Języki Programowania Wstęp

Total Page:16

File Type:pdf, Size:1020Kb

Języki Programowania Wstęp Waldemar Smolik Języki programowania Wstęp 1 Program komputerowy (ang. computer programme) - sekwencja symboli opisujących działania procesora zapisanych według reguł języka programowania. Program to ciąg instrukcji opisujących modyfikacje stanu maszyny. Program jest wykonywany przez komputer, czasami bezpośrednio – jeśli wyrażony jest w języku zrozumiałym dla danej maszyny lub pośrednio – gdy jest interpretowany przez inny program (interpreter). Formalne wyrażenie metody obliczeniowej w postaci języka zrozumiałego dla człowieka nazywane jest kodem źródłowym, podczas gdy program wyrażony w postaci zrozumiałej dla maszyny (to jest za pomocą ciągu liczb, a bardziej precyzyjnie zer i jedynek) nazywany jest kodem maszynowym bądź postacią binarną (wykonywalną). Programy komputerowe można zaklasyfikować według ich zastosowań. Wyróżnia się zatem systemy operacyjne, aplikacje użytkowe, aplikacje narzędziowe, kompilatory i inne. Programy wbudowane wewnątrz urządzeń określa się jako firmware. 2 W najprostszym modelu wykonanie programu (zapisanego w postaci zrozumiałej dla maszyny) polega na umieszczeniu go w pamięci operacyjnej komputera i wskazaniu procesorowi adresu pierwszej instrukcji. Po tych czynnościach procesor będzie wykonywał kolejne instrukcje programu, aż do jego zakończenia (instrukcja end lub return). Program może zakończyć się: o poprawnie (zgodnie z życzeniem twórcy programu i jego użytkownika); o błędnie (z powodu awarii sprzętu bądź wykonania przez program niedozwolonej operacji, np. dzielenia przez zero). Wykonywanie programu może się nie zakończyć. Np. program powtarza instrukcje w pętli, w której nigdy nie zajdzie warunku zakończenia. 3 Program można podzielić na trzy części (obszary): o segment kodu (sekwencja instrukcji sterujących działaniem procesora); o segment danych (miejsce, gdzie zapisywane są dane wykorzystywane przez program, stałe, zmienne, adresy pamięci, komunikaty tekstowe) o segment stosu (zapamiętywane są argumenty przekazywane funkcjom, adres powrotu z wywołanej funkcji) 4 System operacyjny Oprogramowanie zarządzające komputerem, tworzące środowisko do uruchamiania i kontroli programów. Zadania systemu operacyjnego: przydział czasu procesora poszczególnym zadaniom (wg priorytetu), kontrola i przydział pamięci operacyjnej dla uruchomionych zadań, dostarczanie mechanizmów do synchronizacji zadań i komunikacji pomiędzy zadaniami, obsługa sprzętu oraz zapewnienie wykonywanym zadaniom równoległego, jednolitego, wolnego od interferencji dostępu do sprzętu, zarządzanie plikami, dostarczenie środowiska graficznego dla komunikacji maszyny z użytkownikiem. Program komputerowy będący w trakcie wykonania nazywany jest procesem lub zadaniem. Większość systemów operacyjnych (to szczególny rodzaj głównego programu) jest wielozadaniowa i pozwala na uruchamianie wielu programów jednocześnie (współbieżność). W przypadku, gdy zasoby komputera są ograniczone, np. ma tylko jeden procesor, zasób ten jest dzielony między procesy przez podział czasowy wg. priorytetu tych procesów. 5 Język programowania – zbiór zasad określających, kiedy ciąg symboli tworzy program oraz jakie obliczenia opisuje. Podobnie jak języki naturalne, język programowania składa się ze zbiorów reguł syntaktycznych oraz semantycznych, które opisują, jak należy budować poprawne wyrażenia oraz jak komputer ma je rozumieć. Wiele języków programowania posiada pisemną specyfikację swojej leksyki, gramatyki oraz semantyki. (Formalna notacja – Extended Backus-Naur Form, EBNF) Leksyka - zasób słów jakim posługujemy się w danym języku. Gramatyka – logiczne i strukturalne reguły tworzenia wyrażeń i zdań. Semantyka – w naukach komputerowych, gdzie jest rozważana jako zastosowanie reguł logiki matematycznej, opisuje znaczenie wyrażeń, funkcji i programów. 6 Rozwój języków programowania lata pięćdziesiąte języki maszynowe sześćdziesiąte, siedemdziesiąte programowanie funkcjonalne (FORTRAN) osiemdziesiąte programowanie strukturalne (C, Pascal) 1990 - programowanie obiektowe (C++, Java) 2000 - programowanie komponentowe (.Net) Historia języka C++ 1960 Algol 60: block structure, static typing 1967 Simula: Algol plus object-orientation (for simulation) 1970 C: statically typed procedural language with low-level features 1972 Smalltalk: object-orientation (for graphical interfaces), no static types 1985 C++: C plus object-oriented features and (later) genericity 1995 Java: C++ greatly simplified 1998 C++ (ISO) 2000 C# 7 8 Algorytmy i struktury danych Algorytm – skończony, uporządkowany ciąg jasno zdefiniowanych czynności, koniecznych do wykonania pewnego rodzaju zadań. (Nazwa pochodzi od łacińskiego zapisu nazwiska perskiego uczonego.) Algorytm ma przeprowadzić system z pewnego stanu początkowego do pożądanego stanu końcowego. Badaniem algorytmów zajmuje się algorytmika – dział informatyki i matematyki. Jako przykład stosowanego w życiu codziennym algorytmu podaje się często przepis kulinarny. Może istnieć kilka różnych przepisów dających na końcu taką samą (bardzo podobną) potrawę. Język przepisów kulinarnych nie został jasno zdefiniowany. Algorytmy zwykle formułowane są w sposób ścisły w oparciu o sformalizowany język. Algorytm to jednoznaczny przepis przetworzenia w skończonym czasie pewnych danych wejściowych do pewnych danych wynikowych. 9 Iteracja i rekurencja Iteracja (łac. iteratio) to czynność wielokrotnego powtarzania tej samej instrukcji albo bloku instrukcji (funkcji). Instrukcja (powtarzania) pętli: z licznikiem z warunkiem Rekurencja - w matematyce i informatyce, wywoływanie funkcji z jej własnej definicji. Wykorzystywane przy podziale zadania na mniejsze części. Wyszukiwanie Sortowanie 10 Maszyna algorytmiczna 1801 – Joseph Marie Jacquard (później współpracował z matematykiem L.M. Carnot). Krosno tkackie programowane za pomocą kart perforowanych 1833 – Charles Babbage stworzył koncepcję maszyny obliczeniowej, mechanicznej; nie udało mu się jej zbudować 1890 – spis ludności w Stanach za pomocą maszyny obliczeniowej bazującej na kartach perforowanych (IBM, Herman Hollerith) Lata 30 XX wieku – Alan Turing, Godel, Markow - Koncepcje teoretyczne Maszyna Turinga - Abstrykcyjna maszyna z głowicą czytająca nieskończenie długą taśmę zawierającą symbole - instrukcje Lata 40 XX wieku – pierwsze komputery o MARK I (Howard Aiken, Harward) o ENIAC, University of Pennsylvania o EDVAC, Johannes von Neumann, University of Princeton (rozwój architektury komputerowej zwanej architekturą Von Neumanna) o IBM 604, BULL Gamma3 11 12 Architektura Von Neumanna 13 Struktury danych Struktura danych – uporządkowana forma organizacji danych. Narzędzie rozwiązywania złożonych problemów algorytmicznych. Im lepsza struktura danych, tym prostszy i szybszy algorytm działania Wyszukiwanie książki w kartotece. Dla listy uporządkowanej alfabetycznie wyszukiwanie idzie sprawnie (nie musi skończyć się sukcesem bowiem książki może nie być na liście). Jeśli wskutek zdarzeń losowych kartoteka zostanie pomieszana, wyszukiwania nie da się przeprowadzić sprawnie. Różne zastosowania wymagają specyficznych struktur danych. Niektóre ze struktur są przeznaczone do wysoce specjalizowanych zadań czy algorytmów. Na przykład, binarne drzewa uporządkowane (BST) są wykorzystywane w algorytmach wyszukiwania. 14 Struktury danych Podstawowe struktury danych rekord lub struktura (ang. record, structure) tablica lista o lista dowiązaniowa o stos o kolejka zbiór graf o drzewo . drzewo binarne binarne drzewo poszukiwań 15 Typy Typy złożone Typy abstrakcyjne podstawowe Boolean Record (rekord) Container (kontener ) Character Union (unia) Deque (lista z dwoma końcami) Integer Tagged union (unia List (lista – uporządkowana kolekcja wartości) String znacznikowa lub Map (tablica asocjacyjna (połączenie kluczy z wartościami) – indeks rozłączna) Float (tablica indeksów)) Double Multimap (klucz może być połączony z wieloma wartościami (hashtable)) Multiset (zbiór pozwalający na powtarzanie się wartości) Priority queue (kolejka z uwzględnieniem priorytetu) Queue (kolejka – lista z określonymi operacjami na końcach, rodzaj listy typu LIFO lub FIFO) Set (zbiór niepowtarzających się elementów bez ustalonej kolejności) Stack (stos – kolejka elementów typu LIFO z operacjami push i pop) String (łańcuch znaków, sekwencja znaków reprezentujących tekst) Tree (drzewo - acykliczny, spójny graf) 16 Arrays Lists Binary B- Tries Multiway Heaps Space- Applicatio Hashes Graphs trees trees trees partitioning n-specific trees trees Array Linked list Binary tree B-tree Trie Ternary Heap Segment tree Syntax tree Hash table Graph Dynamic Doubly Binary search B+ tree Radix tree search tree Binary Interval tree Abstract Bloom filter Adjacency array linked list tree B*-tree Suffix tree And–or tree heap Range tree syntax tree Hash list list Hashed Xor linked Self-balancing B sharp Suffix array (a,b)-tree Binomial Bin Parse tree Hash tree Adjacency array tree list binary search tree FM-index Link/cut heap Kd-tree Decision tree Prefix hash matrix Graph- Parallel Unrolled tree Dancing Generalised tree Fibonacci Implicit kd-tree Alternating tree structured array linked list Randomized tree suffix tree SPQR-tree heap Min/max kd-tree decision tree Hash trie stack Sparse Zipper binary search 2-3 tree B-trie Spaghetti 2-3 heap Adaptive k-d tree Minimax Hash array Scene graph array VList tree 2-3-4 Judy array stack Soft heap Kdb tree tree mapped Binary Matrix Skip list Weight- tree Disjoint-set Pairing Quadtree Expectimini trie decision Sparse Jump list balanced tree Fusion data heap Octree max tree Distributed diagram
Recommended publications
  • Lecture 04 Linear Structures Sort
    Algorithmics (6EAP) MTAT.03.238 Linear structures, sorting, searching, etc Jaak Vilo 2018 Fall Jaak Vilo 1 Big-Oh notation classes Class Informal Intuition Analogy f(n) ∈ ο ( g(n) ) f is dominated by g Strictly below < f(n) ∈ O( g(n) ) Bounded from above Upper bound ≤ f(n) ∈ Θ( g(n) ) Bounded from “equal to” = above and below f(n) ∈ Ω( g(n) ) Bounded from below Lower bound ≥ f(n) ∈ ω( g(n) ) f dominates g Strictly above > Conclusions • Algorithm complexity deals with the behavior in the long-term – worst case -- typical – average case -- quite hard – best case -- bogus, cheating • In practice, long-term sometimes not necessary – E.g. for sorting 20 elements, you dont need fancy algorithms… Linear, sequential, ordered, list … Memory, disk, tape etc – is an ordered sequentially addressed media. Physical ordered list ~ array • Memory /address/ – Garbage collection • Files (character/byte list/lines in text file,…) • Disk – Disk fragmentation Linear data structures: Arrays • Array • Hashed array tree • Bidirectional map • Heightmap • Bit array • Lookup table • Bit field • Matrix • Bitboard • Parallel array • Bitmap • Sorted array • Circular buffer • Sparse array • Control table • Sparse matrix • Image • Iliffe vector • Dynamic array • Variable-length array • Gap buffer Linear data structures: Lists • Doubly linked list • Array list • Xor linked list • Linked list • Zipper • Self-organizing list • Doubly connected edge • Skip list list • Unrolled linked list • Difference list • VList Lists: Array 0 1 size MAX_SIZE-1 3 6 7 5 2 L = int[MAX_SIZE]
    [Show full text]
  • The Fractal Dimension Making Similarity Queries More Efficient
    The Fractal Dimension Making Similarity Queries More Efficient Adriano S. Arantes, Marcos R. Vieira, Agma J. M. Traina, Caetano Traina Jr. Computer Science Department - ICMC University of Sao Paulo at Sao Carlos Avenida do Trabalhador Sao-Carlense, 400 13560-970 - Sao Carlos, SP - Brazil Phone: +55 16-273-9693 {arantes | mrvieira | agma | caetano}@icmc.usp.br ABSTRACT time series, among others, are not useful, and the simila- This paper presents a new algorithm to answer k-nearest rity between pairs of elements is the most important pro- neighbor queries called the Fractal k-Nearest Neighbor (k- perty in such domains [5]. Thus, a new class of queries, ba- NNF ()). This algorithm takes advantage of the fractal di- sed on algorithms that search for similarity among elements mension of the dataset under scan to estimate a suitable emerged as more adequate to manipulate these data. To radius to shrinks a query that retrieves the k-nearest neigh- be able to apply similarity queries over elements of a data bors of a query object. k-NN() algorithms starts searching domain, a dissimilarity function, or a “distance function”, for elements at any distance from the query center, progres- must be defined on the domain. A distance function δ() ta- sively reducing the allowed distance used to consider ele- kes pairs of elements of the domain, quantifying the dissimi- ments as worth to analyze. If a proper radius can be set larity among them. If δ() satisfies the following properties: to start the process, a significant reduction in the number for any elements x, y and z of the data domain, δ(x, x) = 0 of distance calculations can be achieved.
    [Show full text]
  • An Investigation of Practical Approximate Nearest Neighbor Algorithms
    An Investigation of Practical Approximate Nearest Neighbor Algorithms Ting Liu, Andrew W. Moore, Alexander Gray and Ke Yang School of Computer Science Carnegie-Mellon University Pittsburgh, PA 15213 USA ftingliu, awm, agray, [email protected] Abstract This paper concerns approximate nearest neighbor searching algorithms, which have become increasingly important, especially in high dimen- sional perception areas such as computer vision, with dozens of publica- tions in recent years. Much of this enthusiasm is due to a successful new approximate nearest neighbor approach called Locality Sensitive Hash- ing (LSH). In this paper we ask the question: can earlier spatial data structure approaches to exact nearest neighbor, such as metric trees, be altered to provide approximate answers to proximity queries and if so, how? We introduce a new kind of metric tree that allows overlap: certain datapoints may appear in both the children of a parent. We also intro- duce new approximate k-NN search algorithms on this structure. We show why these structures should be able to exploit the same random- projection-based approximations that LSH enjoys, but with a simpler al- gorithm and perhaps with greater efficiency. We then provide a detailed empirical evaluation on five large, high dimensional datasets which show up to 31-fold accelerations over LSH. This result holds true throughout the spectrum of approximation levels. 1 Introduction The k-nearest-neighbor searching problem is to find the k nearest points in a dataset X ⊂ RD containing n points to a query point q 2 RD, usually under the Euclidean distance. It has applications in a wide range of real-world settings, in particular pattern recognition, machine learning [7] and database querying [11].
    [Show full text]
  • Search Trees
    The Annals of Applied Probability 2014, Vol. 24, No. 3, 1269–1297 DOI: 10.1214/13-AAP948 c Institute of Mathematical Statistics, 2014 SEARCH TREES: METRIC ASPECTS AND STRONG LIMIT THEOREMS By Rudolf Grubel¨ Leibniz Universit¨at Hannover We consider random binary trees that appear as the output of certain standard algorithms for sorting and searching if the input is random. We introduce the subtree size metric on search trees and show that the resulting metric spaces converge with probability 1. This is then used to obtain almost sure convergence for various tree functionals, together with representations of the respective limit ran- dom variables as functions of the limit tree. 1. Introduction. A sequential algorithm transforms an input sequence t1,t2,... into an output sequence x1,x2,... where, for all n ∈ N, xn+1 de- pends on xn and tn+1 only. Typically, the output variables are elements of some combinatorial family F, each x ∈ F has a size parameter φ(x) ∈ N and xn is an element of the set Fn := {x ∈ F : φ(x)= n} of objects of size n. In the probabilistic analysis of such algorithms, one starts with a stochastic model for the input sequence and is interested in certain aspects of the out- put sequence. The standard input model assumes that the ti’s are the values of a sequence η1, η2,... of independent and identically distributed random variables. For random input of this type, the output sequence then is the path of a Markov chain X = (Xn)n∈N that is adapted to the family F in the sense that (1) P (Xn ∈ Fn) = 1 for all n ∈ N.
    [Show full text]
  • Similarity Search Using Metric Trees
    International Journal of Innovations & Advancement in Computer Science IJIACS ISSN 2347 – 8616 Volume 4, Issue 11 November 2015 Similarity Search using Metric Trees Bhavin Bhuta* Gautam Chauhan* Department of Computer Engineering Department of Computer Engineering Thadomal Shahani Engineering College Thadomal Shahani Engineering College Mumbai, India Mumbai, India Abstract: d( a, b) = 0 iff | a - b | = 0, i.e., iff a = b (positive- The traditional method of comparing values against definiteness) database might work well for small database but when 2. Symmetry the database size increases invariably then the efficiency d(a, b) ≡ | a - b | = | b – a | ≡ d(b, a) takes a hit. For instance, image plagiarism detection 3. Triangle Inequality software has large amount of images stored in the d(a, b) ≡ | a – b | = | a – c + c – b | ≤ database, when we compare the hash values of input query image against that of database then the | a – c | + | c – b | ≡ d(a, c) + d(c, b) comparison may consume a good amount of time. For All indexing techniques primarily exploit Triangle this reason we introduce the concept of using metric Inequality property. We‟ll discuss four of these trees which makes use metric space properties for indexing techniques BK tree, VP tree, KD tree and indexing in databases. In this paper, we have provided Quad tree in detail [5]. the working of various nearest neighbor search trees for speeding up this task. Various spatial partition and BK-tree indexing techniques are explained in detail and their Named after Burkhard-Keller(BK tree). Many performance in real-time world is provided. powerful search engines make use of this tree reason being it is fuzzy search algorithm.
    [Show full text]
  • Slim-Trees: High Performance Metric Trees Minimizing Overlap Between Nodes
    Slim-trees: High Performance Metric Trees Minimizing Overlap Between Nodes Caetano Traina Jr.1, Agma Traina2, Bernhard Seeger3, Christos Faloutsos4 1,2 Department of Computer Science, University of São Paulo at São Carlos - Brazil 3 Fachbereich Mathematik und Informatik, Universität Marburg - Germany 4 Department of Computer Science, Carnegie Mellon University - USA [Caetano|Agma|Seeger+|[email protected]] Abstract. In this paper we present the Slim-tree, a dynamic tree for organizing metric datasets in pages of fixed size. The Slim-tree uses the “fat-factor” which provides a simple way to quantify the degree of overlap between the nodes in a metric tree. It is well-known that the degree of overlap directly affects the query performance of index structures. There are many suggestions to reduce overlap in multi- dimensional index structures, but the Slim-tree is the first metric structure explicitly designed to reduce the degree of overlap. Moreover, we present new algorithms for inserting objects and splitting nodes. The new insertion algorithm leads to a tree with high storage utilization and improved query performance, whereas the new split algorithm runs considerably faster than previous ones, generally without sacrificing search performance. Results obtained from experiments with real-world data sets show that the new algorithms of the Slim-tree consistently lead to performance improvements. After performing the Slim-down algorithm, we observed improvements up to a factor of 35% for range queries. 1. Introduction With the increasing availability of multimedia data in various forms, advanced query 1 On leave at Carnegie Mellon University. His research has been funded by FAPESP (São Paulo State Foundation for Research Support - Brazil, under Grants 98/05556-5).
    [Show full text]
  • Searching in Metric Spaces
    Searching in Metric Spaces EDGAR CHAVEZ´ Escuela de Ciencias F´ısico-Matem´aticas, Universidad Michoacana GONZALO NAVARRO, RICARDO BAEZA-YATES Depto. de Ciencias de la Computaci´on, Universidad de Chile AND JOSE´ LUIS MARROQU´IN Centro de Investigaci´on en Matem´aticas (CIMAT) The problem of searching the elements of a set that are close to a given query element under some similarity criterion has a vast number of applications in many branches of computer science, from pattern recognition to textual and multimedia information retrieval. We are interested in the rather general case where the similarity criterion defines a metric space, instead of the more restricted case of a vector space. Many solutions have been proposed in different areas, in many cases without cross-knowledge. Because of this, the same ideas have been reconceived several times, and very different presentations have been given for the same approaches. We present some basic results that explain the intrinsic difficulty of the search problem. This includes a quantitative definition of the elusive concept of “intrinsic dimensionality.” We also present a unified Categories and Subject Descriptors: F.2.2 [Analysis of algorithms and problem complexity]: Nonnumerical algorithms and problems—computations on discrete structures, geometrical problems and computations, sorting and searching; H.2.1 [Database management]: Physical design—access methods; H.3.1 [Information storage and retrieval]: Content analysis and indexing—indexing methods; H.3.2 [Information storage and retrieval]:
    [Show full text]
  • Algorithms for Efficiently Collapsing Reads with Unique Molecular Identifiers
    bioRxiv preprint doi: https://doi.org/10.1101/648683; this version posted May 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Liu RESEARCH Algorithms for efficiently collapsing reads with Unique Molecular Identifiers Daniel Liu Correspondence: [email protected] Abstract Torrey Pines High School, Del Mar Heights Road, San Diego, United Background: Unique Molecular Identifiers (UMI) are used in many experiments to States of America find and remove PCR duplicates. Although there are many tools for solving the Department of Psychiatry, University of California San Diego, problem of deduplicating reads based on their finding reads with the same Gilman Drive, La Jolla, United alignment coordinates and UMIs, many tools either cannot handle substitution States of America errors, or require expensive pairwise UMI comparisons that do not efficiently scale Full list of author information is available at the end of the article to larger datasets. Results: We formulate the problem of deduplicating UMIs in a manner that enables optimizations to be made, and more efficient data structures to be used. We implement our data structures and optimizations in a tool called UMICollapse, which is able to deduplicate over one million unique UMIs of length 9 at a single alignment position in around 26 seconds. Conclusions: We present a new formulation of the UMI deduplication problem, and show that it can be solved faster, with more sophisticated data structures.
    [Show full text]
  • Approximate Search for Textual Information in Images of Historical Manuscripts Using Simple Regular Expression Queries DEGREE FINAL WORK
    Escola Tècnica Superior d’Enginyeria Informàtica Universitat Politècnica de València Approximate search for textual information in images of historical manuscripts using simple regular expression queries DEGREE FINAL WORK Degree in Computer Engineering Author: José Andrés Moreno Tutor: Enrique Vidal Ruiz Experimental Director: Alejandro Hector Toselli Course 2019-2020 Acknowledgements I wanted to thank Enrique, for trusting in me and giving me the opportunity of devel- oping this project at the PRHLT. Also, I wanted to thank Alejandro, for helping me to go through the most technical parts of this project. Finally, I wanted to thank all the people who have helped me get to this point. « Mais non jamais, jamais je ne t’oublierai » - Edouard Priem iii iv Resumen Los archivos históricos así como otras instituciones de patrimonio cultural han estado digitalizando sus colecciones de documentos históricos con el fin de hacerlas accesible a través de Internet al público en general. Sin embargo, la mayor parte de las imágenes de los documentos digitalizados carecen de transcripción, por lo que el acceso a su contenido textual no es posible. En los últimos años, en el Centro PRHLT de la UPV se ha desarrollado una tecnolo- gía para la indexación probabilística de colecciones de estas imágenes (no transcritas). La principal aplicación de estos índices es facilitar la búsqueda de información textual en la colección de imágenes. El sistema de indexación desarrollado genera una tabla en la cual se indexa cada palabra con todas sus posibles localizaciones en el documento. Específi- camente, cada entrada de la tabla define una palabra con información de su localización: número de página y posición en la página, y una medida de certeza (o confianza) calcu- lada a partir de la probabilidad de aparición de dicha palabra en esa localización de la imagen.
    [Show full text]
  • Introduction to Cover Tree
    Introduction to Cover Tree Javen Qinfeng Shi SML of NICTA RSISE of ANU 2006 Oct. 15 Outline Goal Related works Cover tree definition Optimized Implement in C++ Complexity Further work Outline Goal Related works Cover tree definition Efficiently Implement in C++ Advantages and disadvantages Further work Goal Speed up Nearest-neighbour search[John Langford etc. 2006] ZPreprocess a dataset S of n points in some metric space X so that given a query point p ∈ X , a point q ∈ S which minimises d(p,q) can be efficiently found Also Kmeans Outline Goal Related works Cover tree definition Example Optimized Implement in C++ Advantages and disadvantages Further work Relevant works Kd tree [Friedman, Bentley & Finkel 1977] Ball tree family: ZBall tree [Omohundro,1991] ZMetric tree [Uhlmann, 1991] ZAnchors metric tree [Moore 2000] Z(Improved) Anchors metric tree [Charles2003] Navigating net [R.Krauthgamer, J.Lee 2004] ? Lots of discussions and proofs on its computational bound Kd tree Univariate axis-aligned splits Split on widest dimension O(N log N) to build, O(N) space Kd tree Kd tree y x (axis) Ball tree/metric tree A set of points in R2 [Uhlmann 1991], [Omohundro 1991] A ball-tree: level 1 [Uhlmann 1991], [Omohundro 1991] A ball-tree: level 2 A ball-tree: level 3 A ball-tree: level 4 A ball-tree: level 5 Outline Goal Related works Cover tree definition ZBasic definition ZHow to build a cover tree ZQuery a point/points Optimized Implement in C Advantages and disadvantages Further work Basic definition A cover tree
    [Show full text]
  • A Multicontext-Adaptive Query Creation and Search System for Large-Scale Image and Video Data
    Doctoral Dissertation Academic Year 2016 A Multicontext-adaptive Query Creation and Search System for Large-scale Image and Video Data Graduate School of Media and Governance Keio University Nguyen Thi Ngoc Diep Abstract of Doctoral Disseration Academic Year 2016 A Multicontext-adaptive Query Creation and Search System for Large-scale Image and Video Data by Nguyen Thi Ngoc Diep Abstract This thesis addresses the dynamic adaptability of a multimedia search system to the contexts of its users and proposes a new query creation and search system for large- scale image and video data. The contexts of a user in this system are defined as three types of preferences: content, intention, and response time. A content preference refers to the low-level or semantic representations of the data that a user is interested in. An intention preference refers to how the content should be regarded as relevant. And a response time preference refers to the ability to control a reasonable wait time. The important feature of the proposed system is the integration of context-based query creation functions with high-performance search algorithms into a unified search system. This system adapts the inverted list data structure to construct a disk- resident database model for large-scale data in high-dimensional feature space. The database model has an intrinsic property, the orthogonality of indexes, which facili- tates the functionality of the query creation and search system. The query creation process consists of two main operations: (1) context-based subspace selection and (2) subspace manipulation that includes several unary and binary functions to alter and combine subspaces in order to reflect content preferences of users.
    [Show full text]
  • Near Neighbor Search in Metric and Nonmetric Space Joannès Vermorel
    Near neighbor search in metric and nonmetric space Joannès Vermorel To cite this version: Joannès Vermorel. Near neighbor search in metric and nonmetric space. 2005. hal-00004887v1 HAL Id: hal-00004887 https://hal.archives-ouvertes.fr/hal-00004887v1 Preprint submitted on 9 May 2005 (v1), last revised 30 Aug 2005 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Near neighbor search in metric and nonmetric space Joann`es Vermorel [email protected] May 9, 2005 Abstract We consider the computational problem of finding nearest neighbors in metric and nonmetric spaces. Nonmetric spaces are the generaliza- tion of the general metric spaces but without requiring the triangular inequality assumption. Non-metric spaces are often encountered. Many of the similarity measures (between images, proteins, etc) do not verify the triangular inequality. The nonmetric case lead us to introduce a novel approach, to our knowledge, to the near neighbor search problem by intro- ducing the notions of exploration and exploration accuracy profile. Those notions lead us to introduce a new search structure, called densitree (con- traction of “density tree”),based on classifiers to estimate point densities in nonmetric spaces.
    [Show full text]