Automated Theorem Proving Resolution Vs

Total Page:16

File Type:pdf, Size:1020Kb

Automated Theorem Proving Resolution Vs Master Thesis Software Engineering Thesis no: MSE-2002:4 March 2002 Automated Theorem Proving Resolution vs. Tableaux Andreas L. E. Folkler (ℵ) Department of Software Engineering and Computer Science Blekinge Institute of Technology Box 520 SE-372 25 Ronneby This page is intentionally left blank. ii Automated Theorem Proving: Resolution vs. Tableaux This thesis is submitted to the Department of Software Engineering and Computer Science at Blekinge Institute of Technology in partial fulfillment of the requirements for the degree of Master of Science in Software Engineering. The thesis is equivalent to ten weeks of full time studies. Contact Information: Author: Andreas Folkler Address: Myntgatan 13A SE-417 02 Göteborg E-mail: [email protected] University advisor: Dr. Bertil Ekdahl Department of Software Engineering and Computer Science Department of Internet : www.bth.se/ipd Software Engineering and Computer Science Phone : +46 457 38 50 00 Blekinge Institute of Technology Fax : +46 457 271 25 Box 520 SE-372 25 Ronneby Automated Theorem Proving: Resolution vs. Tableaux iii This page is intentionally left blank. iv Automated Theorem Proving: Resolution vs. Tableaux Abstract The purpose of this master thesis was to investigate which of the two methods, resolution and tableaux, that is the most appropriate for automated theorem proving. This was done by implementing an automated theorem prover, comparing and documenting implementation problems, and measuring proving efficiency. In this thesis, I conclude that the resolution method might be more suitable for an automated theorem prover than tableaux, in the aspect of ease of implementation. Regarding the efficiency, the test results indicate that resolution is the better choice. Keywords: First-order logic, tableaux, resolution, efficiency, ease of implementation Automated Theorem Proving: Resolution vs. Tableaux v This page is intentionally left blank. vi Automated Theorem Proving: Resolution vs. Tableaux Contents 1 INTRODUCTION ........................................................................................................................................1 1.1 THE METHOD...........................................................................................................................................1 1.2 READING INSTRUCTIONS ..........................................................................................................................1 2 FIRST-ORDER LOGIC................................................................................................................................2 2.1 WHAT IS LOGIC?.......................................................................................................................................2 2.2 SYNTAX ....................................................................................................................................................2 2.3 PROOF SYSTEMS ........................................................................................................................................3 2.4 INFERENCE ...............................................................................................................................................6 2.5 SEMANTICS...............................................................................................................................................6 2.6 REFUTATION ............................................................................................................................................8 3 FURTHER FIRST-ORDER FEATURES....................................................................................................9 3.1 UNIFICATION ...........................................................................................................................................9 3.2 PRENEX FORM ........................................................................................................................................11 3.3 SKOLEMIZATION ....................................................................................................................................12 3.4 CLAUSES.................................................................................................................................................13 4 FIRST-ORDER PROOF PROCEDURES ................................................................................................14 4.1 RESOLUTION ..........................................................................................................................................14 4.2 TABLEAUX ..............................................................................................................................................15 4.3 DIFFERENCES AND SIMILARITIES ............................................................................................................17 4.4 MORE EFFICIENT VERSIONS ....................................................................................................................18 4.5 SOUNDNESS AND COMPLETENESS..........................................................................................................19 4.6 THE HISTORY OF PROLOG ......................................................................................................................19 5 EVALUATION ............................................................................................................................................20 5.1 EFFICIENCY ............................................................................................................................................20 5.2 EASE OF IMPLEMENTATION....................................................................................................................21 5.3 IMPLEMENTATION – SIZE AND EFFORT ..................................................................................................23 6 CONCLUSION............................................................................................................................................24 7 FUTURE WORK..........................................................................................................................................24 APPENDIX A. GLOSSARY AND DEFINITIONS ................................................................................25 APPENDIX B. TESTED THEOREMS......................................................................................................27 APPENDIX C. ALGORITHMS.................................................................................................................28 APPENDIX D. DESIGN .............................................................................................................................31 REFERENCES.......................................................................................................................................................32 Automated Theorem Proving: Resolution vs. Tableaux vii This page is intentionally left blank. viii Automated Theorem Proving: Resolution vs. Tableaux 1 Introduction Resolution and tableaux are two proof procedures of first order logic. Both methods are complete, which means that they can prove every valid argument. In automatic theorem proving, resolution is the predominant method. For example, resolution is the deductive method used in the programming language Prolog. However, the tableaux method has recently received more attention. The aim of this master’s thesis was to investigate, if possible, which of the two methods is the most efficient and viable for implementing an automated theorem prover (ATP hereafter) for First Order Logic (FOL). The two methods are quite similar in that they have many inference rules in common, and what I would like to know, is why one of them (the resolution method) is predominant in automated theorem proving. Is resolution more efficient and easy to use in an ATP? To achieve this, a program for proving theorems was to be implemented, with the ability to change method easily. During the development process, thorough notes were taken about the problems and pitfalls encountered for each proving method. The methods were then measured in aspects of performance. 1.1 The Method Most of the literature used in this master thesis was provided by my supervisor, Dr. Bertil Ekdahl. Some of the books were found at the library or borrowed from other teachers at Blekinge Tekniska Högskola. A small part of the literature has been found on the World Wide Web. Because of this, not much of the work has been spent searching for information. The work was to be carried out in a way similar to the iterative system development process since an application also had to be implemented. The first things to do were pre- study of the domain and the problems, and a project plan with estimated time for each activity in the work breakdown structure. The reason to implement a full application and not just write down the algorithms and calculate the performance was that many problems arise during analysis, design, and implementation. Besides that, I wanted to measure the efficiency based on real examples run through a real application. 1.2 Reading instructions Since the literature on formal logic often uses somewhat different notation, it is recommend reading Appendix A, Glossary and Definitions, before anything else. Automated Theorem Proving: Resolution vs. Tableaux 1 2 First-Order Logic 2.1 What is logic? “Formal logic is the science of deduction. It aims to provide systematic means for telling whether or not given conclusions
Recommended publications
  • Automated Theorem Proving Introduction
    Automated Theorem Proving Scott Sanner, Guest Lecture Topics in Automated Reasoning Thursday, Jan. 19, 2006 Introduction • Def. Automated Theorem Proving: Proof of mathematical theorems by a computer program. • Depending on underlying logic, task varies from trivial to impossible: – Simple description logic: Poly-time – Propositional logic: NP-Complete (3-SAT) – First-order logic w/ arithmetic: Impossible 1 Applications • Proofs of Mathematical Conjectures – Graph theory: Four color theorem – Boolean algebra: Robbins conjecture • Hardware and Software Verification – Verification: Arithmetic circuits – Program correctness: Invariants, safety • Query Answering – Build domain-specific knowledge bases, use theorem proving to answer queries Basic Task Structure • Given: – Set of axioms (KB encoded as axioms) – Conjecture (assumptions + consequence) • Inference: – Search through space of valid inferences • Output: – Proof (if found, a sequence of steps deriving conjecture consequence from axioms and assumptions) 2 Many Logics / Many Theorem Proving Techniques Focus on theorem proving for logics with a model-theoretic semantics (TBD) • Logics: – Propositional, and first-order logic – Modal, temporal, and description logic • Theorem Proving Techniques: – Resolution, tableaux, sequent, inverse – Best technique depends on logic and app. Example of Propositional Logic Sequent Proof • Given: • Direct Proof: – Axioms: (I) A |- A None (¬R) – Conjecture: |- ¬A, A ∨ A ∨ ¬A ? ( R2) A A ? |- A∨¬A, A (PR) • Inference: |- A, A∨¬A (∨R1) – Gentzen |- A∨¬A, A∨¬A Sequent (CR) ∨ Calculus |- A ¬A 3 Example of First-order Logic Resolution Proof • Given: • CNF: ¬Man(x) ∨ Mortal(x) – Axioms: Man(Socrates) ∀ ⇒ Man(Socrates) x Man(x) Mortal(x) ¬Mortal(y) [Neg. conj.] Man(Socrates) – Conjecture: • Proof: ∃y Mortal(y) ? 1. ¬Mortal(y) [Neg. conj.] 2. ¬Man(x) ∨ Mortal(x) [Given] • Inference: 3.
    [Show full text]
  • Logic and Proof Computer Science Tripos Part IB
    Logic and Proof Computer Science Tripos Part IB Lawrence C Paulson Computer Laboratory University of Cambridge [email protected] Copyright c 2015 by Lawrence C. Paulson Contents 1 Introduction and Learning Guide 1 2 Propositional Logic 2 3 Proof Systems for Propositional Logic 5 4 First-order Logic 8 5 Formal Reasoning in First-Order Logic 11 6 Clause Methods for Propositional Logic 13 7 Skolem Functions, Herbrand’s Theorem and Unification 17 8 First-Order Resolution and Prolog 21 9 Decision Procedures and SMT Solvers 24 10 Binary Decision Diagrams 27 11 Modal Logics 28 12 Tableaux-Based Methods 30 i 1 INTRODUCTION AND LEARNING GUIDE 1 1 Introduction and Learning Guide 2008 Paper 3 Q6: BDDs, DPLL, sequent calculus • 2008 Paper 4 Q5: proving or disproving first-order formulas, This course gives a brief introduction to logic, including • resolution the resolution method of theorem-proving and its relation 2009 Paper 6 Q7: modal logic (Lect. 11) to the programming language Prolog. Formal logic is used • for specifying and verifying computer systems and (some- 2009 Paper 6 Q8: resolution, tableau calculi • times) for representing knowledge in Artificial Intelligence 2007 Paper 5 Q9: propositional methods, resolution, modal programs. • logic The course should help you to understand the Prolog 2007 Paper 6 Q9: proving or disproving first-order formulas language, and its treatment of logic should be helpful for • 2006 Paper 5 Q9: proof and disproof in FOL and modal logic understanding other theoretical courses. It also describes • 2006 Paper 6 Q9: BDDs, Herbrand models, resolution a variety of techniques and data structures used in auto- • mated theorem provers.
    [Show full text]
  • A Prolog Technology Theorem Prover: a New Exposition and Implementation in Prolog*
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 104 (1992) 109-128 109 Elsevier A Prolog technology theorem prover: a new exposition and implementation in Prolog* Mark E. Stickel Artificial Intelligence Center, SRI International, Menlo Park, CA 94025, USA Abstract Stickel, M.E., A Prolog technology theorem prover: a new exposition and implementation in Prolog, Theoretical Computer Science 104 (1992) 109-128. A Prolog technology theorem prover (P’ITP) is an extension of Prolog that is complete for the full first-order predicate calculus. It differs from Prolog in its use of unification with the occurs check for soundness, depth-first iterative-deepening search instead of unbounded depth-first search to make the search strategy complete, and the model elimination reduction rule that is added to Prolog inferences to make the inference system complete. This paper describes a new Prolog-based implementation of PTTP. It uses three compile-time transformations to translate formulas into Prolog clauses that directly execute, with the support of a few run-time predicates, the model elimination procedure with depth-first iterative-deepening search and unification with the occurs check. Its high performance exceeds that of Prolog-based PTTP interpreters, and it is more concise and readable than the earlier Lisp-based compiler, which makes it superior for expository purposes. Examples of inputs and outputs of the compile-time transformations provide an easy and precise way to explain how PTTP works. This Prolog-based version makes it easier to incorporate PTTP theorem-proving ideas into Prolog programs.
    [Show full text]
  • Solving the Boolean Satisfiability Problem Using the Parallel Paradigm Jury Composition
    Philosophæ doctor thesis Hoessen Benoît Solving the Boolean Satisfiability problem using the parallel paradigm Jury composition: PhD director Audemard Gilles Professor at Universit´ed'Artois PhD co-director Jabbour Sa¨ıd Assistant Professor at Universit´ed'Artois PhD co-director Piette C´edric Assistant Professor at Universit´ed'Artois Examiner Simon Laurent Professor at University of Bordeaux Examiner Dequen Gilles Professor at University of Picardie Jules Vernes Katsirelos George Charg´ede recherche at Institut national de la recherche agronomique, Toulouse Abstract This thesis presents different technique to solve the Boolean satisfiability problem using parallel and distributed architec- tures. In order to provide a complete explanation, a careful presentation of the CDCL algorithm is made, followed by the state of the art in this domain. Once presented, two proposi- tions are made. The first one is an improvement on a portfo- lio algorithm, allowing to exchange more data without loosing efficiency. The second is a complete library with its API al- lowing to easily create distributed SAT solver. Keywords: SAT, parallelism, distributed, solver, logic R´esum´e Cette th`ese pr´esente diff´erentes techniques permettant de r´esoudre le probl`eme de satisfaction de formule bool´eenes utilisant le parall´elismeet du calcul distribu´e. Dans le but de fournir une explication la plus compl`ete possible, une pr´esentation d´etaill´ee de l'algorithme CDCL est effectu´ee, suivi d'un ´etatde l'art. De ce point de d´epart,deux pistes sont explor´ees. La premi`ereest une am´eliorationd'un algorithme de type portfolio, permettant d'´echanger plus d'informations sans perte d’efficacit´e.
    [Show full text]
  • Logic and Proof
    Logic and Proof Computer Science Tripos Part IB Michaelmas Term Lawrence C Paulson Computer Laboratory University of Cambridge [email protected] Copyright c 2007 by Lawrence C. Paulson Contents 1 Introduction and Learning Guide 1 2 Propositional Logic 3 3 Proof Systems for Propositional Logic 13 4 First-order Logic 20 5 Formal Reasoning in First-Order Logic 27 6 Clause Methods for Propositional Logic 33 7 Skolem Functions and Herbrand’s Theorem 41 8 Unification 50 9 Applications of Unification 58 10 BDDs, or Binary Decision Diagrams 65 11 Modal Logics 68 12 Tableaux-Based Methods 74 i ii 1 1 Introduction and Learning Guide This course gives a brief introduction to logic, with including the resolution method of theorem-proving and its relation to the programming language Prolog. Formal logic is used for specifying and verifying computer systems and (some- times) for representing knowledge in Artificial Intelligence programs. The course should help you with Prolog for AI and its treatment of logic should be helpful for understanding other theoretical courses. Try to avoid getting bogged down in the details of how the various proof methods work, since you must also acquire an intuitive feel for logical reasoning. The most suitable course text is this book: Michael Huth and Mark Ryan, Logic in Computer Science: Modelling and Reasoning about Systems, 2nd edition (CUP, 2004) It costs £35. It covers most aspects of this course with the exception of resolution theorem proving. It includes material (symbolic model checking) that should be useful for Specification and Verification II next year.
    [Show full text]
  • Exploring Semantic Hierarchies to Improve Resolution Theorem Proving on Ontologies
    The University of Maine DigitalCommons@UMaine Honors College Spring 2019 Exploring Semantic Hierarchies to Improve Resolution Theorem Proving on Ontologies Stanley Small University of Maine Follow this and additional works at: https://digitalcommons.library.umaine.edu/honors Part of the Computer Sciences Commons Recommended Citation Small, Stanley, "Exploring Semantic Hierarchies to Improve Resolution Theorem Proving on Ontologies" (2019). Honors College. 538. https://digitalcommons.library.umaine.edu/honors/538 This Honors Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Honors College by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. EXPLORING SEMANTIC HIERARCHIES TO IMPROVE RESOLUTION THEOREM PROVING ON ONTOLOGIES by Stanley C. Small A Thesis Submitted in Partial Fulfillment of the Requirements for a Degree with Honors (Computer Science) The Honors College University of Maine May 2019 Advisory Committee: Dr. Torsten Hahmann, Assistant Professor1, Advisor Dr. Mark Brewer, Professor of Political Science Dr. Max Egenhofer, Professor1 Dr. Sepideh Ghanavati, Assistant Professor1 Dr. Roy Turner, Associate Professor1 1School of Computing and Information Science ABSTRACT A resolution-theorem-prover (RTP) evaluates the validity (truthfulness) of conjectures against a set of axioms in a knowledge base. When given a conjecture, an RTP attempts to resolve the negated conjecture with axioms from the knowledge base until the prover finds a contradiction. If the RTP finds a contradiction between the axioms and a negated conjecture, the conjecture is proven. The order in which the axioms within the knowledge-base are evaluated significantly impacts the runtime of the program, as the search-space increases exponentially with the number of axioms.
    [Show full text]
  • Deduction and Resolution
    Lecture 12: Deduction and Resolution 1 Hilbert’s System Hilbert discovered a very elegant deductive system that is both sound and com- plete. His system uses only the connectives {¬, →}, which we know are an adequate basis. It has also been shown that each of the three axioms given below are necessary for the system to be sound and complete. Hilbert’s System consists of the following: • Three axioms (all are strongly sound): – A1: (p → (q → p)) Axiom of simplification. – A2: ((p → (q → r)) → ((p → q) → (p → r))) Frege’s axiom. – A3: ((¬p → q) → ((¬p → ¬q) → p)) Reductio ad absurdum. • Inference Rules: p,p→q – Modus Ponens: q (Strongly Sound) ϕ – Substitution: ϕ[θ] , where θ is a substitution (p → ψ). (Sound) The Substitution Inference Rule is shorthand for all sequences of the form hϕ, ϕ[θ]i. It is sometimes called a schema for generating inference rules. Note that in general, it is not the case that ϕ |= ϕ[θ], for example p 6|= q. However, in assignment 2, we showed that if |= ϕ, then |= ϕ[θ]. This is why this rule is sound but not strongly sound. Theorem 1. Hilbert’s system is sound, complete, and tractable. Proof. We prove each property separately. • Soundness: Since all axioms are strongly sound, and the two inference rules are sound, the whole system is sound. • Completeness: The proof of this property is fairly involved and thus it is outside the scope of the class. 1 + • Tractability: Given Γ ∈ Form and ϕ1, . , ϕn, is ϕ1, . , ϕn ∈ Deductions(Γ)? Clearly, < ϕ1 > is in Γ only if it is an axiom.
    [Show full text]
  • Inference (Proof) Procedures for FOL (Chapter 9)
    Inference (Proof) Procedures for FOL (Chapter 9) Torsten Hahmann, CSC384, University of Toronto, Fall 2011 85 Proof Procedures • Interestingly, proof procedures work by simply manipulating formulas. They do not know or care anything about interpretations. • Nevertheless they respect the semantics of interpretations! • We will develop a proof procedure for first-order logic called resolution . • Resolution is the mechanism used by PROLOG • Also used by automated theorem provers such as Prover9 (together with other techniques) Torsten Hahmann, CSC384, University of Toronto, Fall 2011 86 Properties of Proof Procedures • Before presenting the details of resolution, we want to look at properties we would like to have in a (any) proof procedure. • We write KB ⊢ f to indicate that f can be proved from KB (the proof procedure used is implicit). Torsten Hahmann, CSC384, University of Toronto, Fall 2011 87 Properties of Proof Procedures • Soundness • KB ⊢ f → KB ⊨ f i.e all conclusions arrived at via the proof procedure are correct: they are logical consequences. • Completeness • KB ⊨ f → KB ⊢ f i.e. every logical consequence can be generated by the proof procedure. • Note proof procedures are computable, but they might have very high complexity in the worst case. So completeness is not necessarily achievable in practice. Torsten Hahmann, CSC384, University of Toronto, Fall 2011 88 Forward Chaining • First-order inference mechanism (or proof procedure) that generalizes Modus Ponens: • From C1 ∧ … ∧ Cn → Cn+1 with C1, …, Cn in KB, we can infer Cn+1 • We can chain this until we can infer some Ck such that each Ci is either in KB or is the result of Modus Ponens involving only prior Cm (m<i) • We then have that KB ⊢ Ck.
    [Show full text]
  • An Introduction to Prolog
    Appendix A An Introduction to Prolog A.1 A Short Background Prolog was designed in the 1970s by Alain Colmerauer and a team of researchers with the idea – new at that time – that it was possible to use logic to represent knowledge and to write programs. More precisely, Prolog uses a subset of predicate logic and draws its structure from theoretical works of earlier logicians such as Herbrand (1930) and Robinson (1965) on the automation of theorem proving. Prolog was originally intended for the writing of natural language processing applications. Because of its conciseness and simplicity, it became popular well beyond this domain and now has adepts in areas such as: • Formal logic and associated forms of programming • Reasoning modeling • Database programming • Planning, and so on. This chapter is a short review of Prolog. In-depth tutorials include: in English, Bratko (2012), Clocksin and Mellish (2003), Covington et al. (1997), and Sterling and Shapiro (1994); in French, Giannesini et al. (1985); and in German, Baumann (1991). Boizumault (1988, 1993) contain a didactical implementation of Prolog in Lisp. Prolog foundations rest on first-order logic. Apt (1997), Burke and Foxley (1996), Delahaye (1986), and Lloyd (1987) examine theoretical links between this part of logic and Prolog. Colmerauer started his work at the University of Montréal, and a first version of the language was implemented at the University of Marseilles in 1972. Colmerauer and Roussel (1996) tell the story of the birth of Prolog, including their try-and-fail experimentation to select tractable algorithms from the mass of results provided by research in logic.
    [Show full text]
  • Propositional Logic. Inferences
    CS 1571 Introduction to AI Lecture 12 Propositional logic Milos Hauskrecht [email protected] 5329 Sennott Square CS 1571 Intro to AI M. Hauskrecht Logical inference problem Logical inference problem: • Given: – a knowledge base KB (a set of sentences) and – a sentence (called a theorem), • Does a KB semantically entail ? KB | ? In other words: In all interpretations in which sentences in the KB are true, is also true? CS 1571 Intro to AI M. Hauskrecht 1 Sound and complete inference Inference is a process by which conclusions are reached. • We want to implement the inference process on a computer !! Assume an inference procedure i that KB • derives a sentence from the KB : i Properties of the inference procedure in terms of entailment • Soundness: An inference procedure is sound • Completeness: An inference procedure is complete CS 1571 Intro to AI M. Hauskrecht Sound and complete inference. Inference is a process by which conclusions are reached. • We want to implement the inference process on a computer !! Assume an inference procedure i that KB • derives a sentence from the KB : i Properties of the inference procedure in terms of entailment • Soundness: An inference procedure is sound If KB then it is true that KB | i • Completeness: An inference procedure is complete If then it is true that KB KB | i CS 1571 Intro to AI M. Hauskrecht 2 Solving logical inference problem In the following: How to design the procedure that answers: KB | ? Three approaches: • Truth-table approach • Inference rules • Conversion to the inverse SAT problem – Resolution-refutation CS 1571 Intro to AI M.
    [Show full text]
  • Lecture 8: Rule-Based Reasoning
    Set 6: Knowledge Representation: The Propositional Calculus ICS 271 Fall 2013 Kalev Kask Outline • Representing knowledge using logic – Agent that reason logically – A knowledge based agent • Representing and reasoning with logic – Propositional logic • Syntax • Semantic • validity and models • Rules of inference for propositional logic • Resolution • Complexity of propositional inference. • Reading: Russel and Norvig, Chapter 7 Knowledge bases • Knowledge base = set of sentences in a formal language • • Declarative approach to building an agent (or other system): – Tell it what it needs to know – • Then it can Ask itself what to do - answers should follow from the KB • • Agents can be viewed at the knowledge level i.e., what they know, regardless of how implemented • Or at the implementation level – i.e., data structures in KB and algorithms that manipulate them – Knowledge Representation Defined by: syntax, semantics Computer Inference Assertions Conclusions (knowledge base) Semantics Facts Imply Facts Real-World Reasoning: in the syntactic level Example:x y, y z | x z The party example • If Alex goes, then Beki goes: A B • If Chris goes, then Alex goes: C A • Beki does not go: not B • Chris goes: C • Query: Is it possible to satisfy all these conditions? • Should I go to the party? Example of languages • Programming languages: – Formal languages, not ambiguous, but cannot express partial information. Not expressive enough. • Natural languages: – Very expressive but ambiguous: ex: small dogs and cats. • Good representation language:
    [Show full text]
  • My Slides for a Course on Satisfiability
    Satisfiability Victor W. Marek Computer Science University of Kentucky Spring Semester 2005 Satisfiability – p.1/97 Satisfiability story ie× Á Satisfiability - invented in the ¾¼ of XX century by philosophers and mathematicians (Wittgenstein, Tarski) ie× Á Shannon (late ¾¼ ) applications to what was then known as electrical engineering ie× ie× Á Fundamental developments: ¼ and ¼ – both mathematics of it, and fundamental algorithms ie× Á ¼ - progress in computing speed and solving moderately large problems Á Emergence of “killer applications” in Computer Engineering, Bounded Model Checking Satisfiability – p.2/97 Current situation Á SAT solvers as a class of software Á Solving large cases generated by industrial applications Á Vibrant area of research both in Computer Science and in Computer Engineering ¯ Various CS meetings (SAT, AAAI, CP) ¯ Various CE meetings (CAV, FMCAD, DATE) ¯ CE meetings Stressing applications Satisfiability – p.3/97 This Course Á Providing mathematical and computer science foundations of SAT ¯ General mathematical foundations ¯ Two- and Three- valued logics ¯ Complete sets of functors ¯ Normal forms (including ite) ¯ Compactness of propositional logic ¯ Resolution rule, completeness of resolution, semantical resolution ¯ Fundamental algorithms for SAT ¯ Craig Lemma Satisfiability – p.4/97 And if there is enough of time and will... Á Easy cases of SAT ¯ Horn ¯ 2SAT ¯ Linear formulas Á And if there is time (but notes will be provided anyway) ¯ Expressing runs of polynomial-time NDTM as SAT, NP completeness ¯ “Mix and match” ¯ Learning in SAT, partial closure under resolution ¯ Bounded Model Checking Satisfiability – p.5/97 Various remarks Á Expected involvement of Dr. Truszczynski Á An extensive set of notes (> 200 pages), covering most of topics will be provided f.o.c.
    [Show full text]