PQR309 Is a Novel Dual PI3K/Mtor Inhibitor with Preclinical Antitumor Activity in Lymphomas As a Single Agent and in Combination

Total Page:16

File Type:pdf, Size:1020Kb

PQR309 Is a Novel Dual PI3K/Mtor Inhibitor with Preclinical Antitumor Activity in Lymphomas As a Single Agent and in Combination Published OnlineFirst October 24, 2017; DOI: 10.1158/1078-0432.CCR-17-1041 Cancer Therapy: Preclinical Clinical Cancer Research PQR309 Is a Novel Dual PI3K/mTOR Inhibitor with Preclinical Antitumor Activity in Lymphomas as a Single Agent and in Combination Therapy Chiara Tarantelli1, Eugenio Gaudio1, Alberto J. Arribas1,IvoKwee1,2,3, Petra Hillmann4, Andrea Rinaldi1, Luciano Cascione1,5, Filippo Spriano1, Elena Bernasconi1, Francesca Guidetti1, Laura Carrassa6, Roberta Bordone Pittau5, Florent Beaufils4,7, Reto Ritschard8, Denise Rageot4,7, Alexander Sele7, Barbara Dossena9, Francesca Maria Rossi10, Antonella Zucchetto10, Monica Taborelli9, Valter Gattei10, Davide Rossi1,5, Anastasios Stathis5, Georg Stussi5, Massimo Broggini6, Matthias P. Wymann7, Andreas Wicki8, Emanuele Zucca5, Vladimir Cmiljanovic4, Doriano Fabbro4, and Francesco Bertoni1,5 Abstract Purpose: Activation of the PI3K/mTOR signaling pathway is nostat, ibrutinib, lenalidomide, ARV-825, marizomib, and recurrent in different lymphoma types, and pharmacologic inhi- rituximab. Sensitivity to PQR309 was associated with spe- bition of the PI3K/mTOR pathway has shown activity in lym- cific baseline gene-expression features, such as high expres- phoma patients. Here, we extensively characterized the in vitro and sion of transcripts coding for the BCR pathway. Combining in vivo activity and the mechanism of action of PQR309 (bimir- proteomics and RNA profiling, we identified the different alisib), a novel oral selective dual PI3K/mTOR inhibitor under contribution of PQR309-induced protein phosphorylation clinical evaluation, in preclinical lymphoma models. and gene expression changes to the drug mechanism of Experimental Design: This study included preclinical in vitro action. Gene-expression signatures induced by PQR309 and activity screening on a large panel of cell lines, both as single agent by other signaling inhibitors largely overlapped. PQR309 and in combination, validation experiments on in vivo models showed activity in cells with primary or secondary resis- and primary cells, proteomics and gene-expression profiling, and tance to idelalisib. comparison with other signaling inhibitors. Conclusions: On the basis of these results, PQR309 appeared Results: PQR309 had in vitro antilymphoma activity as as a novel and promising compound that is worth developing single agent and in combination with venetoclax, panobi- in the lymphoma setting. Clin Cancer Res; 24(1); 120–9. Ó2017 AACR. Introduction proliferation, and survival (1, 2). Class IA PI3Ks include hetero- dimers of p110 catalytic subunit and p85 regulatory subunit PI3Ks are enzymes belonging to PI3K/AKT/mTOR signaling (1–3). The class IA catalytic subunit isoforms are encoded by the pathways with a central role in the regulation of cell metabolism, genes PIK3CA, PIK3CB, and PIK3CD (1–3): p110a (PI3Ka), p110b (PI3Kb), and p110d (PI3Kd), respectively. These isoforms fi 1 can associate with any of ve regulatory isoforms, p85a and its Universita della Svizzera Italiana (USI), Institute of Oncology Research (IOR), PIK3R1 PIK3R2 Bellinzona, Switzerland. 2Dalle Molle Institute for Artificial Intelligence (IDSIA), splicing variants p55a and p50a ( ), p85b ( ), and PIK3R3 Manno, Switzerland. 3Swiss Institute of Bioinformatics (SIB), Lausanne, Switzer- p55g ( ), generally called p85 type regulatory subunits land. 4PIQUR Therapeutics AG, Basel, Switzerland. 5Oncology Institute of (1–3). Class IB PI3Ks are heterodimers of a p110g (PI3Kg) Southern Switzerland (IOSI), Bellinzona, Switzerland. 6IRCCS-Istituto di catalytic subunit (PIK3CG) with regulatory isoforms p101 7 Ricerche Farmacologiche Mario Negri, Milan, Italy. Department of Biomedicine, (PIK3R5) or p87 (PIK3R6). While PI3Ka and PI3Kb are ubiqui- University of Basel, Basel, Switzerland. 8Department of Oncology, University 9 tously expressed, PI3Kd, and PI3Kg are largely restricted to leu- Hospital Basel, Basel, Switzerland. Cytogenetics Laboratory, Ente Ospedaliero – Cantonale, Bellinzona, Switzerland. 10Clinical and Experimental Onco-Hematol- kocytes (1 3). ogy Unit, IRCCS-Centro di Riferimento Oncologico, Aviano, Italy. PI3K/AKT/mTOR signaling pathway activation is common in lymphomas. Examples are mutations or gains of PIK3CA in Note: Supplementary data for this article are available at Clinical Cancer Research Online (http://clincancerres.aacrjournals.org/). diffuse large B-cell lymphoma (DLBCL), mantle cell lymphomas (MCL), and chronic lymphocytic leukemias (CLLs; refs. 4, 5), C. Tarantelli and E. Gaudio contributed equally to this article. inactivation or low expression of PTEN in DLBCL, follicular Corresponding Author: Francesco Bertoni, Institute of Oncology Research, via lymphomas (FL), MCL and CLL (5–8). Vela 6, Bellinzona 6500, Switzerland. Phone: 41-91-820-0367; Fax: 41-91-820- The approval by regulatory authorities of the mTOR inhibitor 0397; E-mail: [email protected] temsirolimus for MCL (9) and of the PI3Kd inhibitor idelalisib for doi: 10.1158/1078-0432.CCR-17-1041 FL and CLL (10, 11) strongly encouraged further development of Ó2017 American Association for Cancer Research. compounds targeting PI3K complex and/or mTOR (12–15). Dual 120 Clin Cancer Res; 24(1) January 1, 2018 Downloaded from clincancerres.aacrjournals.org on September 23, 2021. © 2018 American Association for Cancer Research. Published OnlineFirst October 24, 2017; DOI: 10.1158/1078-0432.CCR-17-1041 Novel Dual PI3K/mTOR Inhibitor for Lymphomas lyzed with a BX61 microscope (Olympus Italia, Milan, Italy) Translational Relevance using the Cytovision Imaging System (Applied Imaging). Targeting PI3K and mTOR is an important therapeutic opportunity to improve the outcome of individuals affected Compounds by lymphomas. PQR309 is a novel brain-penetrant dual PQR309 and apitolisib (GDC0980) were provided by Piqur PI3K/mTOR inhibitor with in vitro and in vivo antilymphoma Therapeutics, venetoclax, ibrutinib, idelalisib, duvelisib, activity as single agent and in combination, and importantly, AZD1208, lenalidomide, panobinostat were purchased from can overcome both primary and acquired resistance to idela- Selleckchem, ARV-825 and metformin from MedChem, mar- lisib, the most frequently used PI3K inhibitor in the clinical izomib from AdooQ and rituximab from Roche. setting. The presented highly overlapping changes in the lymphoma transcriptome observed by a direct comparison Primary cells of the gene expression changes induced by PQR309 and other Peripheral blood was obtained from patients diagnosed different BCR inhibitors may have implications in the design with CLL according to standard criteria. All patients signed of novel combination schemes. informed consent (BASEC 2016-00511, CE 3051). CLL cells were isolated by Ficoll density-gradient centrifugation and CLL cells (5 Â 105 cells/mL) were cultured for 48 hours, and the percentage of viable and apoptotic CLL cells [Annexin V positive/7-Aminoactinomycin D (7AAD) negative PI3K/mTOR inhibitors with strong activity toward all p110 iso- and Annexin V positive/7AAD positive] was determined by forms and mTOR combine multiple therapeutic efficacies in a double staining the cells with Annexin V–FITC/7AAD. single molecule (3). Pan PI3K inhibitors are expected to reduce the risk of drug resistance that might occur in case of treatment In vitro antitumor activity with compounds targeting a single p110 isoform (16) and, The antiproliferative activity in 384-well plates (21), the IC together with mTOR inhibition, could prevent feedback loop of 50 values estimate (22) and drug combinations screening (23) were AKT activation following mTOR inhibition (17). PQR309 (bimir- performed as previously described. Combinations were defined: alisib) is a novel orally bioavailable selective dual PI3K/mTOR synergistic if the Chou-Talalay Combination Index (CI) was <0.9; inhibitor (18, 19), and, differently from most PI3K and mTOR additive if CI between 0.9 and 1.1; antagonistic if CI > 1.1 (24). inhibitors (20), able to cross the brain blood barrier (18). Here, Apoptosis and cell cycle were evaluated as previously reported we present the preclinical characterization of PQR309 as single (22). Apoptosis induction was defined in the presence of a 2-fold agent and in combination with several other agents in pre-clinical or higher increase in comparison with DMSO-treated cells. models of lymphomas. Proteomic and/or genomic approaches were also used with the aim to uncover the mechanism of action of In vivo experiments the compound in parallel with other targeted signaling inhibitors. Three in vivo experiments were performed. The first two explored PQR309 as single agent and in combination with Materials and Methods ibrutinib in the RI-1 cell line or venetoclax in the SU-DHL-6 cell Cell lines line. For these, NOD-Scid (NOD.CB17-Prkdcscid/NCrHsd) mice A total of 49 human established lymphoma cell lines were used: were subcutaneously inoculated with the RI-1 cell line (1 Â 107 seven (RI-1, HBL-1, TMD8, U2932, SU-DHL-2, OCI-LY-3, cells in 0.1 ml of PBS, 1:1 Matrigel) or with the SU-DHL-6 cell line OCI-LY-10) from activated B-cell–like DLBCL (ABC DLBCL), (5 Â 106 cells in 100 mL of PBS, 1:1 Matrigel). Mice maintenance 18 (Pfeiffer, OCI-LY-1, OCI-LY-2, OCI-LY-7, OCI-LY-8, OCI-LY- and animal experiments were performed under the Guide of 18, OCI-LY-19, KARPAS422, SU-DHL-4, SU-DHL-6, SU-DHL-7, animal care and use (NCR 2011) and under the Chinese National SU-DHL-10, FARAGE, VAL, WSU-DLCL2, TOLEDO, RCK8, Standard (GB14925-2010; Crown Bioscience Inc.). For the third DOHH2) from germinal
Recommended publications
  • A Genome-Wide Screen in Mice to Identify Cell-Extrinsic Regulators of Pulmonary Metastatic Colonisation
    FEATURED ARTICLE MUTANT SCREEN REPORT A Genome-Wide Screen in Mice To Identify Cell-Extrinsic Regulators of Pulmonary Metastatic Colonisation Louise van der Weyden,1 Agnieszka Swiatkowska, Vivek Iyer, Anneliese O. Speak, and David J. Adams Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom ORCID IDs: 0000-0002-0645-1879 (L.v.d.W.); 0000-0003-4890-4685 (A.O.S.); 0000-0001-9490-0306 (D.J.A.) ABSTRACT Metastatic colonization, whereby a disseminated tumor cell is able to survive and proliferate at a KEYWORDS secondary site, involves both tumor cell-intrinsic and -extrinsic factors. To identify tumor cell-extrinsic metastasis (microenvironmental) factors that regulate the ability of metastatic tumor cells to effectively colonize a metastatic tissue, we performed a genome-wide screen utilizing the experimental metastasis assay on mutant mice. colonisation Mutant and wildtype (control) mice were tail vein-dosed with murine metastatic melanoma B16-F10 cells and microenvironment 10 days later the number of pulmonary metastatic colonies were counted. Of the 1,300 genes/genetic B16-F10 locations (1,344 alleles) assessed in the screen 34 genes were determined to significantly regulate pulmonary lung metastatic colonization (15 increased and 19 decreased; P , 0.005 and genotype effect ,-55 or .+55). mutant While several of these genes have known roles in immune system regulation (Bach2, Cyba, Cybb, Cybc1, Id2, mouse Igh-6, Irf1, Irf7, Ncf1, Ncf2, Ncf4 and Pik3cg) most are involved in a disparate range of biological processes, ranging from ubiquitination (Herc1) to diphthamide synthesis (Dph6) to Rho GTPase-activation (Arhgap30 and Fgd4), with no previous reports of a role in the regulation of metastasis.
    [Show full text]
  • PI 3 Kinase Catalytic Subunit Gamma (PIK3CG) Mouse Monoclonal Antibody [Clone ID: OTI6C6] Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA505226 PI 3 Kinase catalytic subunit gamma (PIK3CG) Mouse Monoclonal Antibody [Clone ID: OTI6C6] Product data: Product Type: Primary Antibodies Clone Name: OTI6C6 Applications: IHC, WB Recommended Dilution: WB 1:200~1000, IHC 1:150 Reactivity: Human, Monkey, Mouse, Rat Host: Mouse Isotype: IgG2a Clonality: Monoclonal Immunogen: Full length human recombinant protein of human PIK3CG(NP_002640) produced in HEK293T cell. Formulation: PBS (PH 7.3) containing 1% BSA, 50% glycerol and 0.02% sodium azide. Concentration: 1 mg/ml Purification: Purified from mouse ascites fluids or tissue culture supernatant by affinity chromatography (protein A/G) Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 126.3 kDa Gene Name: phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma Database Link: NP_002640 Entrez Gene 30955 MouseEntrez Gene 298947 RatEntrez Gene 698857 MonkeyEntrez Gene 5294 Human P48736 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 3 PI 3 Kinase catalytic subunit gamma (PIK3CG) Mouse Monoclonal Antibody [Clone ID: OTI6C6] – TA505226 Background: This gene encodes a protein that belongs to the pi3/pi4-kinase family of proteins. The gene product is an enzyme that phosphorylates phosphoinositides on the 3-hydroxyl group of the inositol ring.
    [Show full text]
  • PIK3CG) Antibody Catalogue No.:Abx000651
    Datasheet Version: 1.0.0 Revision date: 09 Nov 2020 Phosphatidylinositol 4,5-Bisphosphate 3-Kinase Catalytic Subunit Gamma Isoform (PIK3CG) Antibody Catalogue No.:abx000651 Western blot analysis of extracts of HeLa cells, using PIK3CG antibody (abx000651) at 1/1000 dilution. PIK3CG Antibody is a Rabbit Polyclonal antibody against PIK3CG. This gene encodes a protein that belongs to the pi3/pi4- kinase family of proteins. The gene product is an enzyme that phosphorylates phosphoinositides on the 3-hydroxyl group of the inositol ring. It is an important modulator of extracellular signals, including those elicited by E-cadherin-mediated cell-cell adhesion, which plays an important role in maintenance of the structural and functional integrity of epithelia. In addition to its role in promoting assembly of adherens junctions, the protein is thought to play a pivotal role in the regulation of cytotoxicity in NK cells. The gene is located in a commonly deleted segment of chromosome 7 previously identified in myeloid leukemias. Several transcript variants encoding the same protein have been found for this gene. Target: PIK3CG Clonality: Polyclonal Reactivity: Human, Mouse, Rat Tested Applications: WB Host: Rabbit Recommended dilutions: WB: 1/500 - 1/2000. Optimal dilutions/concentrations should be determined by the end user. Conjugation: ForUnconjugated Reference Only Immunogen: Recombinant protein of human PIK3CG. Isotype: IgG Form: Liquid Purification: Affinity purified. v1.0.0 Abbexa Ltd, Cambridge, UK · Phone: +44 1223 755950 · Fax: +44 1223 755951 1 Abbexa LLC, Houston, TX, USA · Phone: +1 832 327 7413 www.abbexa.com · Email: [email protected] Datasheet Version: 1.0.0 Revision date: 09 Nov 2020 Storage: Aliquot and store at -20°C.
    [Show full text]
  • BCR & PIK3CG Protein Protein Interaction Antibody Pair
    BCR & PIK3CG Protein Protein Interaction Antibody Pair Catalog # : DI0613 規格 : [ 1 Set ] List All Specification Application Image Product This protein protein interaction antibody pair set comes with two In situ Proximity Ligation Assay (Cell) Description: antibodies to detect the protein-protein interaction, one against the BCR protein, and the other against the PIK3CG protein for use in in situ Proximity Ligation Assay. See Publication Reference below. Reactivity: Human Quality Control Protein protein interaction immunofluorescence result. Testing: Representative image of Proximity Ligation Assay of protein-protein interactions between BCR and PIK3CG. HeLa cells were stained with anti-BCR rabbit purified polyclonal antibody 1:1200 and anti-PIK3CG mouse monoclonal antibody 1:50. Each red dot represents the detection of protein-protein interaction complex. The images were analyzed using an optimized freeware (BlobFinder) download from The Centre for Image Analysis at Uppsala University. Supplied Antibody pair set content: Product: 1. BCR rabbit purified polyclonal antibody (20 ug) 2. PIK3CG mouse monoclonal antibody (40 ug) *Reagents are sufficient for at least 30-50 assays using recommended protocols. Storage Store reagents of the antibody pair set at -20°C or lower. Please aliquot Instruction: to avoid repeated freeze thaw cycle. Reagents should be returned to - Page 1 of 3 2016/5/20 20°C storage immediately after use. MSDS: Download Publication Reference 1. An analysis of protein-protein interactions in cross-talk pathways reveals CRKL as a novel prognostic marker in hepatocellular carcinoma. Liu CH, Chen TC, Chau GY, Jan YH, Chen CH, Hsu CN, Lin KT, Juang YL, Lu PJ, Cheng HC, Chen MH, Chang CF, Ting YS, Kao CY, Hsiao M, Huang CY.
    [Show full text]
  • A Genome-Wide Screen in Mice to Identify Cell-Extrinsic Regulators of Pulmonary Metastatic Colonisation
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.10.941401; this version posted February 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A genome-wide screen in mice to identify cell-extrinsic regulators of pulmonary 2 metastatic colonisation 3 4 5 Louise van der Weyden1*, Agnieszka Swiatkowska1, Vivek Iyer1, Anneliese O. Speak1, David J. 6 Adams1 7 8 9 1Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, 10 United Kingdom 11 12 13 *Corresponding author 14 Louise van der Weyden 15 Experimental Cancer Genetics 16 Wellcome Sanger Institute 17 Wellcome Genome Campus 18 Hinxton 19 Cambridge 20 CB10 1SA 21 United Kingdom 22 Tel: +44-1223-834-244 23 Email: [email protected] 24 25 26 KEYWORDS: metastasis, metastatic colonisation, microenvironment, B16-F10, lung, mutant, 27 mouse. 28 29 30 31 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.10.941401; this version posted February 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 32 ABSTRACT 33 34 Metastatic colonisation, whereby a disseminated tumour cell is able to survive and 35 proliferate at a secondary site, involves both tumour cell-intrinsic and -extrinsic factors.
    [Show full text]
  • PI 3 Kinase Catalytic Subunit Gamma (PIK3CG) Mouse Monoclonal Antibody [Clone ID: OTI4B6] Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA505219 PI 3 Kinase catalytic subunit gamma (PIK3CG) Mouse Monoclonal Antibody [Clone ID: OTI4B6] Product data: Product Type: Primary Antibodies Clone Name: OTI4B6 Applications: IF, WB Recommended Dilution: WB 1:4000, IF 1:100 Reactivity: Human, Mouse, Rat Host: Mouse Isotype: IgG1 Clonality: Monoclonal Immunogen: Full length human recombinant protein of human PIK3CG(NP_002640) produced in HEK293T cell. Formulation: PBS (PH 7.3) containing 1% BSA, 50% glycerol and 0.02% sodium azide. Concentration: 1 mg/ml Purification: Purified from mouse ascites fluids or tissue culture supernatant by affinity chromatography (protein A/G) Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 126.3 kDa Gene Name: phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma Database Link: NP_002640 Entrez Gene 30955 MouseEntrez Gene 298947 RatEntrez Gene 5294 Human P48736 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 3 PI 3 Kinase catalytic subunit gamma (PIK3CG) Mouse Monoclonal Antibody [Clone ID: OTI4B6] – TA505219 Background: This gene encodes a protein that belongs to the pi3/pi4-kinase family of proteins. The gene product is an enzyme that phosphorylates phosphoinositides on the 3-hydroxyl group of the inositol ring. It is an important modulator of extracellular signals, including those elicited by E- cadherin-mediated cell-cell adhesion, which plays an important role in maintenance of the structural and functional integrity of epithelia.
    [Show full text]
  • Anti-PIK3CG Antibody (ARG57877)
    Product datasheet [email protected] ARG57877 Package: 100 μl anti-PIK3CG antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes PIK3CG Tested Reactivity Hu Tested Application WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name PIK3CG Antigen Species Human Immunogen Recombinant fusion protein corresponding to aa. 1-310 of Human PIK3CG (NP_002640.2). Conjugation Un-conjugated Alternate Names PI3CG; Phosphatidylinositol 4,5-bisphosphate 3-kinase 110 kDa catalytic subunit gamma; PI3K; Phosphoinositide-3-kinase catalytic gamma polypeptide; PtdIns-3-kinase subunit p110-gamma; EC 2.7.1.153; PtdIns-3-kinase subunit gamma; p120-PI3K; EC 2.7.11.1; p110gamma; PI3-kinase subunit gamma; PI3Kgamma; PI3K-gamma; PIK3; Serine/threonine protein kinase PIK3CG; Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Application Instructions Application table Application Dilution WB 1:500 - 1:2000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Positive Control HeLa Calculated Mw 126 kDa Observed Size ~ 126 kDa Properties Form Liquid Purification Affinity purified. Buffer PBS (pH 7.3), 0.02% Sodium azide and 50% Glycerol. Preservative 0.02% Sodium azide Stabilizer 50% Glycerol Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw www.arigobio.com 1/2 cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use.
    [Show full text]
  • P110γ Deficiency Protects Against Pancreatic Carcinogenesis Yet Predisposes to Diet-Induced Hepatotoxicity
    p110γ deficiency protects against pancreatic carcinogenesis yet predisposes to diet- induced hepatotoxicity Carolina Torresa,1, Georgina Mancinellia, Jose Cordoba-Chaconb, Navin Viswakarmac,d, Karla Castellanosa, Sam Grimaldoa, Sandeep Kumarc,d, Daniel Principed, Matthew J. Dormana, Ronald McKinneya, Emilio Hirsche, David Dawsonf,g, Hidayatullah G. Munshih, Ajay Ranac,d, and Paul J. Grippoa,1 aDepartment of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612; bDepartment of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL 60612; cResearch, Jesse Brown VA Medical Center, Chicago, IL 60612; dDepartment of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612; eMolecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; fDepartment of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095; gJonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095; and hDepartment of Medicine, Northwestern University, Chicago, IL 60611 Edited by Ronald A. DePinho, University of Texas MD Anderson Cancer Center, Houston, TX, and approved May 23, 2019 (received for review August 1, 2018) Pancreatic ductal adenocarcinoma (PDAC) is notorious for its poor subunit. While the p110α and β are ubiquitously expressed, p110γ survival and resistance to conventional therapies. PI3K signaling is and δ are found predominantly in macrophages and leukocytes, al- implicated in both disease initiation and progression, and specific though an increasing number of studies show that p110γ is also inhibitors of selected PI3K p110 isoforms for managing solid tumors expressed to varying degrees in other cell types (11, 12), including are emerging.
    [Show full text]
  • Datasheet: VMA00277 Product Details
    Datasheet: VMA00277 Description: MOUSE ANTI PI-3 KINASE SUBUNIT GAMMA Specificity: PI-3 KINASE SUBUNIT GAMMA Format: Purified Product Type: PrecisionAb™ Monoclonal Clone: D1 Isotype: IgG2a Quantity: 100 µl Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 1/1000 PrecisionAb antibodies have been extensively validated for the western blot application. The antibody has been validated at the suggested dilution. Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Further optimization may be required dependant on sample type. Target Species Human Product Form Purified IgG - liquid Preparation Mouse monoclonal antibody purified by affinity chromatography from ascites Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide (NaN3) Stabilisers 1% Bovine Serum Albumin 50% Glycerol Immunogen Full length recombinant human PI-3 kinase subunit gamma (NP_002640) produced in HEK293T cells External Database Links UniProt: P48736 Related reagents Entrez Gene: 5294 PIK3CG Related reagents Specificity Mouse anti Human PI-3 kinase subunit gamma antibody recognizes
    [Show full text]
  • Identification of New Kinase Clusters Required for Neurite Outgrowth And
    Cell Death and Differentiation (2008) 15, 283–298 & 2008 Nature Publishing Group All rights reserved 1350-9047/08 $30.00 www.nature.com/cdd Identification of new kinase clusters required for neurite outgrowth and retraction by a loss-of-function RNA interference screen SHY Loh1, L Francescut1, P Lingor2,3,MBa¨hr2,3 and P Nicotera*,1 Disruption of synaptic integrity, loss of connectivity and axodendritic degeneration are early and essential components of neurodegeneration. Although neuronal cell death mechanisms have been thoroughly investigated, less is known about the signals involved in axodendritic damage and the processes involved in regeneration. Here we conducted a genome-wide RNA interference-based forward genetic screen, using small interfering RNA targeting all human kinases, and identified clusters of kinases families essential for growth cone collapse, neurite retraction and neurite outgrowth. Of 59 kinases identified as positive regulators of neurite outgrowth, almost 50% were in the tyrosine kinase/tyrosine kinase-like (TK/TKL) receptor subgroups, underlining the importance of extracellular ligands in this process. Neurite outgrowth was inhibited by 66 other kinases, none of which were TK/TKL members, whereas 79 kinases inhibited lysophosphatidic acid-induced neurite retraction. Twenty kinases were involved in both inhibitory processes suggesting shared mechanisms. Within this group of 20 kinases, some (ULK1, PDK1, MAP4K4) have been implicated previously in axonal events, but others (MAST2, FASTK, CKM and DGUOK) have not. For a subset of kinases, the effect on neurite outgrowth was validated in rat primary cerebellar cultures. The ability to affect regeneration was further tested in a model of axodendritic lesion using primary rat midbrain cultures.
    [Show full text]
  • Correlating Phosphatidylinositol 3-Kinase Inhibitor Efficacy with Signaling Pathway Status: in Silico and Biological Evaluations
    Published OnlineFirst June 8, 2010; DOI: 10.1158/0008-5472.CAN-09-4172 Therapeutics, Targets, and Chemical Biology Cancer Research Correlating Phosphatidylinositol 3-Kinase Inhibitor Efficacy with Signaling Pathway Status: In silico and Biological Evaluations Shingo Dan1, Mutsumi Okamura1, Mariko Seki1, Kanami Yamazaki1, Hironobu Sugita1, Michiyo Okui2,3, Yumiko Mukai1, Hiroyuki Nishimura4, Reimi Asaka2, Kimie Nomura2, Yuichi Ishikawa2, and Takao Yamori1 Abstract The phosphatidylinositol 3-kinase (PI3K) pathway is frequently activated in human cancers, and several agents targeting this pathway including PI3K/Akt/mammalian target of rapamycin inhibitors have recently entered clinical trials. One question is whether the efficacy of a PI3K pathway inhibitor can be predicted based on the activation status of pathway members. In this study, we examined the mutation, expression, and phos- phorylation status of PI3K and Ras pathway members in a panel of 39 pharmacologically well-characterized human cancer cell lines (JFCR39). Additionally, we evaluated the in vitro efficacy of 25 PI3K pathway inhibitors in addition to conventional anticancer drugs, combining these data to construct an integrated database of pathway activation status and drug efficacies (JFCR39-DB). In silico analysis of JFCR39-DB enabled us to eval- uate correlations between the status of pathway members and the efficacy of PI3K inhibitors. For example, phospho-Akt and KRAS/BRAF mutations prominently correlated with the efficacy and the inefficacy of PI3K inhibitors, respectively, whereas PIK3CA mutation and PTEN loss did not. These correlations were confirmed in human tumor xenografts in vivo, consistent with their ability to serve as predictive biomarkers. Our findings show that JFCR39-DB is a useful tool to identify predictive biomarkers and to study the molecular pharma- cology of the PI3K pathway in cancer.
    [Show full text]
  • Association of INPP1, PIK3CG, and TSC2 Gene Variants with Autistic Disorder
    1of5 J Med Genet: first published as 10.1136/jmg.40.11.e119 on 19 November 2003. Downloaded from ELECTRONIC LETTER Association of INPP1, PIK3CG, and TSC2 gene variants with autistic disorder: implications for phosphatidylinositol signalling in autism F J Serajee, R Nabi, H Zhong, A H M Mahbubul Huq ............................................................................................................................... J Med Genet 2003;40:119 (http://www.jmedgenet.com/cgi/content/full/40/11/119) pidemiological studies have shown that about 43–86% of Key points individuals with tuberous sclerosis complex have a Epervasive developmental disorder similar to autism.1 Mutations in tuberous sclerosis genes TSC1 and TSC2 disrupt N The risk of autism in patients with tuberous sclerosis the phosphatidylinositol signalling pathway downstream of complex is higher than in any other known condition. the insulin / insulin-like growth factor receptor in the control N Mutations in tuberous sclerosis genes TSC1 and TSC2 of cell growth.2–5 We investigated single nucleotide poly- disrupt the phosphatidylinositol signalling pathway morphisms in three phosphatidylinositol signalling genes downstream of insulin and insulin-like growth factor that map to consensus areas of linkage to autism, using 196 receptor in the control of cell growth. trios from the Autism Genetics Resource Exchange. N We investigated polymorphisms in three phosphatidy- Polymorphisms in inositol polyphosphate-1-phosphatase linositol signalling genes that map to consensus areas (INPP1) at the 2q32, c catalytic subunit of phosphatidyl 3- of linkage to autism for association with autism. The OH-kinase gene (PIK3CG) at 7q22, and TSC2 gene at genes include inositol polyphosphate-1-phosphatase 16p13.3, were investigated for association with autistic disorder.
    [Show full text]