GA, United Kingdom The recent proliferation of genome sequencing in diverse fungal species has provided the first opportunity for comparative genome analysis across a eukaryotic kingdom. Here, we report a comparative study of 34 complete fungal genome sequences, representing a broad diversity of Ascomycete, Basidiomycete, and Zygomycete species. We have clustered all predicted protein-encoding gene sequences from these species to provide a means of investigating gene innovations, gene family expansions, protein family diversification, and the conservation of essential gene functions—empirically determined in Saccharomyces cerevisiae—among the fungi. The results are presented with reference to a phylogeny of the 34 fungal species, based on 29 universally conserved protein-encoding gene sequences. We contrast this phylogeny with one based on gene presence and absence and show that, while the two phylogenies are largely in agreement, there are differences in the positioning of some species.
    [Show full text]
  • Diversity Recognition of the Discipline of Conservation Mycology
    Diversity Recognition of the discipline of conservation mycology Tom W. May ,1 ∗ Jerry A. Cooper,2 Anders Dahlberg,3 Giuliana Furci,4 DavidW.Minter,5 Gregory M. Mueller,6 Alison Pouliot,7 and Zhuliang Yang8 1Royal Botanic Gardens Victoria, Birdwood Avenue, Melbourne, VIC 3004, Australia 2Manaaki Whenua – Landcare Research, 54 Gerald Street, Lincoln 7608, New Zealand 3Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, 750 07 Uppsala, Sweden 4Fundacion´ Fungi, Paseo Bulnes 79 oficina 112A, Santiago, Chile 5CABI, Bakeham Lane, Egham, Surrey TW20 9TY, U.K. 6Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL 60022, U.S.A. 7Fenner School, Australian National University, Linnaeus Way, Canberra, ACT 2601, Australia 8Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China Fungi constitute one of the major lineages of life (organ- ing literature explicitly dealing with fungi conservation isms treated as fungi are also scattered in other lineages). (Moore et al. 2001; Heilmann-Clausen et al. 2014). Kingdom Fungi are quite separate to Animalia and Plan- Recent innovations and initiatives in the way fungi are tae, but fungi are intimately connected to other biota studied and regarded mean it is timely to recognize the through food webs and symbioses as decomposers, en- discipline of conservation mycology within conservation dophytes, pathogens, lichens, and mycorrhizas. During science. Advances include acceptance of fungi as a ma- much of the 20th century, fungi were either ignored jor unit of biota, alongside flora and fauna (Pouliot & or perceived as intractable in conventional conserva- May 2010; Minter 2011); recognition that most fungal tion initiatives.
    [Show full text]
  • When Mycologists Describe New Species, Not All Relevant
    A peer-reviewed open-access journal MycoKeys 72: 109–128 (2020) Mycological species descriptions over time 109 doi: 10.3897/mycokeys.72.56691 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research When mycologists describe new species, not all relevant information is provided (clearly enough) Louisa Durkin1, Tobias Jansson1, Marisol Sanchez2, Maryia Khomich3, Martin Ryberg4, Erik Kristiansson5, R. Henrik Nilsson1 1 Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden 2 Department of Forest Mycology and Plant Pathology, Uppsala Biocentre, Swedish University of Agricultural Sciences, Uppsala, Sweden 3 Nofima – Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, 1431 Ås, Norway 4 Department of Organismal Biology, Uppsala University, Uppsala, Sweden 5 Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden Corresponding author: R. Henrik Nilsson ([email protected]) Academic editor: T. Lumbsch | Received 19 July 2020 | Accepted 24 August 2020 | Published 10 September 2020 Citation: Durkin L, Jansson T, Sanchez M, Khomich M, Ryberg M, Kristiansson E, Nilsson RH (2020) When mycologists describe new species, not all relevant information is provided (clearly enough). MycoKeys 72: 109–128. https://doi.org/10.3897/mycokeys.72.56691 Abstract Taxonomic mycology struggles with what seems to be a perpetual shortage
    [Show full text]
  • Lin, Xiaorong Professor
    BIOGRAPHICAL SKETCH NAME POSITION TITLE Lin, Xiaorong Professor EDUCATION/TRAINING INSTITUTION AND LOCATION DEGREE YEAR(s) FIELD OF STUDY B.S. Dalian University of Technology, China 1992-1996 Chemical Engineering (honors) Dalian Institute of Chemical Physics, China M.S. 1996-1999 Chemical Engineering Molecular Genetics and University of Georgia Ph.D. 1999-2003 Fungal Biology Duke University Medical Center Postdoc 2003-2007 Medical Mycology A. Positions and Honors. Positions and Employment 1996 – 1999 Graduate Research Assistant, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China 1999 – 2003 Graduate Research Assistant, Department of Plant Biology, University of Georgia, GA 2003 – 2007 Postdoctoral Research Associate, Department of Molecular Genetics and Microbiology, Duke University Medical Center, NC 2008 – 2013 Tenure-Track Assistant Professor, Department of Biology, Texas A&M University, TX 2013 – 2017 Associate Professor with tenure, Department of Biology, Texas A&M University, TX (Promoted to Professor in 2017) 2014 – 2017 Adjunct faculty, Department of Microbiology and Immunology, Texas A&M Health Science Center, TX 2017 – present Professor, Department of Microbiology, University of Georgia, GA 2018 – present Adjunct Professor, Department of Plant Biology, Department of Infectious Diseases, University of Georgia, GA Honorary Memberships 2018 – present Fellow, American Association for the Advancement of Science (AAAS) 2019 – present Fellow, American Academy of Microbiology (AAM) Professional Membership 2001
    [Show full text]
  • Mycology and BIOE 424 – Ecology of Fungi Are Offered in Fall On
    BIOE 424 By Cathy Cripps BIOM 423 - Mycology and BIOE 424 – Ecology of Fungi are offered in Fall on alternate years: even years for Mycology (BIOM 423 listed under Microbiology) and odd years for Ecology of Fungi (BIOE 424 listed under Ecology). Sometimes the classes are hard to find on the MSU website but you can always search under Cathy Cripps as Instructor. Classes are limited to around 15 students and fill up early so if you want to take one of these courses, it is best to sign up early. Either course can be taken first as one focuses on the ecology of fungi and one on the taxonomic groups. I have had many students take both courses to gain a better understanding of fungi. The courses are intended for advanced undergraduates (juniors and seniors) and graduate students although post docs and researchers have attended sections of the course. Each course consists of two lectures per week followed by a two hour lab, although we often stay around to play with fungi after the official lab period ends. Each course has two field trips to nearby habitats. These courses are electives for Plant Biotechnology, Microbial Biotechnology, Plant Pathology, Horticulture, Plant Biology, Organismal Biology, Ecology, Biochemistry, Bioengineering, Microbiology, and some LRES programs. Ecology of Fungi (BIOE 424) is a more research-oriented course often taken by our Biotechnology students, but students in LRES (restoration, etc.), Biochemistry and Bioengineering also take this course to learn how to handle fungi in the laboratory. This course starts with a section on Fungal Ecology covering fungi as decomposers of various substrates, as pathogens (primarily of plants although epidemiology is not covered), endophytes (often with a visit from Dr.
    [Show full text]
  • One Fungus, Which Genes? Development and Assessment of Universal Primers for Potential Secondary Fungal DNA Barcodes
    Persoonia 35, 2015: 242–263 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158515X689135 One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes J.B. Stielow1*, C.A. Lévesque2*, K.A. Seifert 2*, W. Meyer3*, L. Irinyi3, D. Smits1, R. Renfurm1, G.J.M. Verkley1, M. Groenewald1, D. Chaduli 4, A. Lomascolo 4,5, S. Welti6, L. Lesage-Meessen4, A. Favel4,5, A.M.S. Al-Hatmi1,7,24, U. Damm1,8, N. Yilmaz1,2, J. Houbraken1, L. Lombard1, W. Quaedvlieg1, M. Binder1, L.A.I. Vaas1,3,9, D. Vu1, A. Yurkov10, D. Begerow11, O. Roehl11, M. Guerreiro12, A. Fonseca12, K. Samerpitak1,13,24, A.D. van Diepeningen1, S. Dolatabadi1,24, L.F. Moreno1,24,25, S. Casaregola14, S. Mallet14, N. Jacques14, L. Roscini15, E. Egidi16,17, C. Bizet18,19, D. Garcia-Hermoso18,19, M.P. Martín 20, S. Deng 21, J.Z. Groenewald1, T. Boekhout 1,21, Z.W. de Beer 22, I. Barnes 23, T.A. Duong 23, M.J. Wingfield 22, G.S. de Hoog1,24,27, P.W. Crous1,22,26, C.T. Lewis 2, S. Hambleton2, T.A.A. Moussa27,28, H.S. Al-Zahrani 27, O.A. Almaghrabi27, G. Louis-Seize2, R. Assabgui 2, W. McCormick 2, G. Omer1, K. Dukik1, G. Cardinali15, U. Eberhardt 29,30, M. de Vries1, V. Robert1* Key words Abstract The aim of this study was to assess potential candidate gene regions and corresponding universal primer pairs as secondary DNA barcodes for the fungal kingdom, additional to ITS rDNA as primary barcode.
    [Show full text]
  • INTRODUCTORY MYCOLOGY for the CURIOUS NATURALIST Week 3: May 14 Ecological Functions of Fungi Bill Bakaitis Class Download 4/15/19
    INTRODUCTORY MYCOLOGY FOR THE CURIOUS NATURALIST Week 3: May 14 Ecological Functions of Fungi Bill Bakaitis class download 4/15/19 As members of the Fifth Kingdom, Fungi are essential to the integrated systematic functioning and health of our planets ecosystem. In this presentation we will briefly sketch in a few basic concepts necessary in general to understand the dynamic, emergent, complex, self-regulation of a healthy system. Following this we will look more specifically at the some of the various ways fungi serve/assist in the role of system regulators. These basic ideas are conceptual: I have therefor prepared a few outlines and drawings which I hope will assist in advancing the material I wish to share. There will be plenty of slides of nature and mushrooms, but if you are the type of person who would like to have a deeper grasp of the Natural World, you may wish to print out the following outlines and drawings and bring them with you to this talk, which will be the most conceptual of the four in this series. We will not be looking at the ecological consequences of commercial collection of Mushrooms in this presentation, but if interested in this problem, you may wish to read my critical assessment which I was asked to prepare for Mycophile, the Newsletter of NAMA, The North American Mycological Association. http://www.namyco.org/docs/MycophileJulyAug2013.pdf (Thoughts on Mushroom Foraging pp 16-19… and while you are there, you might have a look at Larry Evans brief article p. 13 on the role of fungal hyphae in sequestering carbon, an idea which will be discussed in this week’s presentation.) .
    [Show full text]
  • Appressorium: the Breakthrough in Dikarya
    Journal of Fungi Article Appressorium: The Breakthrough in Dikarya Alexander Demoor, Philippe Silar and Sylvain Brun * Laboratoire Interdisciplinaire des Energies de Demain, LIED-UMR 8236, Université de Paris, 5 rue Marie-Andree Lagroua, 75205 Paris, France * Correspondence: [email protected] Received: 28 May 2019; Accepted: 30 July 2019; Published: 3 August 2019 Abstract: Phytopathogenic and mycorrhizal fungi often penetrate living hosts by using appressoria and related structures. The differentiation of similar structures in saprotrophic fungi to penetrate dead plant biomass has seldom been investigated and has been reported only in the model fungus Podospora anserina. Here, we report on the ability of many saprotrophs from a large range of taxa to produce appressoria on cellophane. Most Ascomycota and Basidiomycota were able to form appressoria. In contrast, none of the three investigated Mucoromycotina was able to differentiate such structures. The ability of filamentous fungi to differentiate appressoria no longer belongs solely to pathogenic or mutualistic fungi, and this raises the question of the evolutionary origin of the appressorium in Eumycetes. Keywords: appressorium; infection cushion; penetration; biomass degradation; saprotrophic fungi; Eumycetes; cellophane 1. Introduction Accessing and degrading biomass are crucial processes for heterotrophic organisms such as fungi. Nowadays, fungi are famous biodegraders that are able to produce an exhaustive set of biomass- degrading enzymes, the Carbohydrate Active enzymes (CAZymes) allowing the potent degradation of complex sugars such as cellulose, hemicellulose, and the more recalcitrant lignin polymer [1]. Because of their importance for industry and biofuel production in particular, many scientific programs worldwide aim at mining this collection of enzymes in fungal genomes and at understanding fungal lignocellulosic plant biomass degradation.
    [Show full text]