Metal-Catalyzed and Aryne-Mediated Multicomponent Approaches to Heterocycles Nataliya Alexandrovna Markina Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Metal-Catalyzed and Aryne-Mediated Multicomponent Approaches to Heterocycles Nataliya Alexandrovna Markina Iowa State University Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 Metal-catalyzed and aryne-mediated multicomponent approaches to heterocycles Nataliya Alexandrovna Markina Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Organic Chemistry Commons Recommended Citation Markina, Nataliya Alexandrovna, "Metal-catalyzed and aryne-mediated multicomponent approaches to heterocycles" (2012). Graduate Theses and Dissertations. 12655. https://lib.dr.iastate.edu/etd/12655 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Metal-catalyzed and aryne-mediated multicomponent approaches to heterocycles by Nataliya Alexandrovna Markina A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Organic Chemistry Program of Study Committee: Richard C. Larock, co-Major Professor Thomas J. Greenbowe, co-Major Professor Malika Jeffries-EL Yan Zhao George A. Kraus Iowa State University Ames, Iowa 2012 Copyright © Nataliya Alexandrovna Markina, 2012. All rights reserved. ii To my husband and my friend, Anton iii TABLE OF CONTENTS LIST OF ABBREVIATIONS .................................................................................................x CHAPTER 1. Dissertation organization ...............................................................................1 CHAPTER 2. Multicomponent Approaches to the Synthesis of 5-Membered Fused Aromatic Heterocycles. A Review. 2.1. INTRODUCTION ..............................................................................................................6 2.2. MCPs IN THE SYNTHESIS OF INDOLES ......................................................................7 2.2.1. Modifications of the Fischer indole synthesis .....................................................8 2.2.2. Modifications of the Ugi reaction ......................................................................11 2.2.3. Pd, Cu or Pd/Cu-catalyzed MCPs for indole formation ....................................13 2.2.4. Other MCPs for the synthesis of indoles ...........................................................21 2.3. MCPs IN THE SYNTHESIS OF BENZOFURANS ........................................................23 2.3.1. MCPs for the synthesis of benzofurans from 2-halophenols .............................23 2.3.2. MCPs for the synthesis of benzofurans from phenols or 2-hydroxybenzaldehydes ...................................................................................26 2.3.3. MCPs for the synthesis of benzofuran analogues ..............................................29 2.4. MCPs IN THE SYNTHESIS OF BENZOTHIOPHENES ...............................................30 2.5 MCPs IN THE SYNTHESIS OF INDAZOLES ...............................................................31 2.6. MCPs IN THE SYNTHESIS OF INDOLIZINES, PYRYDOINDOLES, PYRIDOISOINDOLES ....................................................................................................32 iv 2.7. MCPs IN THE SYNTHESIS OF BENZIMIDAZOLES ..................................................34 2.8. MCPs IN THE SYNTHESIS OF BENZOXAZOLES AND BENZISOXAZOLES .......38 2.9. MCPs IN THE SYNTHESIS OF BENZOTHIAZOLES .................................................39 2.10. CONCLUSIONS ............................................................................................................40 2.11. REFERENCES ...............................................................................................................40 CHAPTER 3. Solution-Phase Parallel Synthesis of a Diverse Library of 1,2-Dihydroisoquinolines. 3.1. ABSTRACT .....................................................................................................................48 3.2. INTRODUCTION ............................................................................................................49 3.3. RESULTS AND DISCUSSION 3.3.1. Library construction ...........................................................................................50 3.3.2. Preparation of building blocks ...........................................................................52 3.3.3. Diversification ....................................................................................................58 3.4. CONCLUSIONS ..................................................................................................62 3.5. ACKNOWLEDGEMENT ....................................................................................63 3.6. EXPERIMENTAL 3.6.1. General remarks .................................................................................................63 3.6.2. General procedure for preparation of the 2-(1-alkynyl)benzaldehydes .............64 3.6.3. General procedure for preparation of the 1,2-dihydroisoquinolines ..................72 3.6.4. Data for the 1,2-dihydroisoquinolines subjected to further elaboration ............73 3.6.5. Data for selected 1,2-dihydroisoquinolines .......................................................81 v 3.6.6. General procedure for preparation of the 1-(3-indolyl)-1,2-dihydroisoquinolines ............................................................ 82 3.6.7. Data for 1-(3-indolyl)-1,2-dihydroisoquinolines subjected to further elaboration ............................................................................................. 83 3.6.8. Data for selected 1-(3-indolyl)-1,2-dihydroisoquinolines ............................... 85 3.6.9. General procedure for the microwave-assisted Sonogashira coupling ............ 87 3.6.10. Data for selected 1,2-dihydroisoquinolines prepared via Sonogashira coupling ........................................................................................ 88 3.6.11. General procedure for the microwave-assisted Suzuki-Miyaura coupling .......................................................................................................... 90 3.6.12. Data for selected 1,2-dihydroisoquinolines prepared via Suzuki-Miyaura coupling ............................................................................... 91 3.7. REFERENCES ............................................................................................................... 97 CHAPTER 4. Efficient Microwave-assisted One-pot Three-component Synthesis of Indoles under Sonogashira Conditions. 4.1. ABSTRACT .................................................................................................................. 100 4.2. INTRODUCTION ........................................................................................................ 100 4.3. RESULTS AND DISCUSSION ................................................................................... 102 4.4. CONCLUSIONS .......................................................................................................... 109 4.5. ACKNOWLEDGEMENT ............................................................................................ 110 4.6. EXPERIMENTAL vi 4.6.1. General remarks ............................................................................................ 110 4.6.2. General procedure for preparation of the N,N-dimethyl-2-iodoanilines ....... 111 4.6.3. Preparation of methyl 4-dimethylamino-3-iodobenzoate ............................. 112 4.6.4. General procedure for preparation of the N-trifluoroacetyl-2-iodoanilines .................................................................. 112 4.6.5. General procedure for the microwave-assisted, one-pot synthesis of 1-methylindoles ....................................................................................... 114 4.6.6. General procedure for the microwave-assisted, one-pot synthesis of 1H-indoles ................................................................................................... 117 4.7. REFERENCES ............................................................................................................. 120 CHAPTER 5. Efficient Microwave-assisted One-pot Three-component Synthesis of 2,3-Disubstituted Benzofurans under Sonogashira Conditions. Approaches Towards Total Syntheses Amurensin H, Gnetuhainin B, and Gnetuhainin F. 5.1. ABSTRACT .................................................................................................................. 123 5.2. INTRODUCTION ........................................................................................................ 123 5.3. RESULTS AND DISCUSSION 5.3.1. Optimization of the reaction conditions ......................................................... 127 5.3.2. Evaluation of the reaction scope and limitations ........................................... 130 5.3.3. Study of the additional processes and further diversification ........................ 139 5.3.4. Approaches towards total syntheses of Amurensin H, Gnetuhainin B, vii and Gnetuhainin F ......................................................................................... 141 5.4. CONCLUSIONS .......................................................................................................... 151 5.5. ACKNOWLEDGEMENT ............................................................................................ 151 5.6. EXPERIMENTAL 5.6.1. General
Recommended publications
  • Retention Indices for Frequently Reported Compounds of Plant Essential Oils
    Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5.
    [Show full text]
  • 68 3 1 5"! Patent Request: Standard Patent/Patent of Addition
    Λ _ ___ _ KWU/lXHJIMI AUSTRALIA Patents Act 1990 68 3 1 5"! PATENT REQUEST: STANDARD PATENT/PATENT OF ADDITION We, being the persons identified below as the Applicant, request the grant of a patent to the person identified below as the Nominated Person, for an invention described in the accompanying standard complete specification. ,· Full application details follow. [71] Applicant: ADIR ET COMPAGNIE Address: 1 RUE cXrLE HEBERT, F-92415 COURBEVOIE CEDEX, FRANCE [70] Nominated Person: ADIR ET COMPAGNIE Address: 1 RUE CARLE HEBERT, F-92415 COURBEVOIE CEDEX, FRANCE [54] Invent»·* Title: NOVEL N-PYRIDYL CARBOXAMIDES AND DERIVATIVES, PROCESSES FOR THEIR PREPARATION AND THE PHARMACEUTICAL COMPOSITIONS WHICH CONTAIN THEM Name(s) of actual inventor(s): JEAN-MICHEL ROBERT, ODILE RIDEAU, SYLVIE ROBERT-PIESSARD, JACQUELINE COURANT, GUILLAUME LE BAUT, DANIEL-HENRI CAIGNARD, PIERRE RENARD and GERARD ADAM Address for service in Australia: c/o WATERMARK PATENT & TRADEMARK ATTORNEYS, of 290 Burwood Road, Hawthorn, Victoria 3122, Australia Attorney Code: WM :,.··. BASIC CONVENTION APPLICATION(S) DETAILS .... [31] Application Number [33] Country Country [32] Date of Application : Code 9406412 FRANCE FR 27 MAY 1994 Basic Applicants): ADIR ET COMPAGNIE • · · · • · · *· Di awing number recommended to accompany the abstract ............................... By our Patent Attorneys, WATERMARK PATENT & TRADEMARK ATTORNEYS ...CM&/.VV2...... ....... DATED this 25th day of May 1995,. Carolyn J, Harris Registered Patent Attorney i P/00/008b 12/11/91 Section 29 (η Regulation 3.1 (2) AUSTRALIA Patents Act 1990 NOTICE OF ENTITLEMENT We, ADIR ET COMPAGNIE of, 1 Rue Carle Hebert, F-92415 Courbevoie Cedex, France, being the applicant in respect of Application No.
    [Show full text]
  • Electrooxidation Enables Highly Regioselective Dearomative Annulation of Indole and Benzofuran Derivatives
    ARTICLE https://doi.org/10.1038/s41467-019-13829-4 OPEN Electrooxidation enables highly regioselective dearomative annulation of indole and benzofuran derivatives Kun Liu1, Wenxu Song1, Yuqi Deng1, Huiyue Yang1, Chunlan Song1, Takfaoui Abdelilah1, Shengchun Wang 1, Hengjiang Cong 1, Shan Tang1 & Aiwen Lei1* 1234567890():,; The dearomatization of arenes represents a powerful synthetic methodology to provide three-dimensional chemicals of high added value. Here we report a general and practical protocol for regioselective dearomative annulation of indole and benzofuran derivatives in an electrochemical way. Under undivided electrolytic conditions, a series of highly functio- nalized five to eight-membered heterocycle-2,3-fused indolines and dihydrobenzofurans, which are typically unattainable under thermal conditions, can be successfully accessed in high yield with excellent regio- and stereo-selectivity. This transformation can also tolerate a wide range of functional groups and achieve good efficiency in large-scale synthesis under oxidant-free conditions. In addition, cyclic voltammetry, electron paramagnetic resonance (EPR) and kinetic studies indicate that the dehydrogenative dearomatization annulations arise from the anodic oxidation of indole into indole radical cation, and this process is the rate- determining step. 1 College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China. *email: aiwenlei@whu. edu.cn NATURE COMMUNICATIONS | (2020) 11:3 | https://doi.org/10.1038/s41467-019-13829-4 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13829-4 reaking the aromatic systems of electron-rich arenes or fused indolines (Fig. 1a)39–44. Therefore, it is highly appealing to heteroarenes provides three-dimensional chemicals of high develop efficient approaches to allow for their preparation.
    [Show full text]
  • Benzofuran Synthesis Through Iodocyclization Reactions: Recent Advances
    MOJ Bioorganic & Organic Chemistry Mini Review Open Access Benzofuran synthesis through iodocyclization reactions: recent advances Abstract Volume 1 Issue 7 - 2017 Recent advancements (2014-17) in the benzofuran synthesis through iodocyclization Saurabh Mehta have been summarized. The successful use of various iodinating agents, bases, additives Department of Applied Chemistry, Delhi Technological etc. make iodocyclization a versatile and efficient methodology. The methodology has University, India been applied for the synthesis of more complex benzofuran derivatives, and may open interesting avenues in the area of heterocyclic chemistry (Figure 1). Correspondence: Saurabh Mehta, Department of Applied O-LG Chemistry, Delhi Technological University, Bawana Road, Delhi, + O R1 I 1 2 110042 India, Tel +9188 0066 5868, R R Email [email protected], [email protected] R2 I Received: December 17, 2017 | Published: December 29, 2017 LG = H, Me or other Protecting group 1 R = H, Me, OMe, I, CO2Me, etc. R2 = H, aryl, alkyl, alkenyl, etc. Figure 1 Keywords: annulations, alkyne, benzofuran, iodocyclization, heterocycle Introduction derivatives were obtained in high yields (84%−100%) under mild conditions. The authors demonstrated that the choice of bis(2,4,6- Benzo[b]furan is a privileged heterocyclic scaffold. Several collidine)iodonium hexafluorophosphate [I(coll)2PF6] as the compounds containing this scaffold have interesting biological iodinating agent was necessary for the success of the reaction. Also, 1 activities, such as anti-cancer, anti-viral, anti-inflammatory, etc. Few the ethoxyethyl ether group acted as a protecting group as well as a 2 derivatives are even used as commercial drugs, such as Amiodarone, good leaving group.
    [Show full text]
  • Last Decade of Unconventional Methodologies for the Synthesis Of
    Review molecules Last Decade of Unconventional Methodologies for theReview Synthesis of Substituted Benzofurans Last Decade of Unconventional Methodologies for the Lucia Chiummiento *, Rosarita D’Orsi, Maria Funicello and Paolo Lupattelli Synthesis of Substituted Benzofurans Department of Science, Via dell’Ateneo Lucano, 10, 85100 Potenza, Italy; [email protected] (R.D.); [email protected] (M.F.); [email protected] (P.L.) Lucia Chiummiento * , Rosarita D’Orsi, Maria Funicello and Paolo Lupattelli * Correspondence: [email protected] Department of Science, Via dell’Ateneo Lucano, 10, 85100 Potenza, Italy; [email protected] (R.D.); Academic Editor: Gianfranco Favi [email protected] (M.F.); [email protected] (P.L.) Received:* Correspondence: 22 April 2020; [email protected] Accepted: 13 May 2020; Published: 16 May 2020 Abstract:Academic This Editor: review Gianfranco describes Favi the progress of the last decade on the synthesis of substituted Received: 22 April 2020; Accepted: 13 May 2020; Published: 16 May 2020 benzofurans, which are useful scaffolds for the synthesis of numerous natural products and pharmaceuticals.Abstract: This In review particular, describes new the intramolecular progress of the and last decadeintermolecular on the synthesis C–C and/or of substituted C–O bond- formingbenzofurans, processes, which with aretransition-metal useful scaffolds catalysi for thes or synthesis metal-free of numerous are summarized. natural products(1) Introduction. and (2) Ringpharmaceuticals. generation via In particular, intramolecular new intramolecular cyclization. and (2.1) intermolecular C7a–O bond C–C formation: and/or C–O (route bond-forming a). (2.2) O– C2 bondprocesses, formation: with transition-metal (route b).
    [Show full text]
  • An Update on Natural Occurrence and Biological Activity of Benzofurans
    Acta Scientific MEDICAL SCIENCES (ISSN: 2582-0931) Volume 4 Issue 10 October 2020 Review Article An Update on Natural Occurrence and Biological Activity of Benzofurans Kavita Khatana* and Anjali Gupta Received: June 28, 2020 Department of Chemistry, School of Basic and Applied Sciences, Galgotias Published: September 21, 2020 University, Greater Noida, UP, India © All rights are reserved by Kavita Khatana. *Corresponding Author: Kavita Khatana, Department of Chemistry, School of Basic and Applied Sciences, Galgotias University, Greater Noida, UP, India. Graphical Abstract Figure a Abstract Benzofuran and its derivatives are the major group amongst the natural collection of biologically active heterocyclic compounds. Their wide range of pharmacological activities and imaginable applications in medicinal and pharmaceutical chemistry have at- tracted various research scholars, medicinal chemists and pharmacologists. This review emphasizes the progress and development . ofKeywords: benzofuran Benzofuran; derivatives Antioxidant; in various biological Antiviral; activities Antimicrobial; with an Anticancer update of current research findings during a decade Introduction physiological and industrial world. In reference to pharmaceutical Heterocyclic ring systems have emerged as powerful scaf- industry, over 60% of the top retailing drugs contain at least one folds for many biological evaluations. Heterocyclic compounds heterocyclic motif as a part of overall topography of the compound. Benzofurans and its derivatives are important class of heterocyclic have significant role in medicinal and pharmacological chemistry, Citation: Kavita Khatana and Anjali Gupta. “An Update on Natural Occurrence and Biological Activity of Benzofurans”. Acta Scientific Medical Sciences 4.10 (2020): 114-123. An Update on Natural Occurrence and Biological Activity of Benzofurans 115 compounds, which are known to possess various biological proper- 3-(hydroxymethyl)-7-methoxy-2,3-dihydrobenzo furan-5-yl) ties.
    [Show full text]
  • Synthesis of Benzo-Fused Heterocycles Using Isomerization and Ring-Closing Metathesis Reactions
    I Synthesis of benzo-fused heterocycles using isomerization and ring-closing metathesis reactions Lee Gavin Madeley Supervised by Prof. W.A.L. van Otterlo A dissertation submitted in the School of Chemistry to the Faculty of Science, University of the Witwatersrand, in fulfilment of the requirements for the Degree of Master of Science March 2010 II Declaration I declare that the work presented in this dissertation is my own, unaided work and was carried out under the supervision of Prof. W.A.L. van Otterlo. It is being submitted for the Degree of Master of Science in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other University. __________________________ Lee Gavin Madeley March 2010 III Abstract The first part of the dissertation involves the use of ruthenium mediated isomerization (RMI) followed by ring-closing metathesis (RCM) on a selection of phenols and naphthol-1-ol precursors – that had been subjected to allylation; followed by a heat initiated Claisen rearrangement; followed by re-allylation – to form a selection of benzofurans. This procedure, to the best of our knowledge, represents a novel method for the synthesis of benzofurans, with very good average yields of around 90% overall for the RMI/RCM and allylation steps. The lowest yield of the five synthetic steps, were for the Claisen rearrangements with a range of yields between 50% and 86%, indicating the potential to optimise the yields of these reactions, which were carried out using both conventional and microwave heating. The following five-membered oxygen-containing heterocycles were thus obtained: 4,7-dimethoxybenzofuran, 5-bromobenzofuran, 5-tert-butyl-benzofuran, 7- phenyl-1-benzofuran and naphtho[1,2-b]furan.
    [Show full text]
  • Dibenzothiophene/Oxide and Quinoxaline/Pyrazine Derivatives Serving As Electron-Transport Materials**
    FULL PAPER DOI: 10.1002/adfm.200500823 Dibenzothiophene/Oxide and Quinoxaline/Pyrazine Derivatives Serving as Electron-Transport Materials** By Tai-Hsiang Huang, Wha-Tzong Whang,* Jiun Yi Shen, Yuh-Sheng Wen, Jiann T. Lin,* Tung-Huei Ke, Li-Yin Chen, and Chung-Chih Wu* A series of 2,8-disubstituted dibenzothiophene and 2,8-disubstituted dibenzothiophene-S,S-dioxide derivatives containing quinoxaline and pyrazine moieties are synthesized via three key steps: i) palladium-catalyzed Sonogashira coupling reaction to form dialkynes; ii) conversion of the dialkynes to diones; and iii) condensation of the diones with diamines. Single-crystal characterization of 2,8-di(6,7-dimethyl-3-phenyl-2-quinoxalinyl)-5H-5k6-dibenzo[b,d]thiophene-5,5-dione indicates a triclinic crystal structure with space group P1 and a non-coplanar structure. These new materials are amorphous, with glass-transition temperatures ranging from 132 to 194 °C. The compounds (Cpd) exhibit high electron mobilities and serve as effective elec- tron-transport materials for organic light-emitting devices. Double-layer devices are fabricated with the structure indium tin oxide (ITO)/Qn/Cpd/LiF/Al, where yellow-emitting 2,3-bis[4-(N-phenyl-9-ethyl-3-carbazolylamino)phenyl]quinoxaline (Qn) serves as the emitting layer. An external quantum efficiency of 1.41 %, a power efficiency of 4.94 lm W–1, and a current efficien- cy of 1.62 cd A–1 are achieved at a current density of 100 mA cm–2. 1. Introduction efficiency, brightness, and durability.[4] In contrast, reports of the use of small molecules as electron-transporting materials [5] Organic and polymer light-emitting diodes (OLEDs and are still rare in the literature.
    [Show full text]
  • Skin Damages—Structure Activity Relationship of Benzimidazole Derivatives Bearing a 5-Membered Ring System
    molecules Article Skin Damages—Structure Activity Relationship of Benzimidazole Derivatives Bearing a 5-Membered Ring System Ernestine Nicaise Djuidje 1, Elisa Durini 1, Sabrina Sciabica 2, Elena Serra 3, Jan Balzarini 4, Sandra Liekens 4, Stefano Manfredini 1 , Silvia Vertuani 1 and Anna Baldisserotto 1,* 1 Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technologies, University of Ferrara, 44121 Ferrara, Italy; [email protected] (E.N.D.); [email protected] (E.D.); [email protected] (S.M.); [email protected] (S.V.) 2 Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy; [email protected] 3 Aptuit, An Evotec Company, 37135 Verona, Italy; [email protected] 4 Department of Microbiology and Immunology, KU Leuven, University of Leuven, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium; [email protected] (J.B.); [email protected] (S.L.) * Correspondence: [email protected]; Tel.: +39-0532-455258 Academic Editor: György Szöllösi Received: 31 August 2020; Accepted: 17 September 2020; Published: 21 September 2020 Abstract: In the search for scaffolds for multifunctional compounds we investigated the structure activity relationship of a class of benzimidazole derivatives bearing 5-membered ring. The newly synthesized and the already known compounds were divided into three classes that present different substituent at 5 position of the benzimidazole ring (-H, -COOH or –SO3H) and different heterocycle at position 2 (thiophene, furan or pyrrole). All the derivatives were synthesized and tested to determine their photoprotective profile against UV rays, in vitro antioxidant capacity against different radicals (DPPH and FRAP test), antifungal inhibitory activity (dermatophytes and Candida albicans), antiviral and antiproliferative activity.
    [Show full text]
  • Synthesis of New Benzofuran-2-Carboxylic Acid Derivatives
    Hindawi Publishing Corporation Journal of Chemistry Volume 2013, Article ID 183717, 7 pages http://dx.doi.org/10.1155/2013/183717 Research Article Synthesis of New Benzofuran-2-Carboxylic Acid Derivatives M. Kowalewska, H. Kwiecień, M. Śmist, and A. Wrześniewska Institute of Organic Technology, West Pomeranian University of Technology, 42 Aleja Piastów, 71-065 Szczecin, Poland Correspondence should be addressed to H. Kwiecień; [email protected] Received 20 June 2012; Revised 4 September 2012; Accepted 14 September 2012 Academic Editor: Aleš Imramovsky Copyright © 2013 M. Kowalewska et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Novel ethyl ester and methylamide of 5-[bis(2-chloroethyl)amino]-7-methoxybenzofuran-2-carboxylic acid as well as (2-hydroxy- 1,1-dimethylethyl)amides of 5-bromo- and 5,7-dichlorobenzofuran-2-carboxylic acid were synthesized and characterized. 1. Introduction cyclocondensation of 2-hydroxy-5-nitrobenzaldehyde with bromomalonic acid [18] as well as palladium catalysed Derivatives of benzofuran-2-carboxylic acid are known for carbonylative cyclization of o-alkynylphenols [19–21]. exhibiting various pharmacological activities. Such Most of these methods are restricted by the requirement compounds were found to be selective adenosine A A of relatively long reaction time to obtain the expected product receptor antagonists [1], anti-in�ammatory agents [2], and in low to moderate yields. local anaesthetics [3]. Variously substituted 2-benzofuran-2 We present herein a short synthetic route to obtain carboxylic acid derivatives show selective cytotoxicity against halogen-substituted benzofuran-2-carboxylic acid deriva- human cancer cell line [4].
    [Show full text]
  • Furans in the Reactions with Electrophiles
    Theoretical Study of Benzofused Thieno[3,2-b]furans in the reactions with electrophiles Ausra Vektariene1*, Gytis Vektaris1, Jiri Svoboda2 (1) Institute of Theoretical Physics and Astronomy of Vilnius University, A. Gostauto 12, LT- 01108 Vilnius, Lithuania (2) Department of Organic Chemistry, Prague Institute of Chemical Technology, Technicka 5, CZ-166 28 Prague 6, Czech Republic E-mail: [email protected] Keywords: Benzofused thieno[3,2-b]furans, electrophile, theoretical study, DFT. Abstract Calculations of traditional HF and DFT based reactivity descriptors are reported for the benzofused thieno[3,2-b]furans in order to get insight into the factors determining the exact nature of its interactions with electrophiles. Global descriptors such as chemical potential, molecular hardness, electrophilicity, frontier molecular orbital energies and shapes, the condensed Fukui functions were determined and used to identify the differences in the stability and reactivity of heterocycles. In general calculated values lead to the conclusion that heterocyclic system in thieno[3,2-b]benzofuran is more aromatic and stable than in isomeric benzothieno[3,2-b]furan. Theoretical results are in complete agreement with the experimental results showing exceptional reactivity of C(2) atom for both isomers. The bond order uniformity analysis, local ionization energy and electrostatic potential energy maps revealed structural and reactivity differences of isomeric thieno[3,2-b]furans. Benzothieno[3,2-b]furan structurally could be analogues with molecule of aromatic benzothiophene substituted with C(2)-C(3) vinylic moiety. Contrary, calculated values for the of thieno[3,2-b]benzofuran shows delocalized π–electron surface that reports stable aromatic system between benzene ring and thiene heterocycle.
    [Show full text]
  • Coal Tar Creosote
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organization, or the World Health Organization. Concise International Chemical Assessment Document 62 COAL TAR CREOSOTE Please note that the layout and pagination of this pdf file are not identical to the document being printed First draft prepared by Drs Christine Melber, Janet Kielhorn, and Inge Mangelsdorf, Fraunhofer Institute of Toxicology and Experimental Medicine, Hanover, Germany Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organization, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. World Health Organization Geneva, 2004 The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organization (ILO), and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 by UNEP, ILO, the Food and Agriculture Organization of the United Nations, WHO, the United Nations Industrial Development Organization, the United Nations Institute for Training and Research, and the Organisation for Economic Co-operation and Development (Participating Organizations), following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase coordination in the field of chemical safety.
    [Show full text]