On the Reliability of Reverse Engineering Results

Total Page:16

File Type:pdf, Size:1020Kb

On the Reliability of Reverse Engineering Results On the reliability of reverse engineering results Tatiana V. Amotchkina,1,5,* Michael K. Trubetskov,1,2 Vladimir Pervak,3 Boris Romanov,4 and Alexander V. Tikhonravov1 1Research Computing Center, Moscow State University, Leninskie Gory, 119991, Moscow, Russia 2Max Planck Institute of Quantum Optics, Hans-Kopfermann-Str. 1, 85748 Garching, Germany 3Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany 4Leybold Optics GmbH, Siemensstrasse 88, 63755 Alzenau, Germany 5QUEST. Centre for Quantum Engineering and Space-Time Research, Welfengarten 1, 30167 Hannover, Germany *Corresponding author: [email protected] Received 3 May 2012; revised 27 June 2012; accepted 27 June 2012; posted 28 June 2012 (Doc. ID 167892); published 30 July 2012 Determination of actual parameters of manufactured optical coatings (reverse engineering of optical coatings) provides feedback to the design-production chain and thus plays an important role in raising the quality of optical coatings production. In this paper, the reliability of reverse engineering results obtained using different types of experimental data is investigated. Considered experimental data in- clude offline normal incidence transmittance data, offline ellipsometric data, and online transmittance monitoring data recorded during depositions of all coating layers. Experimental data are obtained for special test quarter-wave mirrors with intentional errors in some layers. These mirrors were produced by a well-calibrated magnetron-sputtering process. The intentional errors are several times higher than estimated errors of layer thickness monitoring, and the reliability of their detection is used as a measure of reliability of reverse engineering results. It is demonstrated that the most reliable results are provided by online transmittance data. © 2012 Optical Society of America OCIS codes: 310.6805, 310.3840, 310.1620, 310.1860, 310.6860. 1. Introduction From a mathematical point of view, reverse engi- Reliable determination of actual optical parameters neering is a typical ill-posed inverse problem, and of layers of deposited multilayer coatings (so-called specific numerical algorithms are required to solve reverse engineering of optical coatings [1,2]) plays a this problem [5]. The complexity of this problem is key role in advancing the quality of optical coatings connected with the ambiguity and instability of production. Reverse engineering results provide feed- the problem solution [6–8]. back to the design-production chain because they One of the most popular approaches to reverse en- can be used for adjusting deposition parameters, re- gineering is based on the postproduction analysis of calibrating monitoring systems, and improving con- normal incidence or quasi-normal incidence transmit- trol of thicknesses of individual layers [1,3]. These tance (T) and/or reflectance (R) data related to a pro- results may also be useful in the course of establish- duced coating sample. This approach is simple from ing adequate levels of simulation parameters in cases an experimental point of view. Normal incidence when computational manufacturing is incorporated transmittance and quasi-normal incidence reflectance into the design-production chain [4]. can be measured with a sufficient accuracy using any UV-visible–near-IR dispersive or Fourier-transform spectrophotometer. However, this approach is quite 1559-128X/12/225543-09$15.00/0 complicated from a mathematical point of view be- © 2012 Optical Society of America cause many unknown parameters are found from a 1 August 2012 / Vol. 51, No. 22 / APPLIED OPTICS 5543 single R or/and T data array. In order to determine were quarter-wave mirrors (QWM) with intention- layer parameters reliably, one should apply a se- ally imposed errors on thicknesses of several layers. quence of physically meaningful models of optical con- We knew these errors with a high accuracy because stants and thickness errors [8]. There are situations the mirrors were produced using well-calibrated when it is not possible in principle to find layer para- time monitoring control [19]. In our disposal we meters from single R or/and T data arrays. As an ex- had several sets of measurement data, namely, mul- ample of such a situation, the reverse engineering of tiscan transmittance measurements recorded in the dispersive mirrors working in broadband spectral course of the deposition process, quasi-normal R and ranges can be considered. In this case, reflectance data T data related to produced samples, and ellipso- are not informative, and other spectral characteristics metric data taken for the samples. We used two re- (group delay or group delay dispersion) should be verse engineering software tools in our research. measured [8]. These tools were OptiRE module of OptiLayer soft- Another approach to reverse engineering is based ware ver. 8.85 [12] and Woollam WVASE32 ver. on the analysis of multiangle R and T measurements 3.770 [10]. taken for a produced multilayer coating [9]. In [9]we In Section 2, we describe in detail our experimen- demonstrated that simultaneous analysis of reflec- tal samples and measurement data. In Section 3,we tance and transmittance data taken at different an- obtain reverse engineering results on the basis of gles of incidence (AOI) and for different polarization analysis of different sets of measurement data and states increased the reliability of reverse engineering find that data sets provide reliable results. Our final results. conclusions are presented in Section 4. Spectral ellipsometric data are used mainly for optical characterization of single thin films [10,11]. 2. Experimental Samples and Measurement Data Numerical algorithms for reverse engineering of For our study, we produced six experimental sam- multilayer optical coatings on the basis of spectral ples. Two samples were the samples of single ellipsometry are provided by several commercial Ta2O5 and Si2O2 films on Suprasil substrates of software packages (see, for example, [10,12]). It is 6.35 mm thickness. Geometrical thicknesses of the known that in some cases, ellipsometric data sig- films were about 290 and 400 nm, respectively. We nificantly reduce ambiguity and provide unique used these samples to verify consistency of character- solutions to reverse engineering problems. In [13], el- ization results obtained from different measurement lipsometric data were used for characterization of di- data sets. gitized rugate coatings with the help of a general Four samples were the test samples of 15 layer regularization approach [5]. In [14] it was proved QWM with a central wavelength of 600 nm. We used that three layer structures “dielectric film–ultrathin tantalum pentoxide as a high index material (odd metal-dielectric composite film–dielectric film” can layers) and silicon dioxide as a low index material be reliably characterized on the basis of ellipsometric (even layers). In the course of the deposition of test data. Authors of [6] used ellipsometric measure- samples, intentional errors were imposed on thick- ments in combination with photometric measure- nesses of several layers. We used these samples to ments to reduce instability in the course of reverse check the reliability of reverse engineering results engineering of hybrid antireflection coatings. obtained on the basis of analysis of different mea- In recent years, reverse engineering algorithms surement data sets. based on multiscan measurements have been elabo- The experimental samples were produced with rated [4,15–17]. These multiscan measurements are magnetron-sputtering plant (HELIOS, Leybold typically transmittance or reflectance data recorded Optics GmbH). This plant was equipped with two in-situ during the deposition process. Such multiscan proprietary TwinMags magnetrons and a plasma data sets can be provided by broadband monitoring source for plasma/ion assisting. The system was (BBM) systems [2,3,18]. Using multiscan data allows pumped by turbo-molecular pumps to 1 · 10−6 m one to involve more input information in solving bar before the sputtering. Argon and oxygen were reverse engineering problems and to reduce the used for both magnetrons. The cathode power for ambiguity of its solution. Si (purity 99.999%) and Ta (purity 99.8%) targets In this paper, we investigated the reliability of re- were 4500 and 2500 W, respectively. The power ap- verse engineering results obtained on the basis of plied to the Ta cathode was not constant because analysis of different experimental data sets. At the it operated in the oxygen control mode that guaran- current state of art, this question has not been stu- teed stable film properties. The gas pressure was 1 · died systematically. The primary goal of our paper 10−3 m bar during the sputtering process. Oxygen was to reveal measurement data sets that are suffi- was fed near the targets to oxidize the sputtering cient for providing reliable reverse engineering films. The distance from targets to the substrates results. Our secondary goal was to demonstrate ex- was 100 mm. The deposition rates were approxi- amples of data sets that may give wrong reverse mately 0.5 nm ∕ s for both materials. engineering results. In total, we performed four deposition runs. In As experimental basis, we produced samples of the first and second deposition runs, we produced single layers and multilayer stacks. These stacks samples of single Ta2O5 and SiO2 films. 5544 APPLIED OPTICS / Vol. 51, No. 22 / 1 August 2012 In the third deposition run, we deposited two of the
Recommended publications
  • Reverse Engineering Digital Forensics Rodrigo Lopes October 22, 2006
    Reverse Engineering Digital Forensics Rodrigo Lopes October 22, 2006 Introduction Engineering is many times described as making practical application of the knowledge of pure sciences in the solution of a problem or the application of scientific and mathematical principles to develop economical solutions to technical problems, creating products, facilities, and structures that are useful to people. What if the opposite occurs? There is some product that may be a solution to some problem but the inner workings of the solution or even the problem it addresses may be unknown. Reverse engineering is the process of analyzing and understanding a product which functioning and purpose are unknown. In Computer Science in particular, reverse engineering may be defined as the process of analyzing a system's code, documentation, and behavior to identify its current components and their dependencies to extract and create system abstractions and design information. The subject system is not altered; however, additional knowledge about the system is produced. The definition of Reverse Engineering is not peaceful though, especially when it concerns to court and lawsuits. The Reverse Engineering of products protected by copyrighting may be a crime, even if no code is copied. From the software companies’ point of view, Reverse Engineering is many times defined as “Analyzing a product or other output of a process in order to determine how to duplicate the know-how which has been used to create a product or process”. Scope and Goals In the Digital Forensics’ scope, reverse engineering can directly be applied to analyzing unknown and suspicious code in the system, to understand both its goal and inner functioning.
    [Show full text]
  • 245533753-MIT.Pdf
    THE VULNERABILITY OF TECHNICAL SECRETS TO REVERSE ENGINEERING: IMPLICATIONS FOR COMPANY POLICY By Cenkhan Kodak M.S. in Electrical and Computer Systems Engineering (2001) University of Massachusetts at Amherst Submitted to the Systems Design and Management Program In partial fulfillment of the requirements for the degree of Master of Science in Engineering and Management At the MASSACHUSETTS INSTITUTE OF TECHNOLOGY FEBRUARY 2008 © 2008 Cenkhan Kodak. All rights reserved. The author hereby grants to MIT permission to reproduce and Distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created Signature of the Author: m- /7 Systems Desigq and Management Program r\ Ja iry 2008 Certified by: 7 Professoi ,ric von Hippel Thesis Supervisor, MIT mSchgQl o•.Ma genfer t Certified by: MASSACHUSES INSTITUTE= Pat Hale OF TEOHiNOLOGY Director, Systems Design and Management Program MAY 0 6 2008 I-I .a,:IARCHIVES -2- THE VULNERABILITY OF TECHNICAL SECRETS TO REVERSE ENGINEERING: IMPLICATIONS FOR COMPANY POLICY By Cenkhan Kodak Submitted to the Systems Design and Engineering Program On February 04 2008, in Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering and Management Abstract In this thesis I will explore the controversial topic of reverse engineering, illustrating with case examples drawn from the data storage industry. I will explore intellectual property rights issues including, users' fair-use provisions that permit reverse engineering. I will also explore the nature of the practice via several types of analyses including: the costs and benefits of reverse engineering; the practical limitations of reverse engineering; and a layered approach to reverse engineering as it applies to complex systems.
    [Show full text]
  • Software Security and Reverse Engineering
    Software Security and Reverse Engineering What is reverse engineering? Today the market of software is covered by an incredible number of protected applications, which don't allow you to use all features of programs if you aren't a registered user of these. Reverse engineering is simply the art of removing protection from programs also known as “cracking”. In Some other words cracking is described as follows: - “When you create a program you engineer it, in fact you build the executable from the source-code. The reverse engineering is simply the art of generate a source-code from an executable. Reverse engineering is used to understand how a program does an action, to bypass protection etc. Usually it's not necessary to disassemble all code of the application not only the part of the application that we are interested must be reversed. Reverse engineering used by a cracker to understand the protection scheme and to break it, so it's a very important thing in the whole world of the crack.” In short: - "Reverse Engineering referred to a way to modify a program such that it behaves as the way a reverse engineer wish." “Cracking is a method of making a software program function other than it was Originally intended by means of investigating the code, and, if necessary, patching It.” A Little bit of history Reveres egg. Most probably start with the DOS based computer games. The aim is that a player has full life and armed in the final stage of the game. So what a reverse egg.
    [Show full text]
  • Soft Robotic Hand Prosthesis Using Reverse Engineering and Fast Prototyping
    Proceedings of the 1 st Iberic Conference on Theoretical and Experimental Mechanics and Materials / 11 th National Congress on Experimental Mechanics. Porto/Portugal 4-7 November 2018. Ed. J.F. Silva Gomes. INEGI/FEUP (2018); ISBN: 978-989-20-8771-9; pp. 953-966. PAPER REF: 7452 SOFT ROBOTIC HAND PROSTHESIS USING REVERSE ENGINEERING AND FAST PROTOTYPING Hugo D’Almeida, Tiago Charters, Paulo Almeida, Mário J.G.C. Mendes (*) Instituto Superior de Engenharia de Lisboa (ISEL), Instituto Politécnico de Lisboa, Lisboa, Portugal (*) Email: [email protected] ABSTRACT The present work aimed to develop a soft robotic prosthesis of the human hand using reverse engineering and fast prototyping. This project arises in response to some limitations of the current conventional prostheses, namely aesthetic, mechanical and cost, that fail to fulfil the needs of its users, for example with soft objects. The hand prosthesis design involved the acquisition and processing of a medical image of the user's hand, followed by a modelling process which proved to be highly complex, and finally the obtainment of a real model (by 3D printing) of the prosthesis. The results obtained proved to be satisfactory in the approximation of the hand morphology, low cost and the designed mechanical properties. However, due to some technological limitations (the used 3D printers), and more specifically in the physical conception of the model, its functionality is yet to be proved with the pneumatic control. Keywords: Soft robotics, reverse engineering, fast prototyping, hand prosthesis. INTRODUCTION The human hand can be considered the most used tool by the man in the execution of the daily tasks, and its loss leads to physical and psychological damages.
    [Show full text]
  • Reverse Engineering Is Reverse Forward Engineering)
    RE- ENGINEERING The reengineering of software was described by Chikofsky and Cross in their 1990 paper, as "The examination and alteration of a system to reconstitute it in a new form" . Less formally, reengineering is the modification of a software system that takes place after it has been reverse engineered, generally to add new functionality, or to correct errors. This entire process is often erroneously referred to as reverse engineering; however, it is more accurate to say that reverse engineering is the initial examination of the system, and reengineering is the subsequent modification. Re-engineering is mostly used in the context where a legacy system is involved. Software systems are evolving on high rate because there more research to make the better so therefore software system in most cases, legacy software needs to operate on a new computing platform. 'Re-engineering' is a set of activities that are carried out to re-structure a legacy system to a new system with better functionalities and conform to the hardware and software quality constraint. FORWARD ENGINEERING Forward engineering is the opposite of reverse engineering. In forward engineering, one takes a set of primitives of interest, builds them into a working system, and then observes what the system can and cannot do. Forward engineering is the foundation of synthetic psychology (Braitenberg, 1984; Dawson, 2004; Pfeifer & Scheier, 1999). Braitenberg has argued that forward engineering is likely to produce simpler theories than reverse engineering because the latter tends to attribute behavioural complexities to the internal mechanisms of the agent. Braitenberg calls this the law of uphill analysis and downhill synthesis.
    [Show full text]
  • Reverse Engineering a Legacy Software in a Complex System: a Systems Engineering Approach
    Reverse engineering a legacy software in a complex system: A systems engineering approach Maximiliano Moraga Yang-Yang Zhao University College of Southeast Norway University College of Southeast Norway Kongsberg, Norway Kongsberg, Norway +47 94195982 +47 31009699 [email protected] [email protected] Copyright © 2018 by Maximiliano Moraga and Yang-Yang Zhao. Published and used by INCOSE with permission. Abstract. In a complex system, a legacy software as a component is determined by various factors beyond its own capability. Lack of knowledge that shaped software, which is often the case of a legacy software, can prohibit appropriate maintenance and development to comply with the system needs. To reverse engineering legacy software for a fit with the overall system of interest is a daunting task. Existing techniques of reverse engineering are mostly from a purely technical point of view and for the single discipline of software engineering. Thus, this paper aims for an approach to properly reverse engineer the reasoning behind the legacy software developments in a complex system. By jointly apply the CAFCR model and the reverse engineering, a roadmap is created to guide incremental developments of legacy software in a complex system, which benefits both the maintenance of existing implementation and realization of new functionalities for improved system performance. Introduction Software development has the growing importance for many business successes. One critical issue for an existing business is the maintenance and continuous development of its software. With increasing competition, existing businesses have a tremendous pressure on the fast pace upgrading which left no time for the software to be re-created and re-implemented.
    [Show full text]
  • Towards Efficient Instrumentation for Reverse-Engineering Object Oriented Software Through Static and Dynamic Analyses
    Towards Efficient Instrumentation for Reverse-Engineering Object Oriented Software through Static and Dynamic Analyses by Hossein Mehrfard A dissertation submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Ottawa-Carleton Institute for Electrical and Computer Engineering Carleton University Ottawa, Ontario © 2017 Hossein Mehrfard Abstract In software engineering, program analysis is usually classified according to static analysis (by analyzing source code) and dynamic analysis (by observing program executions). While static analysis provides inaccurate and imprecise results due to programming language's features (e.g., late binding), dynamic analysis produces more accurate and precise results at runtime at the expense of longer executions to collect traces. One prime mechanism to observe executions in dynamic analysis is to instrument either the code or the binary/byte code. Instrumentation overhead potentially poses a serious threat to the accuracy of the dynamic analysis, especially for time dependent software systems (e.g., real-time software), since it can cause those software systems to go out of synchronization. For instance, in a typical real-time software, the dynamic analysis result is correct if the instrumentation overhead, which is due to gathering dynamic information, does not add to the response time of real-time behaviour to the extent that deadlines may be missed. If a deadline is missed, the dynamic analysis result and the system’s output are not accurate. There are two ways to increase accuracy of a dynamic analysis: devising more efficient instrumentation and using a hybrid (static plus dynamic) analysis.
    [Show full text]
  • Reverse Engineering to Teach Scientific Concepts: Biomimetic Robot Systems Vivek Kumar1* 1Team Genius Mentor, CT, USA
    Reverse Engineering to Teach Scientific Concepts: Biomimetic Robot Systems Vivek Kumar1* 1Team Genius Mentor, CT, USA Abstract: This mentor presentation displays how Team Genius mentors teach concepts through the process of reverse engineering. It examines the current applications of re- verse engineering to teach both a scientific concept, in this case, biomimetics, and engi- neering concepts. To begin, we will describe existing robots and prototypes—from re- search labs of Stanford University and the Massachusetts Institute of Technology—with visual aids/models. Later, we will take apart (reverse engineer) working biomimetic LEGO robot prototypes. This structural and functional analysis will convey the biomi- metic concepts integrated within the robots. In the process of examining and reverse engi- neering biomimetic robots, the presentation will convey bioenvironmental concepts with practical application, as well as mechanical engineering strategies. This learning process is akin to one that can be used in a typical biological, environmental science, or engineer- ing classroom. Key Words: Robots, Biomimetics, RoboCupJunior, Environment, iRobot, ERI, Biology, Environmental Science, Education, Classroom, Reverse Engineering 1. Introduction: The educational community is of vital importance. This mentor presentation’s purpose is to explore and display new, innovative ways of presenting STEM (Science, Technology, Engineering, and Math) knowledge in a classroom en- vironment, via robotics. a. Team Genius was founded by Vivek Kumar, now a mentor, in 2010, as a private robotics team. Since its inception, it has won numerous awards, such as FIRST Robotics state championships, the FIRST Programming Awards, and the IEEE Engineering design awards. Team members now look to expand their love of science, innovation, and engineering to the in- ternational community.
    [Show full text]
  • Reverse Engineering in Product Manufacturing: an Overview
    DAAAM INTERNATIONAL SCIENTIFIC BOOK 2013 pp. 665-678 CHAPTER 39 REVERSE ENGINEERING IN PRODUCT MANUFACTURING: AN OVERVIEW KUMAR A.; JAIN, P. K. & PATHAK, P. M. Abstract: Reverse engineering plays vital role in the branch of the mechanical design and manufacturing based industry. This technique has been widely recognized as an important technique in the product design cycle. In regular computerized manufacturing environment, the operation order usually starts from the product design and ends with machine operation to convert raw material into final product. It is often essential to reproduce a CAD model of existing part using any digitization techniques, when original drawings or documentation are not available and used for analysis and modifications are required to construct a improved product design. In reverse engineering approach the important steps involved, are characterizations of geometric models and related surface representations, segmentation and surface fitting of simple and free-form shapes, and creating accurate CAD models. The chapter presents review on reverse engineering methodology and its application areas related to product design development. The product re-design and research with reverse engineering will largely reduced the production period and costs in product manufacturing industries. Key words: reverse engineering, scanning techniques, point cloud/STL data, CAD/CAM/CAE Authors´ data: Kumar A[tul], Jain, P[ramod] K[umar]; Pathak, P[ushparaj] M[ani], Mechanical & Industrial Engineering Department, Indian Institute of Technology, Roorkee, 247667, Uttarakhand India, [email protected], [email protected], [email protected] This Publication has to be referred as: Kumar, A[tul]; Jain, P[ramod] K[umar] & Pathak, P[ushparaj] M[ani] (2013) Reverse Engineering in Product Manufacturing: An Overview , Chapter 39 in DAAAM International Scientific Book 2013, pp.
    [Show full text]
  • Getting Revenge: a System for Analyzing Reverse Engineering Behavior
    Getting RevEngE: A System for Analyzing Reverse Engineering Behavior Claire Taylor Christian Collberg Department of Computer Science University of Arizona Tucson, AZ 85721 [email protected], [email protected] Abstract Code obfuscation is a popular technique used by white- ⓵ ⓶ ⓷ Generate 1 Script2 Challenge Script Generate Obfuscate Compile as well as black-hat developers to protect their software Asset Random p0.c p1.c p2.exe Program Program Program from Man-At-The-End attacks. A perennial problem has Seed1 Seed2 been how to evaluate the power of different obfuscation Solve Challenge ⓸ Analyze Results techniques. However, this evaluation is essential in order Reward ($) ⓹ Correctness Virtual Machine p3.c to be able to recommend which combination of techniques & Precision Reverse User p2.exe Engineering to employ for a particular application, and to estimate how Monitor Tools User ⓺ Analysis & long protected assets will survive in the field. We describe a Actions Visualization system, RevEngE, that generates random obfuscated chal- lenges, asks reverse engineers to solve these challenges Figure 1: System Overview. (with promises of monetary rewards if successful), monitors and collects data on how the challenges were solved, and verifies the correctness of submitted solutions. Finally, the technique. system analyzes the actions of the engineers to determine Attacks on obfuscation (known as reverse engineering the sequence and duration of techniques employed, with the or deobfuscation) aim to defeat the obfuscating transforma- ultimate goal of learning the relative strengths of different tions by extracting a close facsimile of the asset a from P 0. combinations of obfuscations. Much work has gone into developing methods to evalu- ate obfuscating transformations.
    [Show full text]
  • Metallurgical Engineering
    METALLURGICAL Innovation. Integrity. ENGINEERING Dependability. Dayton T. Brown, Inc.’s metallurgical lab is your resource for failure and engineering investigations, and metallurgical testing and analysis. Our comprehensive range of metallurgical services include: • Failure analysis ranging from aircraft structural components to electronics packaging • Detailed conformance-to-blueprint inspections • Fatigue and corrosion testing • Corrosion analysis and control • Wear/abrasion evaluations • Coating replacement evaluations • Weld evaluations • Reverse engineering programs • Development of advanced non-destructive testing techniques www.dtb.com ISO 9001:2015 and AS9100D Testing ACCREDITED Registered *Lab Code 200422-0 Accredited Test Lab *767.01, 767.02, 767.03 1195 Church Street, Bohemia, NY 11716-5014 USA Please direct all inquiries to: 1-800-232-6300 • email [email protected] A World of Engineering and Testing Visit our web site at: www.dtb.com TM Under One Roof * Please visit www.dtb.com for testing covered under our scopes of accreditation. DTB’s staff includes experienced metallurgists/materials engineers (M.S./Ph.D.) and technicians (Level 2/Level 3 in various NDI techniques). Our metallurgical lab is fully equipped with: • Scanning electron microscope with • Hardness measurement machines energy dispersive spectroscopy • Inverted optical metallograph • Arc emission spectroscope • High resolution digital imaging equipment • Metallographic sample preparation equipment • Advanced image analysis software • Stereomicroscopes • Comprehensive reference library and • Borescopes specifications database • Various non-destructive flaw detection testing techniques and equipment Failure Analysis The metallurgical lab has immediate access to in-house expertise in a wide range of technical specialties, including EMI/EMC, Shock and Vibration, Environmental Testing, Life Support Systems, Stress Analysis, Engineering Design, and Manufacturing Engineering.
    [Show full text]
  • Physical Inspection & Attack: New Frontier in Hardware Security
    Physical Inspection & Attack: New Frontier in Hardware Security M Tanjidur Rahman1, Qihang Shi, Shahin Tajik, Haoting Shen, Damon L. Woodard, Mark Tehranipoor and Navid Asadizanjani Abstract— Due to globalization, the semiconductor industry chip polishing, microscopy, probing, focus ion Beam is becoming more susceptible to trust and security issues. (FIB), X-ray imaging, laser voltage probing etc. have Hardware Trojans, i.e., malicious modification to integrated experienced significant advancement to facilitate these circuits (ICs), can violate the root of trust when the devices are fabricated in untrusted facilities. Literature shows as the techniques. Demand for higher yield and faster failure microscopy and failure analysis tools excel in the resolution and analysis and fault localization at smaller technology nodes capability, physical inspection methods like reverse engineering also catalyzed the progress and revolution in FA techniques and photonic emission become attractive in helping verify and tools. However, an adversary can use such FA such trust issues. On the contrary, such physical inspection methods and tools to attack a chip and compromise methods are opening new capabilities for an adversary to extract sensitive information like secret keys, memory content security through exposing assets – sensitive information, or intellectual property (IP) from the chip compromising intellectual property, firmware, cryptographic keys etc. [5]. confidentiality and integrity. Different countermeasures have Researchers showed that such physical inspection methods, been proposed, however, there are still many unanswered when used for physical attacking of a chip, are capable questions. In this paper, we discuss physical inspection/attack of compromising the confidentiality and integrity provided methods using failure analysis tools and analyze the existing countermeasures and security/trust issues related to them.
    [Show full text]