Targeting HER2 Aberrations in Non–Small Cell Lung Cancer with Osimertinib Shengwu Liu1, Shuai Li2,3, Josephine Hai1, Xiaoen Wang1, Ting Chen3, Max M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Osimertinib Versus Erlotinib Or Gefitinib in Patients with EGFR-Mutated Advanced Non-Smal
European Journal of Cancer 125 (2020) 49e57 Available online at www.sciencedirect.com ScienceDirect journal homepage: www.ejcancer.com Original Research Patient-reported outcomes from FLAURA: Osimertinib versus erlotinib or gefitinib in patients with EGFR- mutated advanced non-small-cell lung cancer Natasha B. Leighl a, Nina Karaseva b, Kazuhiko Nakagawa c, Byoung-Chul Cho d, Jhanelle E. Gray e, Tina Hovey f, Andrew Walding g, Anna Ryde´n h, Silvia Novello i,* a Princess Margaret Cancer Centre, Toronto, ON, Canada b City Clinical Oncology Dispensary, St. Petersburg, Russia c Department of Medical Oncology, Kindai University Faculty of Medicine, Osakasayama, Japan d Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea e Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA f PHASTAR, London, UK g AstraZeneca R&D, Cambridge, UK h AstraZeneca Gothenburg, Mo¨lndal, Sweden i Department of Oncology, University of Turin, Azienda Ospedaliero-Universitaria San Luigi Gonzaga, Turin, Italy Received 25 October 2019; accepted 6 November 2019 Available online 12 December 2019 KEYWORDS Abstract Background: In the FLAURA trial, osimertinib demonstrated superior EORTC QLQ-C30; progression-free survival and a favorable toxicity profile to erlotinib or gefitinib as initial ther- EORTC QLQ-LC13; apy in patients with EGFR-mutated advanced non-small-cell lung cancer. Patient-reported Non-small-cell lung outcomes from FLAURA are discussed here. cancer; Methods: Patients (N Z 556) completed the EORTC QLQ-LC13 weekly for 6 weeks, then Osimertinib; every 3 weeks, and the QLQ-C30 every 6 weeks. -
A Phase II, Open-Label Study of Ponatinib, a Multi-Targeted Oral
A Phase II, open-label study of ponatinib, a multi-targeted oral tyrosine kinase inhibitor, in advanced non- small cell lung cancer harboring RET translocations Version 8/22/2018 A Phase II, open-label study of ponatinib, a multi-targeted oral tyrosine kinase inhibitor, in advanced non-small-cell lung cancer harboring RET translocations NCT01813734 Protocol ID: 13-103 Version Date: August 22, 2018 1 Confidential A Phase II, open-label study of ponatinib, a multi-targeted oral tyrosine kinase inhibitor, in advanced non- small cell lung cancer harboring RET translocations Version 8/22/2018 Schema Genotyping of tumor for RET translocation (Pre-study evaluation) Register Ponatinib Progressive disease, Stable disease, partial or Unacceptable toxicity complete response Off study Continue Treatment 3 Confidential A Phase II, open-label study of ponatinib, a multi-targeted oral tyrosine kinase inhibitor, in advanced non- small cell lung cancer harboring RET translocations Version 8/22/2018 Schema ................................................................................................................................3 Table of Contents ................................................................. Error! Bookmark not defined. 1 Objectives ...................................................................................................................8 1.1 Study Design ..............................................................................................................8 1.2 Primary Objective .....................................................................................................8 -
S41598-018-33190-8.Pdf
www.nature.com/scientificreports OPEN Ankyrin Repeat Domain 1 Overexpression is Associated with Common Resistance to Afatinib and Received: 20 February 2018 Accepted: 25 September 2018 Osimertinib in EGFR-mutant Lung Published: xx xx xxxx Cancer Akiko Takahashi1, Masahiro Seike1, Mika Chiba1, Satoshi Takahashi1, Shinji Nakamichi1, Masaru Matsumoto1, Susumu Takeuchi1, Yuji Minegishi1, Rintaro Noro1, Shinobu Kunugi2, Kaoru Kubota1 & Akihiko Gemma1 Overcoming acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is critical in combating EGFR-mutant non-small cell lung cancer (NSCLC). We tried to construct a novel therapeutic strategy to conquer the resistance to second-and third-generation EGFR-TKIs in EGFR-positive NSCLC patients. We established afatinib- and osimertinib-resistant lung adenocarcinoma cell lines. Exome sequencing, cDNA array and miRNA microarray were performed using the established cell lines to discover novel therapeutic targets associated with the resistance to second-and third-generation EGFR-TKIs. We found that ANKRD1 which is associated with the epithelial- mesenchymal transition (EMT) phenomenon and anti-apoptosis, was overexpressed in the second-and third-generation EGFR-TKIs-resistant cells at the mRNA and protein expression levels. When ANKRD1 was silenced in the EGFR-TKIs-resistant cell lines, afatinib and osimertinib could induce apoptosis of the cell lines. Imatinib could inhibit ANKRD1 expression, resulting in restoration of the sensitivity to afatinib and osimertinib of EGFR-TKI-resistant cells. In EGFR-mutant NSCLC patients, ANKRD1 was overexpressed in the tumor after the failure of EGFR-TKI therapy, especially after long-duration EGFR- TKI treatments. ANKRD1 overexpression which was associated with EMT features and anti-apoptosis, was commonly involved in resistance to second-and third-generation EGFR-TKIs. -
MET Or NRAS Amplification Is an Acquired Resistance Mechanism to the Third-Generation EGFR Inhibitor Naquotinib
www.nature.com/scientificreports OPEN MET or NRAS amplifcation is an acquired resistance mechanism to the third-generation EGFR inhibitor Received: 5 October 2017 Accepted: 16 January 2018 naquotinib Published: xx xx xxxx Kiichiro Ninomiya1, Kadoaki Ohashi1,2, Go Makimoto1, Shuta Tomida3, Hisao Higo1, Hiroe Kayatani1, Takashi Ninomiya1, Toshio Kubo4, Eiki Ichihara2, Katsuyuki Hotta5, Masahiro Tabata4, Yoshinobu Maeda1 & Katsuyuki Kiura2 As a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), osimeritnib is the standard treatment for patients with non-small cell lung cancer harboring the EGFR T790M mutation; however, acquired resistance inevitably develops. Therefore, a next-generation treatment strategy is warranted in the osimertinib era. We investigated the mechanism of resistance to a novel EGFR-TKI, naquotinib, with the goal of developing a novel treatment strategy. We established multiple naquotinib-resistant cell lines or osimertinib-resistant cells, two of which were derived from EGFR-TKI-naïve cells; the others were derived from geftinib- or afatinib-resistant cells harboring EGFR T790M. We comprehensively analyzed the RNA kinome sequence, but no universal gene alterations were detected in naquotinib-resistant cells. Neuroblastoma RAS viral oncogene homolog (NRAS) amplifcation was detected in naquotinib-resistant cells derived from geftinib-resistant cells. The combination therapy of MEK inhibitors and naquotinib exhibited a highly benefcial efect in resistant cells with NRAS amplifcation, but the combination of MEK inhibitors and osimertinib had limited efects on naquotinib-resistant cells. Moreover, the combination of MEK inhibitors and naquotinib inhibited the growth of osimertinib-resistant cells, while the combination of MEK inhibitors and osimertinib had little efect on osimertinib-resistant cells. -
Gene Expression in Circulating Tumor Cells Reveals a Dynamic Role of EMT and PD-L1 During Osimertinib Treatment in NSCLC Patient
www.nature.com/scientificreports OPEN Gene expression in circulating tumor cells reveals a dynamic role of EMT and PD‑L1 during osimertinib treatment in NSCLC patients Aliki Ntzifa1, Areti Strati1, Galatea Kallergi2, Athanasios Kotsakis3, Vassilis Georgoulias4 & Evi Lianidou1* Liquid biopsy is a tool to unveil resistance mechanisms in NSCLC. We studied changes in gene expression in CTC-enriched fractions of EGFR-mutant NSCLC patients under osimertinib. Peripheral blood from 30 NSCLC patients before, after 1 cycle of osimertinib and at progression of disease (PD) was analyzed by size-based CTC enrichment combined with RT-qPCR for gene expression of epithelial (CK‑8, CK‑18, CK‑19), mesenchymal/EMT (VIM, TWIST‑1, AXL), stem cell (ALDH‑1) markers, PD‑L1 and PIM‑1. CTCs were also analyzed by triple immunofuorescence for 45 identical blood samples. Epithelial and stem cell profle (p = 0.043) and mesenchymal/EMT and stem cell profle (p = 0.014) at PD were correlated. There was a strong positive correlation of VIM expression with PIM‑1 expression at baseline and increased PD‑L1 expression levels at PD. AXL overexpression varied among patients and high levels of PIM‑1 transcripts were detected. PD‑L1 expression was signifcantly increased at PD compared to baseline (p = 0.016). The high prevalence of VIM positive CTCs suggest a dynamic role of EMT during osimertinib treatment, while increased expression of PD‑L1 at PD suggests a theoretical background for immunotherapy in EGFR-mutant NSCLC patients that develop resistance to osimertinib. This observation merits to be further evaluated in a prospective immunotherapy trial. Over the past two decades, great advances have been made in the therapeutic management of non-small cell lung cancer (NSCLC) patients with somatic mutations in the tyrosine kinase (TK) domain of epidermal growth factor receptor (EGFR). -
Iclusig® (Ponatinib) 15 Mg and 45 Mg Tablets for Oral Use
CENTER FOR DRUG EVALUATION AND RESEARCH Approval Package for: Application Number: NDA 203469/S-007 & S-008 Trade Name: Iclusig® 15 mg and 45 mg tablets for oral use Generic Name: Ponatinib Sponsor: ARIAD Pharmaceuticals Approval Date: December 20, 2013 S-007 provides for revisions to the labeling. S-008 provides for the addition of a risk evaluation and mitigation strategy (REMS). CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: NDA 203469/S-007 & S-008 CONTENTS Reviews / Information Included in this NDA Review. Approval Letter X Other Action Letters Labeling X REMS X Summary Review Officer/Employee List Division Director Memo X Cross Discipline Team Leader Review Medical Review(s) X Chemistry Review(s) Environmental Assessment Pharmacology Review(s) Statistical Review(s) Microbiology Review(s) Clinical Pharmacology/Biopharmaceutics Review(s) X Other Reviews X Risk Assessment and Risk Mitigation Review(s) X Proprietary Name Review(s) Administrative/Correspondence Document(s) X CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: NDA 203469/S-007 & S-008 APPROVAL LETTER DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Silver Spring MD 20993 NDA 203469/S-007 & S-008 SUPPLEMENT APPROVAL REMS APPROVAL ARIAD Pharmaceuticals Attention: Andrew Slugg, MS, MBA Senior Director, Regulatory Affairs 26 Landsdowne Street Cambridge, MA 02139-4234 Dear Mr. Slugg: Please refer to your Supplemental New Drug Application (sNDA) (S-007) dated November 27, 2013, received November 27, 2013, submitted under section 505(b) of the Federal Food, Drug, and Cosmetic Act (FDCA) for Iclusig® (ponatinib) 15 mg and 45 mg tablets for oral use. We acknowledge receipt of your amendments dated November 27; December 3, December 12, and December 18, 2013 (2). -
BC Cancer Benefit Drug List September 2021
Page 1 of 65 BC Cancer Benefit Drug List September 2021 DEFINITIONS Class I Reimbursed for active cancer or approved treatment or approved indication only. Reimbursed for approved indications only. Completion of the BC Cancer Compassionate Access Program Application (formerly Undesignated Indication Form) is necessary to Restricted Funding (R) provide the appropriate clinical information for each patient. NOTES 1. BC Cancer will reimburse, to the Communities Oncology Network hospital pharmacy, the actual acquisition cost of a Benefit Drug, up to the maximum price as determined by BC Cancer, based on the current brand and contract price. Please contact the OSCAR Hotline at 1-888-355-0355 if more information is required. 2. Not Otherwise Specified (NOS) code only applicable to Class I drugs where indicated. 3. Intrahepatic use of chemotherapy drugs is not reimbursable unless specified. 4. For queries regarding other indications not specified, please contact the BC Cancer Compassionate Access Program Office at 604.877.6000 x 6277 or [email protected] DOSAGE TUMOUR PROTOCOL DRUG APPROVED INDICATIONS CLASS NOTES FORM SITE CODES Therapy for Metastatic Castration-Sensitive Prostate Cancer using abiraterone tablet Genitourinary UGUMCSPABI* R Abiraterone and Prednisone Palliative Therapy for Metastatic Castration Resistant Prostate Cancer abiraterone tablet Genitourinary UGUPABI R Using Abiraterone and prednisone acitretin capsule Lymphoma reversal of early dysplastic and neoplastic stem changes LYNOS I first-line treatment of epidermal -
Ponatinib Shows Potent Antitumor Activity in Small Cell Carcinoma of the Ovary Hypercalcemic Type (SCCOHT) Through Multikinase Inhibition Jessica D
Published OnlineFirst February 9, 2018; DOI: 10.1158/1078-0432.CCR-17-1928 Cancer Therapy: Preclinical Clinical Cancer Research Ponatinib Shows Potent Antitumor Activity in Small Cell Carcinoma of the Ovary Hypercalcemic Type (SCCOHT) through Multikinase Inhibition Jessica D. Lang1,William P.D. Hendricks1, Krystal A. Orlando2, Hongwei Yin1, Jeffrey Kiefer1, Pilar Ramos1, Ritin Sharma3, Patrick Pirrotte3, Elizabeth A. Raupach1,3, Chris Sereduk1, Nanyun Tang1, Winnie S. Liang1, Megan Washington1, Salvatore J. Facista1, Victoria L. Zismann1, Emily M. Cousins4, Michael B. Major4, Yemin Wang5, Anthony N. Karnezis5, Aleksandar Sekulic1,6, Ralf Hass7, Barbara C. Vanderhyden8, Praveen Nair9, Bernard E. Weissman2, David G. Huntsman5,10, and Jeffrey M. Trent1 Abstract Purpose: Small cell carcinoma of the ovary, hypercalcemic type three SWI/SNF wild-type ovarian cancer cell lines. We further (SCCOHT) is a rare, aggressive ovarian cancer in young women identified ponatinib as the most effective clinically approved that is universally driven by loss of the SWI/SNF ATPase subunits RTK inhibitor. Reexpression of SMARCA4 was shown to confer SMARCA4 and SMARCA2. A great need exists for effective targeted a 1.7-fold increase in resistance to ponatinib. Subsequent therapies for SCCOHT. proteomic assessment of ponatinib target modulation in Experimental Design: To identify underlying therapeutic vul- SCCOHT cell models confirmed inhibition of nine known nerabilities in SCCOHT, we conducted high-throughput siRNA ponatinib target kinases alongside 77 noncanonical ponatinib and drug screens. Complementary proteomics approaches pro- targets in SCCOHT. Finally, ponatinib delayed tumor dou- filed kinases inhibited by ponatinib. Ponatinib was tested for bling time 4-fold in SCCOHT-1 xenografts while reducing efficacy in two patient-derived xenograft (PDX) models and one final tumor volumes in SCCOHT PDX models by 58.6% and cell-line xenograft model of SCCOHT. -
The Effects of Combination Treatments on Drug Resistance in Chronic Myeloid Leukaemia: an Evaluation of the Tyrosine Kinase Inhibitors Axitinib and Asciminib H
Lindström and Friedman BMC Cancer (2020) 20:397 https://doi.org/10.1186/s12885-020-06782-9 RESEARCH ARTICLE Open Access The effects of combination treatments on drug resistance in chronic myeloid leukaemia: an evaluation of the tyrosine kinase inhibitors axitinib and asciminib H. Jonathan G. Lindström and Ran Friedman* Abstract Background: Chronic myeloid leukaemia is in principle a treatable malignancy but drug resistance is lowering survival. Recent drug discoveries have opened up new options for drug combinations, which is a concept used in other areas for preventing drug resistance. Two of these are (I) Axitinib, which inhibits the T315I mutation of BCR-ABL1, a main source of drug resistance, and (II) Asciminib, which has been developed as an allosteric BCR-ABL1 inhibitor, targeting an entirely different binding site, and as such does not compete for binding with other drugs. These drugs offer new treatment options. Methods: We measured the proliferation of KCL-22 cells exposed to imatinib–dasatinib, imatinib–asciminib and dasatinib–asciminib combinations and calculated combination index graphs for each case. Moreover, using the median–effect equation we calculated how much axitinib can reduce the growth advantage of T315I mutant clones in combination with available drugs. In addition, we calculated how much the total drug burden could be reduced by combinations using asciminib and other drugs, and evaluated which mutations such combinations might be sensitive to. Results: Asciminib had synergistic interactions with imatinib or dasatinib in KCL-22 cells at high degrees of inhibition. Interestingly, some antagonism between asciminib and the other drugs was present at lower degrees on inhibition. -
Resistance Mechanisms to Osimertinib in EGFR-Mutated Non-Small Cell Lung Cancer
www.nature.com/bjc REVIEW ARTICLE Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer Alessandro Leonetti1,2, Sugandhi Sharma2, Roberta Minari1, Paola Perego3, Elisa Giovannetti2,4 and Marcello Tiseo 1,5 Osimertinib is an irreversible, third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that is highly selective for EGFR-activating mutations as well as the EGFR T790M mutation in patients with advanced non-small cell lung cancer (NSCLC) with EGFR oncogene addiction. Despite the documented efficacy of osimertinib in first- and second-line settings, patients inevitably develop resistance, with no further clear-cut therapeutic options to date other than chemotherapy and locally ablative therapy for selected individuals. On account of the high degree of tumour heterogeneity and adaptive cellular signalling pathways in NSCLC, the acquired osimertinib resistance is highly heterogeneous, encompassing EGFR-dependent as well as EGFR- independent mechanisms. Furthermore, data from repeat plasma genotyping analyses have highlighted differences in the frequency and preponderance of resistance mechanisms when osimertinib is administered in a front-line versus second-line setting, underlying the discrepancies in selection pressure and clonal evolution. This review summarises the molecular mechanisms of resistance to osimertinib in patients with advanced EGFR-mutated NSCLC, including MET/HER2 amplification, activation of the RAS–mitogen-activated protein kinase (MAPK) or RAS–phosphatidylinositol -
Early Prediction of Resistance to Tyrosine Kinase Inhibitors by Plasma Monitoring of EGFR Mutations in NSCLC
www.oncotarget.com Oncotarget, 2020, Vol. 11, (No. 11), pp: 982-991 Research Paper Early prediction of resistance to tyrosine kinase inhibitors by plasma monitoring of EGFR mutations in NSCLC: a new algorithm for patient selection and personalized treatment Fiamma Buttitta1,2,3, Lara Felicioni3, Alessia Di Lorito2, Alessio Cortellini4, Luciana Irtelli5, Davide Brocco5, Pietro Di Marino5, Donatella Traisci6, Nicola D’Ostilio6, Alessandra Di Paolo7, Francesco Malorgio7, Pasquale Assalone8, Sonia Di Felice9, Francesca Fabbri9, Giovanni Cianci9, Michele De Tursi2,5 and Antonio Marchetti1,2,3 1Laboratory of Diagnostic Molecular Oncology, Center for Advanced Studies and Technology (CAST), University of Chieti, Chieti, Italy 2Department of Medical and Oral Sciences and Biotechnologies, University of Chieti, Chieti, Italy 3Department of Pathology, SS Annunziata Clinical Hospital, Chieti, Italy 4Department of Oncology, San Salvatore Hospital, L’Aquila, Italy 5Department of Oncology, SS Annunziata Clinical Hospital, Chieti, Italy 6Department of Oncology, Floraspe Renzetti Hospital, Lanciano, Italy 7Department of Oncology, Spirito Santo Hospital, Pescara, Italy 8Department of Oncology, “S.S. Giovanni Paolo II” Veneziale Hospital, Isernia, Italy 9Department of Oncology, Giuseppe Mazzini Hospital, Teramo, Italy Correspondence to: Antonio Marchetti, email: [email protected] Keywords: epidermal growth factor receptor (EGFR); tyrosine-kinase Inhibitors; circulating tumor-DNA (ct-DNA); massive parallel sequencing (MPS); resistance-inducing mutation Received: January 08, 2020 Accepted: February 17, 2020 Published: March 17, 2020 Copyright: Buttitta et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. -
Trastuzumab and Paclitaxel in Patients with EGFR Mutated NSCLC That Express HER2 After Progression on EGFR TKI Treatment
www.nature.com/bjc ARTICLE Clinical Study Trastuzumab and paclitaxel in patients with EGFR mutated NSCLC that express HER2 after progression on EGFR TKI treatment Adrianus J. de Langen1,2, M. Jebbink1, Sayed M. S. Hashemi2, Justine L. Kuiper2, J. de Bruin-Visser2, Kim Monkhorst3, Erik Thunnissen4 and Egbert F. Smit1,2 BACKGROUND: HER2 expression and amplification are observed in ~15% of tumour biopsies from patients with a sensitising EGFR mutation who develop EGFR TKI resistance. It is unknown whether HER2 targeting in this setting can result in tumour responses. METHODS: A single arm phase II study was performed to study the safety and efficacy of trastuzumab and paclitaxel treatment in patients with a sensitising EGFR mutation who show HER2 expression in a tumour biopsy (IHC ≥ 1) after progression on EGFR TKI treatment. Trastuzumab (first dose 4 mg/kg, thereafter 2 mg/kg) and paclitaxel (60 mg/m2) were dosed weekly until disease progression or unacceptable toxicity. The primary end-point was tumour response rate according to RECIST v1.1. RESULTS: Twenty-four patients were enrolled. Nine patients were exon 21 L858R positive and fifteen exon 19 del positive. Median HER2 IHC was 2+ (range 1–3). For 21 patients, gene copy number by in situ hybridisation could be calculated: 5 copies/nucleus (n = 9), 5–10 copies (n = 8), and >10 copies (n = 4). An objective response was observed in 11/24 (46%) patients. Highest response rates were seen for patients with 3+ HER2 IHC (12 patients, ORR 67%) or HER2 copy number ≥10 (4 patients, ORR 100%). Median tumour change in size was 42% decrease (range −100% to +53%).