Zinc in the Retinal Pigment Epithelium and Choriocapillaris Interface

Total Page:16

File Type:pdf, Size:1020Kb

Zinc in the Retinal Pigment Epithelium and Choriocapillaris Interface Zinc in the Retinal Pigment Epithelium and Choriocapillaris Interface A Thesis Submitted to University College London for the degree of Doctor of Philosophy Sabrina Cahyadi BSc Department of Ocular Biology and Therapeutics Institute of Ophthalmology University College London 2012 1 Declaration I, Sabrina Cahyadi confirm that the work presented in the thesis titled “Zinc in the Retinal Pigment Epithelium and Choriocapillaris Interface” is my own work. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. ______________ Sabrina Cahyadi Date: 14 November 2011 2 Acknowledgements “For wisdom will enter your heart and knowledge will be pleasant to your soul; discretion will guard you, understanding will watch over you.” First and foremost, I would like to thank my supervisors Professor Phil Luthert and Dr. Imre Lengyel for accepting me as their student, and the enormous support, help and guidance they have provided. I would also like to thank the Dorothy Hodgkin Postgraduate Award, the Mercer Fund and Professor Alan Bird for their very generous studentship which enabled me to do this PhD. The funding I receive from the Special Trustees of Moorfields Eye Hospital allowed me to do my day-to-day lab works. I thank Peter Marshall who ensured that the funds reach me in time. I must also thank Dr. Peter Munro, Cynthia Langley, Alexandra Boss, and Dr. Virginia Calder for all the help and moral supports I have received. I cannot believe how much have happened in the past three years. The people at the Institute of Ophthalmology have supported me through all the amazing, good, bad, ho-hum, and heartbreaking episodes of my PhD. My fellow lab members Neda Barzegar-Befroei and Ashraf Gango, who provided so much help and advice.The UCL students whom I have had the greatest privilege to work with, Bhavika Patel, Yemsrach Tadesse, Anishka Wilwaraachachii and Alexia Phedonos. Thank you for all of your help with the cell biology studies and supports throughout. I thank members of the Ohnuma, Bhattacharya and Shima lab, Asma Aslam and Meihua Ju for showing the very clueless student that I was when I started how to manage and run a lab without glitches. I thank Margaret Dellett, Wanzhou Hu, Vasia Papadaki and Michelle Kim for constantly telling me to fight for my PhD and providing shoulders to cry on (literally speaking). I thank Amna Shah, Anna Rose, Sancy Low, Wendy Mustill, Liza Sharmini, and Giovanna Alfano for teaching me all the cloning aspects, for all the encouragement and for what seemed to be an infinite cake supply during my time in their office. To all my King’s girls, Saleha Hassan, Rebecca Alade, Appitha Arulappu, Natasha Khalife, and Mehnaz Hossain, need I say more, you guys are truly the best. 3 Special thanks go to Prof. Christer Hogstrand from King’s College London who took me as his student for my final year undergraduate project. It was also because of your recommendation that this PhD is possible. Tom Carroll, Josef Rasinger and Valentina Reffatto, former Hogstrand Lab PhD students who instilled the confidence in me that I am worthy enough of a PhD.I am grateful for my friends Vania Kusworo and Marco Japutra for all the 12 years that I have known you both. I thank our collaborators Dr. Elod Kortvely, Matteo Gorza and Jennifer Behler from Helmholtz Zentrum Munchen for useful discussions, sheltering me for a month in your lab and pointing out a crucial error in my experimentation which would have otherwise been detrimental. I thank Professor Richard Thompson for taking some of his valuable time to read the drafts of the manuscript and for some very useful discussions about zinc stoichiometry. I am indebted to the people closest to me, my parents who have been my ardent supporters for all 23 years of my life, my brother and my sisters for their emotional and financial support during my undergraduate and PhD degree. To my sister Janice, thank you for all the frozen Bolognese sauce tubs and banana cakes you made when cooking seemed to be the last thing on my mind. I also thank Winardi Suhali for five years of endless support, and encouragement. You have seen me at my best and at my worst, and thank you for sticking around for me. Finally, I thank my examiners Prof. John Greenwood and Dr. Kathryn Taylor for their interest in my thesis and a valuable opportunity to discuss it with them. 4 List of Posters and Publications Barzegar-Befroei, Neda, Cahyadi, Sabrina , Gango, Ashraf, Peto, Tunde, and Lengyel, Imre 2011. Zinc in Eye Diseases. Zinc in Human Health . Amsterdam: IOS Press. Sabrina Cahyadi , Bhavika J. Patel, Meihua Ju, Alexia Phedonos, Anishka Wilwaraarachchi, and Imre Lengyel. Effect of Zinc on Fenestrae Formation in Cultured Endothelial Cells.Poster presentation at the Association of Research in Vision and Ophthalmology (ARVO) annual meeting 2011. Sabrina Cahyadi , Bhavika Patel, Meihua Ju and Imre Lengyel Effect of zinc on fenestra formation in cultured endothelial cells. Poster presentation at the Young Researcher Vision Camp in Liebertingen June 25-27 2010. Zinc in the RPE-Choroid Interface Presentation at the Zinc-UK meeting 2010 5 Abbreviations AE – Acrodermatitis Enteropathica AD – Alzheimer’s Disease AKT – Serine Threonine Kinase AMD – Age-Related Macular Degeneration AMG - Autometallography APS – Ammonium Persulfate AREDS – Age-Related Eye Disease Study BCA – Bichinconinic Assay BSA – Bovine Serum Albumin CDK4 – Cell division kinase 4 CRALBP - Cellular retinaldehyde binding protein CFH – Complement Factor H DNA – Deoxyribonucleic Acid ERK - Extracellular-signal-Regulated Kinases E-Cadherin – Epithelial Cadherin FAM - 6-carboxyfluoroscein FGF – Fibroblast Growth Factor GABA - Gamma-Aminobutyric Acid GAPDH - Glyceraldehyde 3-Phosphate Dehydrogenase GDP – Guanosine Diphosphate GFP – Green Fluorescent Protein GPx – Glutathione Peroxidase 6 GTP – Guanosine Triphosphate HMDS - Hexamethyldisilazone HRP – Horseradish Peroxidase HUVECs - Human umbilical vein endothelial cells IL6 – Interleukin 6 IP3 - Inositol 1,4,5-Trisphosphate kDa - Kilodalton KDR - Kinase insert Domain Receptor LA – Latrunculin A LB- Luria-Bertani N-Cadherin – Neural Cadherin nM – Nano molar MDCK – Madin-Darby Canine Kidney cell line MMLV- Moloney Murine Leukemia Virus MT – Metallothionein MTF - Metal Responsive Element Binding Transcription Factor 1 NEAA – Non-Essential Amino Acid NO – Nitric Oxide NK – Natural Killer PEDF – Pigment Epithelium Derived Factor PDGF - Platelet- Derived Growth Factor PCR – Polymerase Chain Reaction PFA – Paraformaldehyde 7 PI3K - phosphoinositol-3-Kinase PV-1 – Plasmalemma Vesicle Associated Protein PVDF - Polyvinylidene Fluoride QPCR- Quantitative Polymerase Chain Reaction RNA – Ribonucleic Acid RPE- Retinal Pigment Epithelium RT-PCR – Reverse Transcription Polymerase Chain Reaction SOC – Super Optimal Broth with glucose SDS- Sodium Dodecyl Sulfate TER – Transepithelial Resistance TBS – Tris-Buffered Saline TBST- Tris- Buffered Saline Tween TPEN - N,N,N',N'-tetrakis (2 pyridylmethyl) ethylenediamine TEMED - ,,′, ′-Tetramethylethylenediamine TGF-b - Transforming Growth Factor – beta UBC – Ubiquitin C protein VEGF – Vascular Endothelial Growth Factor YWHAZ - Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein ZIP – ZRT/IRT-like proteins ZNT – also known as cation diffusion facilitator proteins ZO-1 – Zona Occludin 1 protein ZONAB – ZO-1 associated nucleic acid binding protein 8 Abstract The highest concentration of zinc in human tissues is found in the retinal pigment epithelium (RPE)-choroid complex. Despite the association of zinc deficiency with age-related macular degeneration (AMD) and the widespread use of zinc supplementation to slow the progression ofAMD, very little is known about how zinc affects the RPE and the choroid. Molecular and cell biology techniques were used to uncover how changes in zinc levels could play a role in regulating the RPE- choroid complex. First, QRT-PCR was used to assess the expressions of all 24 known zinc transporters in cadaveric human RPE, cultured RPE cells and cells isolated from other parts of the retina, ZIP12 was identified as a potentially important transporter to regulate zinc levels at the RPE-choroid interface. As there is very little published about ZIP12, bioinformatics and data mining were used to understand how this protein might function. Confirmation of these predictions was achieved through the cloning and expression of V5-tagged ZIP12 protein in different cell lines. Based on these experiments, we concluded that ZIP12 is a plasma membrane transporter that mediates zinc influx. In parallel, we tested the hypothesis that extracellular zinc levels in Bruch’s membrane might be involved in regulating both the RPE as well as the fenestrated choroidal capillaries using cultures of ARPE19 and bEND5 cells respectively. The presence of extracellular zinc in the growth media affected the characteristics of ARPE19 cells as well as fenestrae formation in bEND5 cells. In summary, the range of zinc transporter at the RPE-choroid interface was defined and properties of one particular transporter, ZIP12 which may have a specific role at this site, were elucidated. Using cellular systems some of the effects of zinc on the RPE-choroid complex were investigated. Future studies are required to elucidate the role of zinc in the AMD pathogenesis. 9 Table of Contents Declaration ................................................................................................................. 2 Abstract .....................................................................................................................
Recommended publications
  • The Significance of the Evolutionary Relationship of Prion Proteins and ZIP Transporters in Health and Disease
    The Significance of the Evolutionary Relationship of Prion Proteins and ZIP Transporters in Health and Disease by Sepehr Ehsani A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Laboratory Medicine and Pathobiology University of Toronto © Copyright by Sepehr Ehsani 2012 The Significance of the Evolutionary Relationship of Prion Proteins and ZIP Transporters in Health and Disease Sepehr Ehsani Doctor of Philosophy Department of Laboratory Medicine and Pathobiology University of Toronto 2012 Abstract The cellular prion protein (PrPC) is unique amongst mammalian proteins in that it not only has the capacity to aggregate (in the form of scrapie PrP; PrPSc) and cause neuronal degeneration, but can also act as an independent vector for the transmission of disease from one individual to another of the same or, in some instances, other species. Since the discovery of PrPC nearly thirty years ago, two salient questions have remained largely unanswered, namely, (i) what is the normal function of the cellular protein in the central nervous system, and (ii) what is/are the factor(s) involved in the misfolding of PrPC into PrPSc? To shed light on aspects of these questions, we undertook a discovery-based interactome investigation of PrPC in mouse neuroblastoma cells (Chapter 2), and among the candidate interactors, identified two members of the ZIP family of zinc transporters (ZIP6 and ZIP10) as possessing a PrP-like domain. Detailed analyses revealed that the LIV-1 subfamily of ZIP transporters (to which ZIPs 6 and 10 belong) are in fact the evolutionary ancestors of prions (Chapter 3).
    [Show full text]
  • Anatomy and Function of Synaptic Zinc in the Striatum
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2015-09-28 Anatomy and Function of Synaptic Zinc in the Striatum Thackray, Sarah Elizabeth Thackray, S. E. (2015). Anatomy and Function of Synaptic Zinc in the Striatum (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/24841 http://hdl.handle.net/11023/2537 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Anatomy and Function of Synaptic Zinc in the Striatum by Sarah Elizabeth Thackray A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN PSYCHOLOGY CALGARY, ALBERTA SEPTEMBER, 2015 © Sarah Elizabeth Thackray 2015 Abstract Synaptic zinc is located in many regions of the brain. One area that contains a high amount is the input center of the basal ganglia: the striatum. Environmental enrichment was used to examine potential changes in morphology of striatal cells of mice with (ZnT3 wildtype) and without (ZnT3 knockout) the zinc transporter (ZnT3) necessary to load zinc into vesicles. No changes were found in dendritic length for any regions of the striatum. However, all regions of the striatum showed an increase in spine density in both genotypes, with enriched ZnT3 KO mice having a greater increase in the nucleus accumbens region.
    [Show full text]
  • Itraq-BASED QUANTITATIVE ANALYSIS of HIPPOCAMPAL POSTSYNAPTIC DENSITY-ASSOCIATED PROTEINS in a RAT CHRONIC MILD STRESS MODEL of DEPRESSION
    Neuroscience 298 (2015) 220–292 iTRAQ-BASED QUANTITATIVE ANALYSIS OF HIPPOCAMPAL POSTSYNAPTIC DENSITY-ASSOCIATED PROTEINS IN A RAT CHRONIC MILD STRESS MODEL OF DEPRESSION X. HAN, a,b,c W. SHAO, a,b,c Z. LIU, a,b,c S. FAN, a,b,c displayed differences in the abundance of several types of J. YU, b,c J. CHEN, b,c R. QIAO, b,c J. ZHOU b,c* AND proteins. A detailed protein functional analysis pointed to a,b,c,d P. XIE * a role for PSD-associated proteins involved in signaling a Department of Neurology, The First Affiliated Hospital, and regulatory functions. Within the PSD, the N-methyl-D-as- Chongqing Medical University, Chongqing, China partate (NMDA) receptor subunit NR2A and its downstream targets contribute to CMS susceptibility. Further analysis b Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China of disease relevance indicated that the PSD contains a com- c plex set of proteins of known relevance to mental illnesses Chongqing Key Laboratory of Neurobiology, Chongqing, China including depression. In sum, these findings provide novel d Department of Neurology, Yongchuan Hospital, Chongqing insights into the contribution of PSD-associated proteins Medical University, Chongqing, China to stress susceptibility and further advance our understand- ing of the role of hippocampal synaptic plasticity in MDD. Ó 2015 IBRO. Published by Elsevier Ltd. All rights reserved. Abstract—Major depressive disorder (MDD) is a prevalent psychiatric mood illness and a major cause of disability and suicide worldwide. However, the underlying pathophys- iology of MDD remains poorly understood due to its hetero- Key words: major depressive disorder, chronic mild stress, genic nature.
    [Show full text]
  • Secreted Proteins in Microsporidian Parasites: a Functional and Evolutionary Perspective on Host-Parasite Interactions
    Secreted proteins in microsporidian parasites: a functional and evolutionary perspective on host-parasite interactions. Submitted by Scott Edward Campbell to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Biological Science. In September 2013 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from this thesis may be published without proper acknowledgment. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. Signature ……………………………………. Page| 1 Abstract The Microsporidia form a phylum of obligate intracellular parasites known to cause disease in humans and a diverse range of economically important animal species. Once classified as ‘primitive’ eukaryotes, it is now recognised that the peculiarities of microsporidian genomics and cell biology are, in fact, the consequence of extreme reduction allowed by an intimate relationship with the host cell. Excluding survival as an extracellular spore, microsporidia are in direct contact with the host throughout their developmental lifecycle, from entry to egress. Host cell manipulations have been described in morphological terms, but despite this, characterisation of such processes at the molecular level remains challenging. The logistics of the microsporidian lifecycle suggest secreted proteins and membrane proteins with extracellular domains may be involved in virulence and implicated in host cell manipulation. This study employs bioinformatic tools to predict secreted proteins in diverse microsporidia and comparative genomics to identify conserved proteins which may be required for host cell manipulation, pathogenicity and lifecycle progression.
    [Show full text]
  • Type of the Paper (Article
    Supplementary Material A Proteomics Study on the Mechanism of Nutmeg-induced Hepatotoxicity Wei Xia 1, †, Zhipeng Cao 1, †, Xiaoyu Zhang 1 and Lina Gao 1,* 1 School of Forensic Medicine, China Medical University, Shenyang 110122, P. R. China; lessen- [email protected] (W.X.); [email protected] (Z.C.); [email protected] (X.Z.) † The authors contributed equally to this work. * Correspondence: [email protected] Figure S1. Table S1. Peptide fraction separation liquid chromatography elution gradient table. Time (min) Flow rate (mL/min) Mobile phase A (%) Mobile phase B (%) 0 1 97 3 10 1 95 5 30 1 80 20 48 1 60 40 50 1 50 50 53 1 30 70 54 1 0 100 1 Table 2. Liquid chromatography elution gradient table. Time (min) Flow rate (nL/min) Mobile phase A (%) Mobile phase B (%) 0 600 94 6 2 600 83 17 82 600 60 40 84 600 50 50 85 600 45 55 90 600 0 100 Table S3. The analysis parameter of Proteome Discoverer 2.2. Item Value Type of Quantification Reporter Quantification (TMT) Enzyme Trypsin Max.Missed Cleavage Sites 2 Precursor Mass Tolerance 10 ppm Fragment Mass Tolerance 0.02 Da Dynamic Modification Oxidation/+15.995 Da (M) and TMT /+229.163 Da (K,Y) N-Terminal Modification Acetyl/+42.011 Da (N-Terminal) and TMT /+229.163 Da (N-Terminal) Static Modification Carbamidomethyl/+57.021 Da (C) 2 Table S4. The DEPs between the low-dose group and the control group. Protein Gene Fold Change P value Trend mRNA H2-K1 0.380 0.010 down Glutamine synthetase 0.426 0.022 down Annexin Anxa6 0.447 0.032 down mRNA H2-D1 0.467 0.002 down Ribokinase Rbks 0.487 0.000
    [Show full text]
  • The Atiregs – Characterization of a New Family of Metal Transporters in Arabidopsis Thaliana
    Silvia Kirchner The AtIREGs – Characterization of a new family of metal transporters in Arabidopsis thaliana Institute of Plant Nutrition University of Hohenheim Prof. Dr. N. von Wirén The AtIREGs - Characterization of a new family of metal transporters in Arabidopsis thaliana Dissertation Submitted in fulfilment of the requirements for the degree „Doktor der Agrarwissenschaften“ (Dr. Sc. Agr. / Ph. D. in Agricultural Sciences) to the Faculty Agricultural Sciences of the University of Hohenheim presented by Silvia Kirchner from Neu-Ulm 2009 This thesis was accepted as a doctoral dissertation in fulfilment of the requirements for the degree “Doktor der Agrarwissenschaften” by the Faculty of Agricultural Sciences at the University of Hohenheim. Date of oral examination: 3rd March 2009 Examination Committee Supervisor and reviewer Prof. Dr. Nicolaus von Wirén Co-reviewer Prof. Dr. Gerd Weber Additional examiner Prof. Dr. Wolfgang Hanke Vice dean and head of the committee Prof. Dr. Werner Bessei Table of contents 1 Summary – Zusammenfassung ………………………......................………………………...….... 1 1.1 Summary ……………………………...........................………………………………………........ 1 1.2 Zusammenfassung ……………………........................…………………………………….......... 3 2 Introduction ………………………………………………………...…............................................... 5 2.1 Heavy metals: definition and terminology ……...………………..........……....................... 5 2.2 Metal homeostasis in higher plants: dealing with deficiency and toxicity ........................ 5 2.2.1 The physiological
    [Show full text]
  • Transport of Sugars
    BI84CH32-Frommer ARI 29 April 2015 12:34 Transport of Sugars Li-Qing Chen,1,∗ Lily S. Cheung,1,∗ Liang Feng,3 Widmar Tanner,2 and Wolf B. Frommer1 1Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305; email: [email protected] 2Zellbiologie und Pflanzenbiochemie, Universitat¨ Regensburg, 93040 Regensburg, Germany 3Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305 Annu. Rev. Biochem. 2015. 84:865–94 Keywords First published online as a Review in Advance on glucose, sucrose, carrier, GLUT, SGLT, SWEET March 5, 2015 The Annual Review of Biochemistry is online at Abstract biochem.annualreviews.org Soluble sugars serve five main purposes in multicellular organisms: as sources This article’s doi: of carbon skeletons, osmolytes, signals, and transient energy storage and as 10.1146/annurev-biochem-060614-033904 transport molecules. Most sugars are derived from photosynthetic organ- Copyright c 2015 by Annual Reviews. isms, particularly plants. In multicellular organisms, some cells specialize All rights reserved in providing sugars to other cells (e.g., intestinal and liver cells in animals, ∗ These authors contributed equally to this review. photosynthetic cells in plants), whereas others depend completely on an ex- Annu. Rev. Biochem. 2015.84:865-894. Downloaded from www.annualreviews.org ternal supply (e.g., brain cells, roots and seeds). This cellular exchange of Access provided by b-on: Universidade de Lisboa (UL) on 09/05/16. For personal use only. sugars requires transport proteins to mediate uptake or release from cells or subcellular compartments. Thus, not surprisingly, sugar transport is criti- cal for plants, animals, and humans.
    [Show full text]
  • Compositions and Methods for Selective Delivery of Oligonucleotide Molecules to Specific Neuron Types
    (19) TZZ ¥Z_T (11) EP 2 380 595 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 26.10.2011 Bulletin 2011/43 A61K 47/48 (2006.01) C12N 15/11 (2006.01) A61P 25/00 (2006.01) A61K 49/00 (2006.01) (2006.01) (21) Application number: 10382087.4 A61K 51/00 (22) Date of filing: 19.04.2010 (84) Designated Contracting States: • Alvarado Urbina, Gabriel AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Nepean Ontario K2G 4Z1 (CA) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • Bortolozzi Biassoni, Analia Alejandra PT RO SE SI SK SM TR E-08036, Barcelona (ES) Designated Extension States: • Artigas Perez, Francesc AL BA ME RS E-08036, Barcelona (ES) • Vila Bover, Miquel (71) Applicant: Nlife Therapeutics S.L. 15006 La Coruna (ES) E-08035, Barcelona (ES) (72) Inventors: (74) Representative: ABG Patentes, S.L. • Montefeltro, Andrés Pablo Avenida de Burgos 16D E-08014, Barcelon (ES) Edificio Euromor 28036 Madrid (ES) (54) Compositions and methods for selective delivery of oligonucleotide molecules to specific neuron types (57) The invention provides a conjugate comprising nucleuc acid toi cell of interests and thus, for the treat- (i) a nucleic acid which is complementary to a target nu- ment of diseases which require a down-regulation of the cleic acid sequence and which expression prevents or protein encoded by the target nucleic acid as well as for reduces expression of the target nucleic acid and (ii) a the delivery of contrast agents to the cells for diagnostic selectivity agent which is capable of binding with high purposes.
    [Show full text]
  • The Role of Zip Superfamily of Metal Transporters in Chronic Diseases, Purification & Characterization of a Bacterial Zip Tr
    Wayne State University Wayne State University Theses 1-1-2011 The Role Of Zip Superfamily Of Metal Transporters In Chronic Diseases, Purification & Characterization Of A Bacterial Zip Transporter: Zupt. Iryna King Wayne State University Follow this and additional works at: http://digitalcommons.wayne.edu/oa_theses Part of the Biochemistry Commons, and the Molecular Biology Commons Recommended Citation King, Iryna, "The Role Of Zip Superfamily Of Metal Transporters In Chronic Diseases, Purification & Characterization Of A Bacterial Zip Transporter: Zupt." (2011). Wayne State University Theses. Paper 63. This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Theses by an authorized administrator of DigitalCommons@WayneState. THE ROLE OF ZIP SUPERFAMILY OF METAL TRANSPORTERS IN CHRONIC DISEASES, PURIFICATION & CHARACTERIZATION OF A BACTERIAL ZIP TRANSPORTER: ZUPT by IRYNA KING THESIS Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE 2011 MAJOR: BIOCHEMISTRY & MOLECULAR BIOLOGY Approved by: ___________________________________ Advisor Date © COPYRIGHT BY IRYNA KING 2011 All Rights Reserved DEDICATION I dedicate this work to my father, Julian Banas, whose footsteps I indisputably followed into science & my every day inspiration, my son, William Peter King ii ACKNOWLEDGMENTS First and foremost I would like to thank the department of Biochemistry & Molecular Biology at Wayne State University School of Medicine for giving me an opportunity to conduct my research and be a part of their family. I would like to thank my advisor Dr. Bharati Mitra for taking me into the program and nurturing a biochemist in me.
    [Show full text]
  • The Zinc Transporter, ZIP12, Regulates the Pulmonary Vascular Response to Chronic Hypoxia
    The zinc transporter, ZIP12, regulates the pulmonary vascular response to chronic hypoxia Lan Zhao1†*, Eduardo Oliver1*, Klio Maratou4, Santosh S. Atanur4, Olivier D. Dubois1, Emanuele Cotroneo1, Chien-Nien Chen1, Lei Wang1, Cristina Arce1, Pauline L. Chabosseau4, Joan Ponsa-Cobas3, Maria G. Frid7, Benjamin Moyon5, Zoe Webster5, Almaz Aldashev6, Jorge Ferrer3, Guy A. Rutter2, Kurt R. Stenmark7, Timothy J. Aitman4, 8, Martin R. Wilkins1 1 Centre for Pharmacology and Therapeutics, Division of Experimental Medicine, 2 Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, and 3 Section of Epigenomics and Disease, Department of Medicine, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom. 4 Physiological Genomics and Medicine Group and 5 Transgenics and Embryonic Stem Cell Laboratory, Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, United Kingdom. 6 Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan. 7 Department of Pediatrics and Medicine, Division of Critical Care Medicine and Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Denver, CO, United States. 8 Current address: Centre for Genomic and Experimental Medicine, University of Edinburgh, EH4 2XU, United Kingdom.* These authors contributed equally to this work. †Corresponding author: Dr Lan Zhao. Centre for Pharmacology and Therapeutics, Experimental Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK. Telephone: 44-(0) 20 7594 6823; e-mail: [email protected] 1 The typical response of the adult mammalian pulmonary circulation to a low oxygen environment is vasoconstriction and structural remodelling of pulmonary arterioles, leading to chronic elevation of pulmonary artery pressure (pulmonary hypertension) and right ventricular hypertrophy.
    [Show full text]
  • Transport of Pregabalin Via L-Type Amino Acid Transporter 1 (SLC7A5) in Human Brain Capillary Endothelial Cell Line
    Pharm Res (2018) 35: 246 https://doi.org/10.1007/s11095-018-2532-0 RESEARCH PAPER Transport of Pregabalin Via L-Type Amino Acid Transporter 1 (SLC7A5) in Human Brain Capillary Endothelial Cell Line Yu Takahashi1 & Tomohiro Nishimura 1 & Kei Higuchi 2 & Saki Noguchi 1 & Yuma Tega 2 & Toshiki Kurosawa2 & Yo s h i h a r u D e g u c h i 2 & Masatoshi Tomi1 Received: 14 July 2018 /Accepted: 21 October 2018 /Published online: 29 October 2018 # The Author(s) 2018 ABSTRACT Conclusions Our results indicate that LAT1, but not LAT2, Purpose The anti-epileptic drug pregabalin crosses the recognizes pregabalin as a substrate. It is suggested that LAT1 blood-brain barrier (BBB) in spite of its low lipophilicity. mediates pregabalin transport at the BBB. This study was performed to determine whether L-type amino acid transporters (LAT1/SLC7A5 and LAT2/SLC7A8) con- KEYWORDS anti-epileptic drug . blood-brain barrier . tribute to the uptake of pregabalin. L-type amino acid transporter . pregabalin Methods Pregabalin uptake by LATs-transfected HEK293 cells or hCMEC/D3 cells, an in vitro human BBB model, was measured by LC-MS/MS analysis. Expression of LAT1 mRNA in hCMEC/D3 cells was determined by quantitative ABBREVIATIONS RT-PCR analysis. BBB Blood-brain barrier Results Overexpression of LAT1, but not LAT2, in HEK293 BCH 2-Aminobicyclo-(2,2,1)-heptane-2-car- cells significantly increased the cellular uptake of pregabalin, boxylic acid GABA γ and the LAT1-mediated uptake was saturable with a Km of -Aminobutyric acid 0.288 mM. LAT1-mediated amino acid uptake was inhibited hCMEC/D3 cells Human immortalized brain endothelial specifically and almost completely in the presence of 1 mM cell line pregabalin.
    [Show full text]
  • Localization of Zinc-Enriched Neurons in the Mouse Peripheral Q Sympathetic System Zhan-You Wanga,B,C,* , Jia-Yi Lia , Gorm Danscherb , Annica Dahlstromè A
    http://www.paper.edu.cn Brain Research 928 (2002) 165±174 www.bres-interactive.com Interactive report Localization of zinc-enriched neurons in the mouse peripheral q sympathetic system Zhan-You Wanga,b,c,* , Jia-Yi Lia , Gorm Danscherb , Annica DahlstromÈ a aDepartment of Anatomy and Cell Biology, University of Gothenburg, Box 420, SE-405 30 Gothenburg, Sweden bDepartment of Neurobiology, Institute of Anatomy, University of Aarhus, DK-8000 Aarhus C, Denmark cDepartment of Histology and Embryology, China Medical University, Shenyang 110001, PR China Accepted 17 November 2001 Abstract Growing evidence supports the notion that zinc ions located in the synaptic vesicles of zinc-enriched neurons (ZEN) play important physiological roles and are involved in certain pathological changes in the central nervous system. Here we present data revealing the distribution of zinc ions and the co-localization of zinc transporter 3 (ZnT3) and tyrosine hydroxylase (TH) in crush-operated sciatic nerves and lumbar sympathetic ganglia of mice, using zinc selenide autometallography (ZnSeAMG ) and ZnT3 immuno¯uorescence combined with confocal scanning microscopy, respectively. Six hours after the crush operation, ZnSeAMG grains and ZnT3 immunoreactivity were predominantly present in a subpopulation of thin unmyelinated sciatic nerve axons. In order to identify the type(s) of ZEN axons involved, double labeling with ZnT3 and (1) TH, (2) vesicular acetylcholine transporter (VAChT), (3) calcitonin gene-related peptide (CGRP), and (4) neuropeptide Y (NPY) was performed. Confocal microscopic observations showed that ZnT3 was located in a subpopulation of sciatic axons in distended parts proximal and distal to the crush site. Most, if not all, ZnT3-positive axons contained TH immuno¯uorescence, a few showed co-localization of ZnT3 and VAChT with very weak immunostaining, while no congruence was observed between ZnT3 and CGRP or NPY.
    [Show full text]