The Effects of Nuclear Weapons on Human Health

Total Page:16

File Type:pdf, Size:1020Kb

The Effects of Nuclear Weapons on Human Health ESTIMATED CASUALTIES AND DESTRUCTION CAUSED BY THE ATOMIC BOMBS DROPPED ON THE EFFECTS OF NUCLEAR HIROSHIMA AND NAGASAKI IN 1945 WEAPONS ON HUMAN On 6 August 1945 a 13 kiloton atomic bomb exploded over Hiroshima, Japan. This was followed on 9 August by the explosion of a 21 kiloton bomb over Nagasaki. To date, these have been the only times a nuclear weapon has been used in armed conflict. The following figures reflect the scale of the casualties and damage that resulted from the explosions. HEALTH INFORMATION NOTE NO. 1 Deaths: Hiroshima: 100,000 – 140,000 killed* Nagasaki: 60,000 – 70,000 killed* THE IMMEDIATE AND THE EFFECTS AND Total area destroyed by heat, blast and fire: Hiroshima: 13 sq km (including 4 sq km completely destroyed by a firestorm) LONG-TERM HEALTH CASUALTIES OF THE HEAT Nagasaki: 6.7 sq km CONSEQUENCES OF AND BLAST WAVES NUCLEAR WEAPONS Impact on medical services in Hiroshima: Heat casualties: The earth below the 270 out of 300 doctors killed or injured The atomic bombings of Hiroshima and epicentre of the blast would be heated to 1,654 out of 1,780 nurses killed or injured Nagasaki in 1945 and medical studies a temperature of approximately 7000°C, 112 out of 140 pharmacists killed or injured conducted since that time have shown the which would vaporize all living things National Nuclear Security Administration / Nuclear SecurityNational Administration Office Site Nevada type of immediate and long-term health in that area. Tens of thousands of those * Number of deaths attributable to the atomic bombs by the end of 1945. consequences that can be expected in people who will not have been vaporized Estimates are based on various surveys conducted by the Japanese authorities and by scholars between August 1945 and August 1946. the event of even a limited use of nuclear would be burnt, with most people weapons. The following describes the suffering horrific full thickness skin burns. health effects and casualties that could be Severe burns could occur up to 3 km SUMMARY expected from only one 10 to 20 kiloton from the blast. In addition, many people The explosion of a nuclear weapon nuclear weapon (the size of the bombs looking in the direction of the explosion SOURCES: releases a combination of heat, that destroyed Hiroshima and Nagasaki) would suffer temporary flash blindness British Medical Association, The Medical Effects of Dr. Marcel Junod, “The Hiroshima Disaster”, The United States Strategic Bombing Survey, The blast waves and radiation. These detonated at an altitude of 1 km above a for up to 40 minutes or even permanent Nuclear War, John Wiley & Sons, Chichester 1983. International Review of the Red Cross, 1982. Effects of Atomic Bombs on Hiroshima and Nagasaki, forces have the potential to kill and densely populated area1. eye damage, including retinal burns and Chairman’s Office, 30 June 1946, Washington, United injure massive numbers of people, scarring affecting the visual field, from The Committee for the Compilation of Materials on Lachlan Forrow, M.D., Victor W. Sidel, M.D., Jonathan E. States Government Printing Office, 1946. The intense fireball generated in the looking at the fireball with the naked eye. Damage Caused by the Atomic Bombs in Hiroshima Slutzman, B.S.E., Medicine and Nuclear War: Preventing to obliterate homes, buildings and instant that the nuclear weapon explodes and Nagasaki, Hiroshima and Nagasaki: the Physical, Proliferation and Achieving Abolition, September 10, infrastructure, and to have severe Medical, and Social Effects of the Atomic Bombings, Basic 2007, Paper prepared for “Nuclear Weapons: The Final would trigger the release of heat, blast Blast casualties: The fireball and flash Books Inc, New York, 1981. Pandemic – Preventing Proliferation and Achieving consequences for the environment. waves and radiation. heat would immediately be followed Abolition,” an International Conference Sponsored by by blast pressure waves travelling at International Physicians for the Prevention of International Physicians for the Prevention of Nuclear Whether the explosion is a result supersonic speeds. People would be Nuclear War, Zero is the only option. Four medical and War and the Royal Society of Medicine, London, killed or severely injured by collapsing environmental cases for eradicating nuclear weapons, October 3–4, 2007. of a missile strike during an armed 1 It should be noted that this is a very small weapon by modern 2010. conflict, an act of terrorism or an standards. Many nuclear weapons today are up to 30 times larger. homes, falling buildings or flying debris, accidental detonation, it will have a major impact on the health of those directly affected and on the capacity to provide assistance to survivors in the immediate aftermath. International Committee of the Red Cross 19, avenue de la Paix 1202 Geneva, Switzerland T +41 22 734 60 01 F +41 22 733 20 57 E-mail: [email protected] www.icrc.org For further information, visit A hospital in Hiroshima after © ICRC, February 2013 www.icrc.org/eng/war-and-law/weapons/nuclear-weapons 4132/002 02.2013 the August 1945 bombing ICRC Archives Info Note #1 EN The effects of nuclear weapons on health.indd 1 22/05/2013 07:12 or from being thrown through the air. THE CASUALTIES AND Many of those who survive the heat Even if people survived the immediate THE EFFECT ON MEDICAL These consequences were highlighted Injuries would include ruptured organs, LONGER TERM EFFECTS and blast effects of a nuclear explosion dangers or exposure to radiation, they TREATMENT AND by Marcel Junod, a delegate of the compound fractures, fractured skulls OF RADIATION AND would fall victim to radiation sickness in would face an increased risk of developing ASSISTANCE International Committee of the Red and penetrating wounds. A significant the weeks and months that follow. This certain cancers, such as leukaemia and Cross, who was one of the first foreign number of people would be left deaf, RADIOACTIVE FALLOUT unique consequence of nuclear weapons thyroid cancer. Over time, many more The medical needs of the wounded doctors to arrive in Hiroshima and assess owing to ruptured eardrums. RELEASED BY A NUCLEAR would affect persons located outside the lives would be lost. and sick in the aftermath of a nuclear the effects of the atomic bombing. It EXPLOSION immediate proximity of the explosion, bomb explosion would be enormous. An was immediately clear that the human The accompanying firestorm: as those close to the explosion are likely In Hiroshima and Nagasaki the fatalities overwhelming number of people would suffering and loss of life there were The fireball and heat would raise The immediate effects of radiation include to have died from fatal burn and blast attributed to the bombings had, by 1950, need immediate treatment for severe catastrophic, as was the impact of the temperatures to such levels that many the following: injuries. Radioactive fallout may also be risen to 200,000 and 140,000 respectively.3 and life-threatening wounds, but no such explosion on the medical infrastructure objects and structures not immediately carried considerable distances downwind, Leukaemia incidence increased during treatment or assistance would likely be and medical services. vaporized would burn. The combination ● central nervous system dysfunction (at exposing a much larger population than the late 1940s and reached a peak in the available in the short term.5 of the heat and blast would cause fuel very high doses); that affected by blast and fire. mid-1950s before decreasing to a lower As noted by Junod, and indicated in storage tanks and flammable liquids to but still elevated level. The risk of cancer The explosion of a nuclear weapon exacts the table above, Hiroshima’s medical explode. As a result, large numbers of ● nausea, vomiting, and diarrhoea from Many affected individuals would not of the breast, oesophagus, colon and lung a heavy toll on the medical services. In infrastructure was devastated by the fires would ignite and potentially create damage to the gastrointestinal tract, be aware that they have received a also rose, particularly in people exposed the area affected by the explosion most bombing, with most of its skilled medical an immense firestorm as winds and leading to potentially fatal dehydration potentially lethal radiation dose until to high levels of radiation.4 Even today, medical personnel would be dead or personnel killed or injured. Structurally, intense heat combine the individual fires. and nutrition problems; and days or weeks after the explosion, when radiation-related illness and death are wounded and most medical facilities a Japanese Red Cross hospital, located A firestorm consumes all nearby oxygen the damage to their blood system would seen among the now elderly survivors. would be destroyed or unable to function. 1.5 km from the epicentre, remained and many seeking safety in shelters ● destruction of the body’s capacity to become evident from bleeding from the Any medical supplies that survived the largely intact. However, it could no above or below ground would be likely to produce new blood cells, resulting in gums, or from uncontrolled infections or 3 The Committee for the Compilation of Materials on Damage Caused explosion (e.g. fluids, bandages, antibiotics longer function as a medical facility as by the Atomic Bombs in Hiroshima and Nagasaki, Hiroshima and die from asphyxiation. Those that survive uncontrolled bleeding (because of the wounds that fail to heal.2 Nagasaki: the Physical, Medical, and Social Effects of the Atomic and pain medicines) would quickly be used its equipment was unusable, a third of the lack of oxygen would be at risk of absence or severe reduction of platelets) Bombings, p. 369. up. There would be no electricity for X-ray its staff had been killed and there was no 4 British Medical Association, The Medical Effects of a Nuclear War, pp.
Recommended publications
  • A Simple Approach to the Supernova Progenitor-Explosion Connection
    A Simple Approach to the Supernova Progenitor-Explosion Connection Bernhard Müller Queen's University Belfast Monash Alexander Heger, David Liptai, Joshua Cameron (Monash University) Many potential/indirect observables from core-collapse supernovae, but some of the most direct ones (explosion energies, remnant masses) are heavy elements challenging for SN theory! massive star core-collapse supernovae neutron stars & gravitational waves neutrinos supernova remnants The neutrino-driven mechanism in its modern flavour shock ● Stalled accretion shock still oscillations (“SASI”) pushed outward to ~150km as matter piles up on the PNS, then recedes again convection ● Heating or gain region g develops some tens of ms n i t g a n after bounce e li h o o c ● Convective overturn & shock oscillations “SASI” enhance the efficiency of -heating, shock which finally revives the shock ● Big challenge: Show that this works! Status of 3D Neutrino Hydrodynamics Models with Multi-Group Transport First-principle 3D models: ● Mixed record, some failures ● Some explosions, delayed compared to 2D ● Models close to the threshold So what is missing? 27 M Hanke et al. (2013) 2 3/5 2 −3/5 ⊙ ● Lcrit ∝M˙ M 14 Ma /3 ● → Increase neutrino heating or Reynolds stresses ● Unknown/undetermined microphysics (e.g. Melson et al. 2015)? ● 20 M Melson et al. (2015) Lower explosion threshold in ⊙ SASI-dominated regime (Fernandez 2015)? 15 M⊙ Lentz et al. (2015) ● Better 1D/multi-D progenitor Or with simpler schemes: e.g. IDSA+leakage Takiwaki et al. (2014) models? Challenge: Connecting to Observables Several 50 diagnostic 10 erg with explosion sustained energy accretion . l a ) t 2 e 1 a 0 k 2 ( n Pejcha & Prieto (2015): Explosion energies a J vs.
    [Show full text]
  • Could a Nearby Supernova Explosion Have Caused a Mass Extinction? JOHN ELLIS* and DAVID N
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 235-238, January 1995 Astronomy Could a nearby supernova explosion have caused a mass extinction? JOHN ELLIS* AND DAVID N. SCHRAMMtt *Theoretical Physics Division, European Organization for Nuclear Research, CH-1211, Geneva 23, Switzerland; tDepartment of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637; and *National Aeronautics and Space Administration/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 Contributed by David N. Schramm, September 6, 1994 ABSTRACT We examine the possibility that a nearby the solar constant, supernova explosions, and meteorite or supernova explosion could have caused one or more of the comet impacts that could be due to perturbations of the Oort mass extinctions identified by paleontologists. We discuss the cloud. The first of these has little experimental support. possible rate of such events in the light of the recent suggested Nemesis (4), a conjectured binary companion of the Sun, identification of Geminga as a supernova remnant less than seems to have been excluded as a mechanism for the third,§ 100 parsec (pc) away and the discovery ofa millisecond pulsar although other possibilities such as passage of the solar system about 150 pc away and observations of SN 1987A. The fluxes through the galactic plane may still be tenable. The supernova of y-radiation and charged cosmic rays on the Earth are mechanism (6, 7) has attracted less research interest than some estimated, and their effects on the Earth's ozone layer are of the others, perhaps because there has not been a recent discussed.
    [Show full text]
  • Title Liberation of Neutrons in the Nuclear Explosion of Uranium
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Liberation of neutrons in the nuclear explosion of uranium Title irradiated by thermal neutrons Author(s) 萩原, 篤太郎 Citation 物理化學の進歩 (1939), 13(6): 145-150 Issue Date 1939-12-31 URL http://hdl.handle.net/2433/46203 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University 1 9fii~lt~mi~~ Vol. 13n No. 6 (1939) i LIBERATION OF NEUTRONS.. IN THE NUCLEAR EXPLOSION OF URANIUM IRRADIATED BY THERMAL NEUTRONS By Tolai•r:vFo IIrtlsiNaaa 1'he discovery ivas first announced by Kahn and Strassmanlir'. that uranium under neutron irradiation is split by absorbing the neuttntis into two lighter elements of roughly equal weight and charge, being accompanied h}' a:very large amount of ~energy release. This leads to~ the consic(eration that these fission fragments would contain considerable ea-cess of neutrons as compared with the corresponding heaviest stable isotopes with the same nuclear charges, assuming a division into two parts only. Apart of these exceh neutrons teas found, in fact, to be disposed of by the subsequent (~-ray transformations of the fission products;" but another possibility of reducing the neutron excess seems to be a direct i nnissioie of the neutrons, .vhich would either be emitted as apart of explosiat products. almost i;istantaneously at the moment ofthe nuclear splitting or escape from hi~hh' excited nuclei of the residual fragments. It may, Clterefore,he ex- rd pected that the explosion process mould produce even larger number of secondary neutrons than one.
    [Show full text]
  • Explosive Chemical Hazards & Risk
    Safe Operating Procedure (1/13) EXPLOSIVE CHEMICAL HAZARDS & RISK MINIMIZATION _____________________________________________________________________ (For assistance, please contact EHS at (402) 472-4925, or visit our web site at http://ehs.unl.edu/) Background The Globally Harmonized System (GHS) of classification and labeling of chemicals defines an explosive materials as follows: a solid or liquid substance (or mixture of substances) which is in itself capable by chemical reaction of producing gas at such temperature and pressure and at such speed as to cause damage to the surroundings. Under the GHS system, there are seven divisions for explosives. • Unstable explosives • Division 1.1 – mass explosion hazards (i.e., nearly instant detonation of the entire quantity of explosive present) • Division 1.2 – projection hazards but not mass explosion hazards • Division 1.3 – minor mass explosion or projection hazards • Divisions 1.4 through 1.6 – very insensitive substances; negligible probability of accidental initiation or propagation Explosive chemicals will be identified with the pictogram shown below. In addition, Section 2 of the Safety Data Sheet (SDS) will include one or more of the hazard statements indicated below. • H200 Unstable; explosive • H201 Explosive; mass explosion hazard • H202 Explosive; severe projection hazard • H203 Explosive; fire, blast or projection hazard • H204 Fire or projection hazard • H205 May explode in fire Scope This SOP is limited in scope to those chemicals that meet the GHS definition of an explosive. However, it is important to understand that explosions can occur with chemicals that are not considered GHS explosives. For example, an explosion can occur with large-scale polymerization of a monomer. The reaction of monomers forming polymers is exothermic.
    [Show full text]
  • Blasts from the Past Historic Supernovas
    BLASTS from the PAST: Historic Supernovas 185 386 393 1006 1054 1181 1572 1604 1680 RCW 86 G11.2-0.3 G347.3-0.5 SN 1006 Crab Nebula 3C58 Tycho’s SNR Kepler’s SNR Cassiopeia A Historical Observers: Chinese Historical Observers: Chinese Historical Observers: Chinese Historical Observers: Chinese, Japanese, Historical Observers: Chinese, Japanese, Historical Observers: Chinese, Japanese Historical Observers: European, Chinese, Korean Historical Observers: European, Chinese, Korean Historical Observers: European? Arabic, European Arabic, Native American? Likelihood of Identification: Possible Likelihood of Identification: Probable Likelihood of Identification: Possible Likelihood of Identification: Possible Likelihood of Identification: Definite Likelihood of Identification: Definite Likelihood of Identification: Possible Likelihood of Identification: Definite Likelihood of Identification: Definite Distance Estimate: 8,200 light years Distance Estimate: 16,000 light years Distance Estimate: 3,000 light years Distance Estimate: 10,000 light years Distance Estimate: 7,500 light years Distance Estimate: 13,000 light years Distance Estimate: 10,000 light years Distance Estimate: 7,000 light years Distance Estimate: 6,000 light years Type: Core collapse of massive star Type: Core collapse of massive star Type: Core collapse of massive star? Type: Core collapse of massive star Type: Thermonuclear explosion of white dwarf Type: Thermonuclear explosion of white dwarf? Type: Core collapse of massive star Type: Thermonuclear explosion of white dwarf Type: Core collapse of massive star NASA’s ChANdrA X-rAy ObServAtOry historic supernovas chandra x-ray observatory Every 50 years or so, a star in our Since supernovas are relatively rare events in the Milky historic supernovas that occurred in our galaxy. Eight of the trine of the incorruptibility of the stars, and set the stage for observed around 1671 AD.
    [Show full text]
  • Uranium Mining and the U.S. Nuclear Weapons Program
    Uranium Mining and the U.S. Nuclear Weapons Program Uranium Mining and the U.S. Nuclear Weapons Program By Robert Alvarez Formed over 6 billion years ago, uranium, a dense, silvery-white metal, was created “during the fiery lifetimes and explosive deaths in stars in the heavens around us,” stated Nobel Laureate Arno Penzias.1 With a radioactive half-life of about 4.5 billion years, uranium-238 is the most dominant of several unstable uranium isotopes in nature and has enabled scientists to understand how our planet was created and formed. For at least the last 2 billion years, uranium shifted from deep in the earth to the rocky shell-like mantle, and then was driven by volcanic processes further up to oceans and to the continental crusts. The Colorado Plateau at the foothills of the Rocky Mountains, where some of the nation’s largest uranium deposits exist, began to be formed some 300 million years ago, followed later by melting glaciers, and erosion which left behind exposed layers of sand, silt and mud. One of these was a canary-yellow sediment that would figure prominently in the nuclear age. From 1942 to 1971, the United States nuclear weapons program purchased about 250,000 metric tons of uranium concentrated from more than 100 million tons of ore.2 Although more than half came from other nations, the uranium industry heavily depended on Indian miners in the Colorado Plateau. Until recently,3 their importance remained overlooked by historians of the atomic age. There is little doubt their efforts were essential for the United States to amass one of the most destructive nuclear arsenals in the world.
    [Show full text]
  • The Texas City Disaster
    National Hazardous Materials Fusion Center HAZMAT HISTORY The Texas City Disaster The National Hazardous Materials Fusion Center offers Hazmat History as an avenue for responders to learn from the past and apply those lessons learned to future incidents for a more successful outcome. This coincides with the overarching mission of the Fusion Center – to improve hazmat responder safety and enhance the decision‐making process during pre‐planning and mitigation of hazmat incidents. Incident Details: Insert Location and Date Texas City, TX April 16, 1947 Hazardous Material Involved Ammonium Nitrate Fertilizer Type (mode of transportation, fixed facility) Cargo Ship Overview The morning of 16 April 1947 dawned clear and crisp, cooled by a brisk north wind. Just before 8 am, longshoremen removed the hatch covers on Hold 4 of the French Liberty ship Grandcamp as they prepared to load the remainder of a consignment of ammonium nitrate fertilizer. Some 2,086 mt (2,300 t) were already onboard, 798 (880) of which were in the lower part of Hold 4. The remainder of the ship's cargo consisted of large balls of sisal twine, peanuts, drilling equipment, tobacco, cotton, and a few cases of small ammunition. No special safety precautions were in focus at the time. Several longshoremen descended into the hold and waited for the first pallets holding the 45 kg (100 lb) packages to be hoisted from dockside. Soon thereafter, someone smelled smoke, a plume was observed rising between the cargo holds and the ship’s hull, apparently about seven or eight layers of sacks down. Neither a 3.8 L (1 gal) jug of drinking water nor the contents of two fire extinguishers supplied by crew members seemed to do much good.
    [Show full text]
  • Explosives March 2017
    Hazard Communication Information Sheet reflecting the US OSHA Implementation of the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) Produced by the SCHC-OSHA Alliance GHS/HazCom Information Sheet Workgroup Info Explosives March 2017 How does OSHA’s Hazard Communication Standard (HCS 2012) define explosives? An explosive chemical is a solid or liquid chemical which is in itself capable by chemical reaction of producing gas at such a temperature and pressure and at such a speed as to cause damage to the surroundings. Pyrotechnic chemicals are included even when they do not evolve gases. A pyrotechnic chemical is a chemical designed to produce an effect by heat, light, sound, gas or smoke or a combination of these as the result of non-detonative self-sustaining exothermic chemical reactions. An explosive item is an item containing one or more explosive chemicals. A pyrotechnic item is an item containing one or more pyrotechnic chemicals. An unstable explosive is an explosive which is thermally unstable and/or too sensitive for normal handling, transport, or use. An intentional explosive is a chemical or item which is manufactured with a view to produce a practical explosive or pyrotechnic effect. How does HCS 2012 classify explosives? The class of explosives includes: a) explosive chemicals; b) explosive items, except devices containing explosive chemicals in such quantity or of such a character that their inadvertent or accidental ignition or initiation does not cause any effect external to the device either by projection, fire, smoke, heat or loud noise; and c) chemicals and items not included in a) and b) above which are manufactured with the view to producing a practical explosive or pyrotechnic effect.
    [Show full text]
  • ETSN05 -- Lecture 5 the Last Lecture Today
    10/9/2013 ETSN05 -- Lecture 5 The last lecture Today • About final report and individual assignment • Short introduction to “problems” • Discussion about “typical problems in the course” 1 10/9/2013 Plan-Do-Study-Act Plan Act Do E.g. Bergman, Klefsjö, Quality, Study Studentliteratur, 1994. Quality Improvement Paradigm 1. Characterize 2. Set goals 3. Choose model 4. Execute Proj org EF 5. Analyze 6. Package V. Basili, G. Caldiera, D. Rombach, Experience Factory, in J.J. Marciniak (ed) Encyclopedia of Software Engineering, pp. 469-576, Wiley, 1994. (Also summarized in C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén, "Experimentation in Software Engineering", Springer, 2012.) 2 10/9/2013 Learning organization • “A learning organisation is an organisation skilled at creating, acquiring, and transferring knowledge, and at modifying its behaviour to reflect new knowledge and insights” D. A. Garvin, “Building a Learning Organization”, in Harward Business Review on Knowledge Management, pp. 47–80, Harward Business School Press, Boston, USA, 1998. • Requires: systematic problem solving, experimentation, learning from past experiences, learning from others, and transferring knowledge Postmortem analysis • IEEE Software, May/June 2002 3 10/9/2013 Postmortem analysis cont. • “Ensures that the team members recognize and remember what they learned during the project” •“Identifies improvement opportunities and provides a means to initiate sustained change” Three sections of the PFR • Historical overview of the project – Figures,
    [Show full text]
  • Chapter 2 EXPLOSIVES
    Chapter 2 EXPLOSIVES This chapter classifies commercial blasting compounds according to their explosive class and type. Initiating devices are listed and described as well. Military explosives are treated separately. The ingredi- ents and more significant properties of each explosive are tabulated and briefly discussed. Data are sum- marized from various handbooks, textbooks, and manufacturers’ technical data sheets. THEORY OF EXPLOSIVES In general, an explosive has four basic characteristics: (1) It is a chemical compound or mixture ignited by heat, shock, impact, friction, or a combination of these conditions; (2) Upon ignition, it decom- poses rapidly in a detonation; (3) There is a rapid release of heat and large quantities of high-pressure gases that expand rapidly with sufficient force to overcome confining forces; and (4) The energy released by the detonation of explosives produces four basic effects; (a) rock fragmentation; (b) rock displacement; (c) ground vibration; and (d) air blast. A general theory of explosives is that the detonation of the explosives charge causes a high-velocity shock wave and a tremendous release of gas. The shock wave cracks and crushes the rock near the explosives and creates thousands of cracks in the rock. These cracks are then filled with the expanding gases. The gases continue to fill and expand the cracks until the gas pressure is too weak to expand the cracks any further, or are vented from the rock. The ingredients in explosives manufactured are classified as: Explosive bases. An explosive base is a solid or a liquid which, upon application or heat or shock, breaks down very rapidly into gaseous products, with an accompanying release of heat energy.
    [Show full text]
  • DOE-OC Green Book
    SUBJECT AREA INDICATORS AND KEY WORD LIST FOR RESTRICTED DATA AND FORMERLY RESTRICTED DATA U.S. DEPARTMENT OF ENERGY AUGUST 2018 TABLE OF CONTENTS PURPOSE ....................................................................................................................................................... 1 BACKGROUND ............................................................................................................................................... 2 Where It All Began .................................................................................................................................... 2 DIFFERENCE BETWEEN RD/FRD and NATIONAL SECURITY INFORMATION (NSI) ......................................... 3 ACCESS TO RD AND FRD ................................................................................................................................ 4 Non-DoD Organizations: ........................................................................................................................... 4 DoD Organizations: ................................................................................................................................... 4 RECOGNIZING RD and FRD ............................................................................................................................ 5 Current Documents ................................................................................................................................... 5 Historical Documents ...............................................................................................................................
    [Show full text]
  • (Usbdc) Explosives Incident Report (Eir) 2016
    UNCLASSIFIED UNITED STATES BOMB DATA CENTER (USBDC) EXPLOSIVES INCIDENT REPORT (EIR) 2016 The Annual Explosives Incident Report (EIR) reviews bombing and explosives related incidents and threats from information reported to the United States Bomb Data Center (USBDC) through the Bomb Arson Tracking System (BATS). UNCLASSIFIED UNCLASSIFIED Table of Contents Executive Summary – 2016 ______________________________________________________________________________ 1 Explosion Incidents – 2016 ______________________________________________________________________________ 2 Recoveries – 2016 ________________________________________________________________________________________ 8 Suspicious Packages – 2016 ___________________________________________________________________________ 12 Bomb Threats – 2016 __________________________________________________________________________________ 13 Hoaxes – 2016 __________________________________________________________________________________________ 14 Explosives Thefts/Losses – 2016 _____________________________________________________________________ 16 Contact Information ____________________________________________________________________________________ 19 UNCLASSIFIED UNCLASSIFIED 2016 Explosives Incident Report (EIR) EXECUTIVE SUMMARY Executive Summary – 2016 OPERATING HIGHLIGHTS The 2016 Explosives Incident Report (EIR) is an informational product prepared by the United States Bomb Data Center (USBDC), using incident data reported in the Bomb Arson Tracking System (BATS) by its nearly 2,500 interagency
    [Show full text]