Gastric Secretions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary - Cellbiology
1 Glossary - Cellbiology Blotting: (Blot Analysis) Widely used biochemical technique for detecting the presence of specific macromolecules (proteins, mRNAs, or DNA sequences) in a mixture. A sample first is separated on an agarose or polyacrylamide gel usually under denaturing conditions; the separated components are transferred (blotting) to a nitrocellulose sheet, which is exposed to a radiolabeled molecule that specifically binds to the macromolecule of interest, and then subjected to autoradiography. Northern B.: mRNAs are detected with a complementary DNA; Southern B.: DNA restriction fragments are detected with complementary nucleotide sequences; Western B.: Proteins are detected by specific antibodies. Cell: The fundamental unit of living organisms. Cells are bounded by a lipid-containing plasma membrane, containing the central nucleus, and the cytoplasm. Cells are generally capable of independent reproduction. More complex cells like Eukaryotes have various compartments (organelles) where special tasks essential for the survival of the cell take place. Cytoplasm: Viscous contents of a cell that are contained within the plasma membrane but, in eukaryotic cells, outside the nucleus. The part of the cytoplasm not contained in any organelle is called the Cytosol. Cytoskeleton: (Gk. ) Three dimensional network of fibrous elements, allowing precisely regulated movements of cell parts, transport organelles, and help to maintain a cell’s shape. • Actin filament: (Microfilaments) Ubiquitous eukaryotic cytoskeletal proteins (one end is attached to the cell-cortex) of two “twisted“ actin monomers; are important in the structural support and movement of cells. Each actin filament (F-actin) consists of two strands of globular subunits (G-Actin) wrapped around each other to form a polarized unit (high ionic cytoplasm lead to the formation of AF, whereas low ion-concentration disassembles AF). -
Coffee and Its Effect on Digestion
Expert report Coffee and its effect on digestion By Dr. Carlo La Vecchia, Professor of Medical Statistics and Epidemiology, Dept. of Clinical Sciences and Community Health, Università degli Studi di Milano, Italy. Contents 1 Overview 2 2 Coffee, a diet staple for millions 3 3 What effect can coffee have on the stomach? 4 4 Can coffee trigger heartburn or GORD? 5 5 Is coffee associated with the development of gastric or duodenal ulcers? 6 6 Can coffee help gallbladder or pancreatic function? 7 7 Does coffee consumption have an impact on the lower digestive tract? 8 8 Coffee and gut microbiota — an emerging area of research 9 9 About ISIC 10 10 References 11 www.coffeeandhealth.org May 2020 1 Expert report Coffee and its effect on digestion Overview There have been a number of studies published on coffee and its effect on different areas of digestion; some reporting favourable effects, while other studies report fewer positive effects. This report provides an overview of this body of research, highlighting a number of interesting findings that have emerged to date. Digestion is the breakdown of food and drink, which occurs through the synchronised function of several organs. It is coordinated by the nervous system and a number of different hormones, and can be impacted by a number of external factors. Coffee has been suggested as a trigger for some common digestive complaints from stomach ache and heartburn, through to bowel problems. Research suggests that coffee consumption can stimulate gastric, bile and pancreatic secretions, all of which play important roles in the overall process of digestion1–6. -
THE DIGESTIVE SYSTEM: Introduction and Upper GI
THE DIGESTIVE SYSTEM: Introduction and upper GI Dalay Olson Ph.D Office: Jackson Hall 3-120 Office hours: Monday 2-3pm INTRODUCTION TO GI LEARNING OBJECTIVES 3 Distinguish between the wall layers of the esophagus and those classically represented by the small intestine. ESOPHAGUS STRUCTURE UPPER THIRD ESOPHAGUS STRUCTURE LOWER TWO-THIRDS 4 Describe the voluntary and reflex components of swallowing. PHASES OF SWALLOWING Swallowing is integrated in the medulla oblongata. Voluntary Phase Pharyngeal Phase Esophageal Phase The swallowing reflex requires input from sensory afferent nerves, somatic motor nerves and autonomic nerves. VOLUNTARY PHASE The tongue pushes the bolus of food back and upwards towards the back of the mouth. Once the food touches the soft palate and the back of the mouth it triggers the swallowing reflex. This is the stimulus! PHARYNGEAL PHASE • Once the food touches the soft palate and the back of the mouth it triggers the swallowing reflex. This is the stimulus! • The medulla oblongata (control center) then initiates the swallowing reflex causing the soft palate to elevate, closing of the glottis and opening of the esophageal sphincter (response). • Once the food moves into the esophagus the sphincter closes once again. The glottis then opens again and breathing resumes. ESOPHAGEAL PHASE 1. Food moves along the esophagus by peristalsis (waves of smooth muscle contractions) • If the food gets stuck, short reflexes will continue peristalsis. • Myogenic reflex (you will learn about this later) produces contractions that move food forward. 2. As the bolus of food moves toward the stomach the lower esophageal sphincter relaxes and opens allowing the food to move into the stomach. -
General Principles of GIT Physiology Objectives
General Principles of GIT Physiology Objectives: ❖ Physiologic Anatomy of the Gastrointestinal Wall. ❖ The General & Specific Characteristics of Smooth Muscle. ❖ Neural & Hormonal Control of Gastrointestinal Function. ❖ Types of Neurotransmitters Secreted by Enteric Neurons. ❖ Functional Types of Movements in the GIT. ❖ Gastrointestinal Blood Flow "Splanchnic Circulation". ❖ Effect of Gut Activity and Metabolic Factors on GI Blood Flow. Done by : ➔ Team leader: Rahaf AlShammari ➔ Team members: ◆ Renad AlMigren, Rinad Alghoraiby ◆ Yazeed AlKhayyal, Hesham AlShaya Colour index: ◆ Turki AlShammari, Abdullah AlZaid ● Important ◆ Dana AlKadi, Alanoud AlEssa ● Numbers ◆ Saif AlMeshari, Ahad AlGrain ● Extra َ Abduljabbar AlYamani ◆ َوأن َّل ْي َ َس ِلْ ِْلن َسا ِنَ ِإََّلَ َما َس َع ىَ Gastrointestinal System: GIT Gastrointestinal System Associated Organs (Liver,gallbladder,pancreas,salivary gland) Gastrointestinal Function: ● The alimentary tract provides the body with a continual supply of water, electrolytes, and nutrients. To achieve this function, it requires: 1 Movement of food through the alimentary tract (motility). 2 Secretion of digestive juices and digestion of the food. 3 Absorption of water, various electrolytes, and digestive products. 4 Circulation of blood through the gastrointestinal organs to carry away the absorbed substances. ● Control of all these functions is by local, nervous, and hormonal systems. The Four Processes Carried Out by the GIT: 2 Physiologic Anatomy of the Gastrointestinal Wall ● The following layers structure the GI wall from inner surface outward: ○ The mucosa ○ The submucosa ○ Circular muscle layer ○ longitudinal muscle layer Same layers in Same layers Histology lecture Histology ○ The serosa. ● In addition, sparse bundles of smooth muscle fibers, the mucosal muscle, lie in the deeper layers of the mucosa. The General Characteristics of Smooth Muscle 1- Two Smooth Muscle Classification: Unitary type ● Contracts spontaneously in response to stretch, in the Rich in gap junctions absence of neural or hormonal influence. -
Epigenetic Modulating Chemicals Significantly Affect the Virulence
G C A T T A C G G C A T genes Article Epigenetic Modulating Chemicals Significantly Affect the Virulence and Genetic Characteristics of the Bacterial Plant Pathogen Xanthomonas campestris pv. campestris Miroslav Baránek 1,* , Viera Kováˇcová 2 , Filip Gazdík 1 , Milan Špetík 1 , Aleš Eichmeier 1 , Joanna Puławska 3 and KateˇrinaBaránková 1 1 Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, 69144 Lednice, Czech Republic; fi[email protected] (F.G.); [email protected] (M.Š.); [email protected] (A.E.); [email protected] (K.B.) 2 Institute for Biological Physics, University of Cologne, 50923 Köln, Germany; [email protected] 3 Department of Phytopathology, Research Institute of Horticulture, 96-100 Skierniewice, Poland; [email protected] * Correspondence: [email protected]; Tel.: +420-519367311 Abstract: Epigenetics is the study of heritable alterations in phenotypes that are not caused by changes in DNA sequence. In the present study, we characterized the genetic and phenotypic alterations of the bacterial plant pathogen Xanthomonas campestris pv. campestris (Xcc) under different treatments with several epigenetic modulating chemicals. The use of DNA demethylating chemicals unambiguously caused a durable decrease in Xcc bacterial virulence, even after its reisolation from Citation: Baránek, M.; Kováˇcová,V.; infected plants. The first-time use of chemicals to modify the activity of sirtuins also showed Gazdík, F.; Špetík, M.; Eichmeier, A.; some noticeable results in terms of increasing bacterial virulence, but this effect was not typically Puławska, J.; Baránková, K. stable. Changes in treated strains were also confirmed by using methylation sensitive amplification Epigenetic Modulating Chemicals (MSAP), but with respect to registered SNPs induction, it was necessary to consider their contribution Significantly Affect the Virulence and to the observed polymorphism. -
The Oesophagus Lined with Gastric Mucous Membrane by P
Thorax: first published as 10.1136/thx.8.2.87 on 1 June 1953. Downloaded from Thorax (1953), 8, 87. THE OESOPHAGUS LINED WITH GASTRIC MUCOUS MEMBRANE BY P. R. ALLISON AND A. S. JOHNSTONE Leeds (RECEIVED FOR PUBLICATION FEBRUARY 26, 1953) Peptic oesophagitis and peptic ulceration of the likely to find its way into the museum. The result squamous epithelium of the oesophagus are second- has been that pathologists have been describing ary to regurgitation of digestive juices, are most one thing and clinicians another, and they have commonly found in those patients where the com- had the same name. The clarification of this point petence ofthecardia has been lost through herniation has been so important, and the description of a of the stomach into the mediastinum, and have gastric ulcer in the oesophagus so confusing, that been aptly named by Barrett (1950) " reflux oeso- it would seem to be justifiable to refer to the latter phagitis." In the past there has been some dis- as Barrett's ulcer. The use of the eponym does not cussion about gastric heterotopia as a cause of imply agreement with Barrett's description of an peptic ulcer of the oesophagus, but this point was oesophagus lined with gastric mucous membrane as very largely settled when the term reflux oesophagitis " stomach." Such a usage merely replaces one was coined. It describes accurately in two words confusion by another. All would agree that the the pathology and aetiology of a condition which muscular tube extending from the pharynx down- is a common cause of digestive disorder. -
Calcium-Sensing Receptor Is a Physiologic Multimodal Chemosensor Regulating Gastric G-Cell Growth and Gastrin Secretion
Calcium-sensing receptor is a physiologic multimodal chemosensor regulating gastric G-cell growth and gastrin secretion Jianying Fenga, Clark D. Petersena, David H. Coyb, Jian-Kang Jiangc, Craig J. Thomasc, Martin R. Pollakd, and Stephen A. Wanka,1 aDigestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804; bPeptide Research Laboratories, Department of Medicine, Tulane Health Sciences Center, New Orleans, LA 70112-2699; cNational Institutes of Health Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892; and dDivision of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA 02215 Edited* by Martha Vaughan, National Heart, Lung, and Blood Institute, Bethesda, MD, and approved September 1, 2010 (received for review June 25, 2010) The calcium-sensing receptor (CaR) is the major sensor and The sensing of extracellular Ca2+ and the regulation of Ca2+ regulator of extracellular Ca2+, whose activity is allosterically reg- homestasis has been largely attributed to the calcium-sensing ulated by amino acids and pH. Recently, CaR has been identified in receptor (CaR), a member of the C family of G protein-coupled the stomach and intestinal tract, where it has been proposed to receptors (GPCR). Consistent with this function, CaR is ex- 2+ function in a non-Ca2+ homeostatic capacity. Luminal nutrients, pressed on extracellular Ca -regulating cells such as para- such as Ca2+ and amino acids, have been recognized for decades thyroid, thyroid parafollicular, renal tubular, and bone cells (6). as potent stimulants for gastrin and acid secretion, although the The CaR has a large NH2 terminal extracellular domain molecular basis for their recognition remains unknown. -
IDP Biological Systems Gastrointestinal System
IDP Biological Systems Gastrointestinal System Section Coordinator: Jerome W. Breslin, PhD, Assistant Professor of Physiology, MEB 7208, 504-568-2669, [email protected] Overall Learning Objectives 1. Characterize the important anatomical features of the GI system in relation to GI function. 2. Describe the molecular and cellular mechanisms underlying GI motility. Highlight the neural and endocrine regulatory mechanisms. Characterize the different types of GI motility in different segments of the GI tract. 3. Define the major characteristics and temporally relate the cephalic, gastric, and intestinal phases of GI tract regulation. 4. For carbohydrates, proteins, fats, vitamins, minerals, and oral drugs, differentiate the processes of ingestion, digestion, absorption, secretion, and excretion, including the location in the GI tract where each process occurs. 5. Contrast the sympathetic and parasympathetic modulation of the enteric nervous system and the effector organs of the GI tract. 6. Describe the similarities and differences in regulating gastrointestinal function by nerves, hormones, and paracrine regulators. Include receptors, proximity, and local vs. global specificity. 7. Understand the basic mechanisms underlying several common GI disorders and related treatment strategies. Learning Objectives for Specific Hours: Hour 1 – Essential Concepts: Cellular transport mechanisms and Mechanisms of Force Generation 1. Describe the composition of cell membranes and how distribution of phospholipids and proteins influence membrane permeability of ions, hydrophilic, and hydrophobic compounds. 2. Using a cell membrane as an example, define a reflection coefficient, and explain how the relative permeability of a cell to water and solutes will generate osmotic pressure. Contrast the osmotic pressure generated across a cell membrane by a solution of particles that freely cross the membrane with that of a solution with the same osmolality, but particles that cannot cross the cell membrane. -
Parietal Cell Hyperplasia Induced by Long-Term Administration of Antacids to Rats
Gut: first published as 10.1136/gut.19.9.798 on 1 September 1978. Downloaded from Gut, 1978, 19, 798-801 Parietal cell hyperplasia induced by long-term administration of antacids to rats G. MAZZACCA1, F. CASCIONE, G. BUDILLON, L. D'AGOSTINO, L. CIMINO, AND C. FEMIANO From the Division of Gastroenterology, 2nd School ofMedicine, University ofNaples, and the Department ofPathology, Institute for Tumoral Diseases, Naples, Italv SUMMARY Suspension of magnesium and aluminum hydroxide (30-60 mEq/24 h) or a comparable volume of water was orally administered by gastric intubation to two groups of 20 male wistar rats each over 60 days. The antacid treatment led to a significant increase in the height (0-464 + 0-02 mm v. 0-318 ± 0 06) and in the volume (472 ± 32 mm3 v. 328 ± 45) of the fundic mucosa ofthe stomach, in the average count of parietal cells per unit area of the mucosa (32-37 ± 1 8 v. 22-3 + 1 6), and in the total parietal cell population of the stomach (53-6 + 3.5 x 106 v. 43-2 + 3.7 x 106). Furthermore fasting serum gastrin concentration was significantly higher in the antacid treated rats (81.2 + 7.4 pg/ml) than in control animals (56-9 ± 6-9 pg/ml). It is known that a feedback mechanism governs the The animals of group B received each time and by relationship between antral gastrin release and the same procedure a comparable volume of water. intraluminal gastric pH (Walsh et al., 1975). During the night each animal was housed in a Furthermore, gastrin exerts a trophic influence on separate cage and the antacid suspension was the the gastric mucosa with increase in the parietal cell only drinking fluid available to the rats of group A. -
Overview of Gastrointestinal Function
Overview of Gastrointestinal Function George N. DeMartino, Ph.D. Department of Physiology University of Texas Southwestern Medical Center Dallas, TX 75390 The gastrointestinal system Functions of the gastrointestinal system • Digestion • Absorption • Secretion • Motility • Immune surveillance and tolerance GI-OP-13 Histology of the GI tract Blood or Lumenal Serosal Side or Mucosal Side Structure of a villus Villus Lamina propria Movement of substances across the epithelial layer Tight junctions X Lumen Blood Apical membrane Basolateral membrane X X transcellular X X paracellular GI-OP-19 Histology of the GI tract Blood or Lumenal Serosal Side or Mucosal Side Motility in the gastrointestinal system Propulsion net movement by peristalsis Mixing for digestion and absorption Separation sphincters Storage decreased pressure GI-OP-42 Intercellular signaling in the gastrointestinal system • Neural • Hormonal • Paracrine GI-OP-10 Neural control of the GI system • Extrinsic nervous system autonomic central nervous system • Intrinsic (enteric) nervous system entirely with the GI system GI-OP-14 The extrinsic nervous system The intrinsic nervous system forms complete functional circuits Sensory neurons Interneurons Motor neurons (excitatory and inhibitory) Parasympathetic nerves regulate functions of the intrinsic nervous system Y Reflex control of gastrointestinal functions Vago-vagal Afferent reflex Salivary Glands Composition of Saliva O Proteins α−amylase lactoferrin lipase RNase lysozyme et al mucus O Electrolyte solution water Na+ , K + - HCO3 -
Effect of Hydrochloric Acid and Prostaglandins on Pepsinogen Synthesis and Secretion in Canine Gastric Chief Cell Monolayer Cultures
Gut: first published as 10.1136/gut.30.6.774 on 1 June 1989. Downloaded from Gut, 1989, 30, 774-781 Effect of hydrochloric acid and prostaglandins on pepsinogen synthesis and secretion in canine gastric chief cell monolayer cultures J DEFIZE AND RICHARD H HUNT From the Intestinal Disease Research Unit, McMaster University, Hamilton, Ontario, Canada SUMMARY The actions ofhydrochloric acid, natural PGEI, PGE2 and a synthetic commercial PGE1 preparation, Enisoprost (Searle) on pepsinogen synthesis and secretion were studied in canine chief cell monolayer cultures. Hydrochloric acid, applied directly to the apical surface of chief cells using culture plate inserts (Millipore) had no effect on secretion, nor did it affect the action of any secretagogue in the basolateral medium. All prostaglandins tested showed significant stimulation of pepsinogen secretion. Basal secretion of pepsinogen after 90 min was 9.4 (1.3)% to total initial monolayer content. At 10`6 M, PGE1 stimulated secretion was 2641 (3.8)%; PGE2 27.9 (4)% and Enisoprost 28.8 (4.2)% of initial pepsinogen content. Stimulations by all tested prostaglandins were additive with carbachol (10-4 M) and CCK (10-9 M), but not with VIP (10-6 M), dbcAMP (10-3M) or forskolin (10` M) responses. All three prostaglandins stimulated pepsinogen synthesis as measured by 14C labelled amino acid incorporation into pepsinogen. Time course experiments were similar to those for forskolin and showed shorter time delays between stimulus and increased synthesis rate than carbachol but longer than dbcAMP. Stimulated pepsinogen secretion was inhibited by high in the medium. The inhibition abolished simultaneous pepsin concentrations (>800 Fg/ml) http://gut.bmj.com/ carbachol induced stimulation of synthesis but prostaglandin or forskolin stimulation only after two hours. -
John H. Northrop
J OHN H . N ORTHROP T h e preparation of pure enzymes and virus proteins* Nobel Lecture, December 12, 1946 The problem of the chemical nature of the substances which control the reactions occurring in living cells has been a subject of research, and also of controversy, for nearly two hundred years. Before the eighteenth century these reactions were considered as "vital processes", outside the realm of experimental science. The work of Spallanzani, Payen and Persoz, Schwann, Kühne, and finally Buchner proved that many of these reactions could take place without living cells and were probably caused by the presence of small amounts of unstable and active substances, which Kühne called "enzymes". Berzelius, a century ago, pointed out that these enzymes were similar to the catalysts of the chemist and suggested that they be considered as special catalysts formed by the cells. This hypothesis was far ahead of its time and met with great opposition, since many workers considered that enzyme reac- tions differed qualitatively from ordinary chemical reactions. The work of Tamman, Arrhenius, Henri, Michaelis, Nelson, von Euler, Willstätter, War- burg, and other chemists, however, has shown that Berzelius’ viewpoint was correct and enzyme reactions are now considered a special kind of catalysis which does not differ qualitatively from other catalytic reactions. While the study of enzyme reactions made rapid progress all attempts to isolate an enzyme and so determine its chemical nature were unsuccessful until recently. The early workers were of the opinion that enzymes were probably pro- teins and in 1896 Pekelharing isolated a protein from gastric juice which he considered to be the enzyme pepsin.