Computer Stereo Vision for Autonomous Driving Rui Fan, Li Wang, Mohammud Junaid Bocus, Ioannis Pitas Abstract As an important component of autonomous systems, autonomous car perception has had a big leap with recent advances in parallel computing archi- tectures. With the use of tiny but full-feature embedded supercomputers, com- puter stereo vision has been prevalently applied in autonomous cars for depth perception. The two key aspects of computer stereo vision are speed and ac- curacy. They are both desirable but conflicting properties, as the algorithms with better disparity accuracy usually have higher computational complexity. Therefore, the main aim of developing a computer stereo vision algorithm for resource-limited hardware is to improve the trade-off between speed and accu- racy. In this chapter, we introduce both the hardware and software aspects of computer stereo vision for autonomous car systems. Then, we discuss four au- tonomous car perception tasks, including 1) visual feature detection, description and matching, 2) 3D information acquisition, 3) object detection/recognition and 4) semantic image segmentation. The principles of computer stereo vision and parallel computing on multi-threading CPU and GPU architectures are then detailed. Rui Fan UC San Diego, e-mail:
[email protected] Li Wang ATG Robotics, e-mail:
[email protected] Mohammud Junaid Bocus University of Bristol, e-mail:
[email protected] Ioannis Pitas Aristotle University of Thessaloniki, e-mail:
[email protected] 1 2 Rui Fan, Li Wang, Mohammud Junaid Bocus, Ioannis Pitas 1 Introduction Autonomous car systems enable self-driving cars to navigate in complicated environments, without any intervention of human drivers.