Einstein Gravitational-Wave Telescope
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phase Transitions and Gravitational Wave Tests of Pseudo-Goldstone Dark Matter in the Softly Broken Uð1þ Scalar Singlet Model
PHYSICAL REVIEW D 99, 115010 (2019) Phase transitions and gravitational wave tests of pseudo-Goldstone dark matter in the softly broken Uð1Þ scalar singlet model † Kristjan Kannike* and Martti Raidal National Institute of Chemical Physics and Biophysics, Rävala 10, Tallinn 10143, Estonia (Received 26 February 2019; published 10 June 2019) We study phase transitions in a softly broken Uð1Þ complex singlet scalar model in which the dark matter is the pseudoscalar part of a singlet whose direct detection coupling to matter is strongly suppressed. Our aim is to find ways to test this model with the stochastic gravitational wave background from the scalar phase transition. We find that the phase transition which induces vacuum expectation values for both the Higgs boson and the singlet—necessary to provide a realistic dark matter candidate—is always of the second order. If the stochastic gravitational wave background characteristic to a first order phase transition will be discovered by interferometers, the soft breaking of Uð1Þ cannot be the explanation to the suppressed dark matter-baryon coupling, providing a conclusive negative test for this class of singlet models. DOI: 10.1103/PhysRevD.99.115010 I. INTRODUCTION Is there any other way to test the softly broken Uð1Þ Scalar singlet is one of the most generic candidates for singlet DM model experimentally and to distinguish the the dark matter (DM) of the Universe [1,2], whose proper- particular model from more general versions of singlet scalar ties have been exhaustively studied [3–6] (see [7,8] for a DM? A new probe of physics beyond the Standard Model recent review and references). -
Towards Gravitational Wave Astronomy: Commissioning and Characterization of GEO 600
Journal of Physics: Conference Series Related content - Quantum measurements in gravitational- Towards gravitational wave astronomy: wave detectors F Ya Khalili Commissioning and characterization of GEO600 - Systematic survey for monitor signals to reduce fake burst events in a gravitational- wave detector To cite this article: S Hild et al 2006 J. Phys.: Conf. Ser. 32 66 Koji Ishidoshiro, Masaki Ando and Kimio Tsubono - Environmental Effects for Gravitational- wave Astrophysics Enrico Barausse, Vitor Cardoso and Paolo View the article online for updates and enhancements. Pani Recent citations - First joint search for gravitational-wave bursts in LIGO and GEO 600 data B Abbott et al - The status of GEO 600 H Grote (for the LIGO Scientific Collaboration) - Upper limits on gravitational wave emission from 78 radio pulsars W. G. Anderson et al This content was downloaded from IP address 194.95.159.70 on 30/01/2019 at 13:59 Institute of Physics Publishing Journal of Physics: Conference Series 32 (2006) 66–73 doi:10.1088/1742-6596/32/1/011 Sixth Edoardo Amaldi Conference on Gravitational Waves Towards gravitational wave astronomy: Commissioning and characterization of GEO 600 S. Hild1,H.Grote1,J.R.Smith1 and M. Hewitson1 for the GEO 600-team2 . 1 Max-Planck-Institut f¨ur Gravitationsphysik (Albert-Einstein-Institut) und Universit¨at Hannover, Callinstr. 38, D–30167 Hannover, Germany. 2 See GEO 600 status report paper for the author list of the GEO collaboration. E-mail: [email protected] Abstract. During the S4 LSC science run, the gravitational-wave detector GEO 600, the first large scale dual recycled interferometer, took 30 days of continuous√ data. -
5 Optical Design
ET-0106A-10 issue :2 ET Design Study date :January27,2011 page :204of315 5 Optical design 5.1 Description Responsible: WP3 coordinator, A. Freise Put here the description of the content of the section . 5.2 Executive Summary Responsible: WP3 coordinator, A. Freise Put here a summary of the main achievement/statements of this section . 5.3 Review on the geometry of the observatory Author(s): Andreas Freise,StefanHild This section briefly reviews the reasoning behind the shape of current gravitational wave detectors and then discusses alternative geometries which can be of interest for third-generation detectors. We will use the ter- minology introduced in the review of a triangular configuration [220] and discriminate between the geometry, topology and configuration of a detector as follows: The geometry describes the position information of one or several interferometers, defined by the number of interferometers, their location and relative orientation. The topology describes the optical system formed by its core elements. The most common examples are the Michelson, Sagnac and Mach–Zehnder topologies. Finally the configuration describes the detail of the optical layout and the set of parameters that can be changed for a given topology, ranging from the specifications of the optical core elements to the control systems, including the operation point of the main interferometer. Please note that the addition of optical components to a given topology is often referred to as a change in configuration. 5.3.1 The L-shape Current gravitational wave detectors represent the most precise instruments for measuring length changes. They are laser interferometers with km-long arms and are operated differently from many precision instruments built for measuring an absolute length. -
Observing Primordial Gravitational Waves Below the Binary-Black-Hole-Produced Stochastic Background
Digging Deeper: Observing Primordial Gravitational Waves below the Binary-Black-Hole-Produced Stochastic Background The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Regimbau, T. et al. “Digging Deeper: Observing Primordial Gravitational Waves below the Binary-Black-Hole-Produced Stochastic Background.” Physical Review Letters 118.15 (2017): n. pag. © 2017 American Physical Society As Published http://dx.doi.org/10.1103/PhysRevLett.118.151105 Publisher American Physical Society Version Final published version Citable link http://hdl.handle.net/1721.1/108853 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. week ending PRL 118, 151105 (2017) PHYSICAL REVIEW LETTERS 14 APRIL 2017 Digging Deeper: Observing Primordial Gravitational Waves below the Binary-Black-Hole-Produced Stochastic Background † ‡ T. Regimbau,1,* M. Evans,2 N. Christensen,1,3, E. Katsavounidis,2 B. Sathyaprakash,4, and S. Vitale2 1Artemis, Université Côte d’Azur, CNRS, Observatoire Côte d’Azur, CS 34229, Nice cedex 4, France 2LIGO, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 3Physics and Astronomy, Carleton College, Northfield, Minnesota 55057, USA 4Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA and School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, United Kingdom (Received 25 November 2016; revised manuscript received 9 February 2017; published 14 April 2017) The merger rate of black hole binaries inferred from the detections in the first Advanced LIGO science run implies that a stochastic background produced by a cosmological population of mergers will likely mask the primordial gravitational wave background. -
The Einstein Telescope (ET) Is a Proposed Underground Infrastructure to Host a Third- Generation, Gravitational-Wave Observatory
The Einstein Telescope (ET) is a proposed underground infrastructure to host a third- generation, gravitational-wave observatory. It builds on the success of current, second-generation laser- interferometric detectors Advanced Virgo and Advanced LIGO, whose breakthrough discoveries of merging black holes (BHs) and neutron stars over the past 5 years have ushered scientists into the new era of gravitational-wave astronomy. The Einstein Telescope will achieve a greatly improved sensitivity by increasing the size of the interferometer from the 3km arm length of the Virgo detector to 10km, and by implementing a series of new technologies. These include a cryogenic system to cool some of the main optics to 10 – 20K, new quantum technologies to reduce the fluctuations of the light, and a set of infrastructural and active noise-mitigation measures to reduce environmental perturbations. The Einstein Telescope will make it possible, for the first time, to explore the Universe through gravitational waves along its cosmic history up to the cosmological dark ages, shedding light on open questions of fundamental physics and cosmology. It will probe the physics near black-hole horizons (from tests of general relativity to quantum gravity), help understanding the nature of dark matter (such as primordial BHs, axion clouds, dark matter accreting on compact objects), and the nature of dark energy and possible modifications of general relativity at cosmological scales. Exploiting the ET sensitivity and frequency band, the entire population of stellar and intermediate mass black holes will be accessible over the entire history of the Universe, enabling to understand their origin (stellar versus primordial), evolution, and demography. -
Observing Gravitational Waves from Spinning Neutron Stars LIGO-G060662-00-Z Reinhard Prix (Albert-Einstein-Institut)
Astrophysical Motivation Detecting Gravitational Waves from NS Observing Gravitational Waves from Spinning Neutron Stars LIGO-G060662-00-Z Reinhard Prix (Albert-Einstein-Institut) for the LIGO Scientific Collaboration Toulouse, 6 July 2006 R. Prix Gravitational Waves from Neutron Stars Astrophysical Motivation Detecting Gravitational Waves from NS Outline 1 Astrophysical Motivation Gravitational Waves from Neutron Stars? Emission Mechanisms (Mountains, Precession, Oscillations, Accretion) Gravitational Wave Astronomy of NS 2 Detecting Gravitational Waves from NS Status of LIGO (+GEO600) Data-analysis of continous waves Observational Results R. Prix Gravitational Waves from Neutron Stars Gravitational Waves from Neutron Stars? Astrophysical Motivation Emission Mechanisms Detecting Gravitational Waves from NS Gravitational Wave Astronomy of NS Orders of Magnitude Quadrupole formula (Einstein 1916). GW luminosity (: deviation from axisymmetry): 2 G MV 3 O(10−53) L ∼ 2 GW c5 R c5 R 2 V 6 O(1059) erg = 2 s s G R c 2 Schwarzschild radius Rs = 2GM/c Need compact objects in relativistic motion: Black Holes, Neutron Stars, White Dwarfs R. Prix Gravitational Waves from Neutron Stars Gravitational Waves from Neutron Stars? Astrophysical Motivation Emission Mechanisms Detecting Gravitational Waves from NS Gravitational Wave Astronomy of NS What is a neutron star? −1 Mass: M ∼ 1.4 M Rotation: ν . 700 s Radius: R ∼ 10 km Magnetic field: B ∼ 1012 − 1014 G =⇒ density: ρ¯ & ρnucl =⇒ Rs = 2GM ∼ . relativistic: R c2R 0 4 R. Prix Gravitational Waves from Neutron Stars Gravitational Waves from Neutron Stars? Astrophysical Motivation Emission Mechanisms Detecting Gravitational Waves from NS Gravitational Wave Astronomy of NS Gravitational Wave Strain h(t) + Plane gravitational wave hµν along z-direction: Lx −Ly Strain h(t) ≡ 2L : y Ly Lx x h(t) t R. -
Holographic Noise in Interferometers a New Experimental Probe of Planck Scale Unification
Holographic Noise in Interferometers A new experimental probe of Planck scale unification FCPA planning retreat, April 2010 1 Planck scale seconds The physics of this “minimum time” is unknown 1.616 ×10−35 m Black hole radius particle energy ~1016 TeV € Quantum particle energy size Particle confined to Planck volume makes its own black hole FCPA planning retreat, April 2010 2 Interferometers might probe Planck scale physics One interpretation of the Planck frequency/bandwidth limit predicts a new kind of uncertainty leading to a new detectable effect: "holographic noise” Different from gravitational waves or quantum field fluctuations Predicts Planck-amplitude noise spectrum with no parameters We are developing an experiment to test this hypothesis FCPA planning retreat, April 2010 3 Quantum limits on measuring event positions Spacelike-separated event intervals can be defined with clocks and light But transverse position measured with frequency-bounded waves is uncertain by the diffraction limit, Lλ0 This is much larger than the wavelength € Lλ0 L λ0 Add second€ dimension: small phase difference of events over Wigner (1957): quantum limits large transverse patch with one spacelike dimension FCPA planning€ retreat, April 2010 4 € Nonlocal comparison of event positions: phases of frequency-bounded wavepackets λ0 Wavepacket of phase: relative positions of null-field reflections off massive bodies € Δf = c /2πΔx Separation L € ΔxL = L(Δf / f0 ) = cL /2πf0 Uncertainty depends only on L, f0 € FCPA planning retreat, April 2010 5 € Physics Outcomes -
Seismic Characterization of the Euregio Meuse-Rhine in View of Einstein Telescope
SEISMIC CHARACTERIZATION OF THE EUREGIO MEUSE-RHINE IN VIEW OF EINSTEIN TELESCOPE 13 September 2019 First results of seismic studies of the Belgian-Dutch-German site for Einstein Telescope Soumen Koley1, Maria Bader1, Alessandro Bertolini1, Jo van den Brand1,2, Henk Jan Bulten1,3, Stefan Hild1,2, Frank Linde1,4, Bas Swinkels1, Bjorn Vink5 1. Nikhef, National Institute for Subatomic Physics, Amsterdam, The Netherlands 2. Maastricht University, Maastricht, The Netherlands 3. VU University Amsterdam, Amsterdam, The Netherlands 4. University of Amsterdam, Amsterdam, The Netherlands 5. Antea Group, Maastricht, The Netherlands CONFIDENTIAL Figure 1: Artist impression of the Einstein Telescope gravitational wave observatory situated at a depth of 200-300 meters in the Euregio Meuse-Rhine landscape. The triangular topology with 10 kilometers long arms allows for the installation of multiple so-called laser interferometers. Each of which can detect ripples in the fabric of space-time – the unique signature of a gravitational wave – as minute relative movements of the mirrors hanging at the bottom of the red and white towers indicated in the illustration at the corners of the triangle. 1 SEISMIC CHARACTERIZATION OF THE EUREGIO MEUSE-RHINE IN VIEW OF EINSTEIN TELESCOPE Figure 2: Drill rig for the 2018-2019 campaign used for the completion of the 260 meters deep borehole near Terziet on the Dutch-Belgian border in South Limburg. Two broadband seismic sensors were installed: one at a depth of 250 meters and one just below the surface. Both sensors are accessible via the KNMI portal: http://rdsa.knmi.nl/dataportal/. 2 SEISMIC CHARACTERIZATION OF THE EUREGIO MEUSE-RHINE IN VIEW OF EINSTEIN TELESCOPE Executive summary The European 2011 Conceptual Design Report for Einstein Telescope identified the Euregio Meuse-Rhine and in particular the South Limburg border region as one of the prospective sites for this next generation gravitational wave observatory. -
Observational Signatures from Tidal Disruption Events of White Dwarfs
Doctoral Dissertation 博士論文 Observational signatures from tidal disruption events of white dwarfs (白色矮星の潮汐破壊現象からの観測兆候) A Dissertation Submitted for the Degree of Doctor of Philosophy December 2020 令和 2 年 12 月 博士(理学)申請 Department of Physics, Graduate School of Science, The University of Tokyo 東京大学大学院理学系研究科物理学専攻 Kojiro Kawana 川名 好史朗 i Abstract Recent advances in optical surveys have yielded a large sample of astronomical transients, including classically known novae and supernovae (SNe) and also newly discovered classes of transients. Among them, tidal disruption events (TDEs) have a unique feature that they can probe massive black holes (MBHs). A TDE is an event where a star approaching close to a BH is disrupted by tides of the BH. The disrupted star leaves debris bound to the BH emitting multi-wavelength and multi-messenger signals, which are observed as a transient. The observational signatures of TDEs bring us insights into physical processes around the BH, such as dynamics in the general relativistic gravity, accretion physics, and environmental information around BHs. Event rates of TDEs also inform us of populations of BHs. A large number of BHs have been detected, but still there are big mysteries. The most mysterious BHs are intermediate mass BHs (IMBHs) because they are a missing link: there is almost no certain evidence of IMBHs, while there are many detections of stellar mass BHs and supermassive BHs (SMBHs). Searches for IMBHs are not only important to reveal mysteries of IMBHs themselves, but also to understand origin(s) of SMBHs. Several scenarios to form SMBHs have been proposed, but it is still unclear which scenario(s) are real in the Universe. -
Stochastic Gravitational Wave Backgrounds
Stochastic Gravitational Wave Backgrounds Nelson Christensen1;2 z 1ARTEMIS, Universit´eC^oted'Azur, Observatoire C^oted'Azur, CNRS, 06304 Nice, France 2Physics and Astronomy, Carleton College, Northfield, MN 55057, USA Abstract. A stochastic background of gravitational waves can be created by the superposition of a large number of independent sources. The physical processes occurring at the earliest moments of the universe certainly created a stochastic background that exists, at some level, today. This is analogous to the cosmic microwave background, which is an electromagnetic record of the early universe. The recent observations of gravitational waves by the Advanced LIGO and Advanced Virgo detectors imply that there is also a stochastic background that has been created by binary black hole and binary neutron star mergers over the history of the universe. Whether the stochastic background is observed directly, or upper limits placed on it in specific frequency bands, important astrophysical and cosmological statements about it can be made. This review will summarize the current state of research of the stochastic background, from the sources of these gravitational waves, to the current methods used to observe them. Keywords: stochastic gravitational wave background, cosmology, gravitational waves 1. Introduction Gravitational waves are a prediction of Albert Einstein from 1916 [1,2], a consequence of general relativity [3]. Just as an accelerated electric charge will create electromagnetic waves (light), accelerating mass will create gravitational waves. And almost exactly arXiv:1811.08797v1 [gr-qc] 21 Nov 2018 a century after their prediction, gravitational waves were directly observed [4] for the first time by Advanced LIGO [5, 6]. -
Multi-Messenger Observations of a Binary Neutron Star Merger
DRAFT VERSION OCTOBER 6, 2017 Typeset using LATEX twocolumn style in AASTeX61 MULTI-MESSENGER OBSERVATIONS OF A BINARY NEUTRON STAR MERGER LIGO SCIENTIFIC COLLABORATION,VIRGO COLLABORATION AND PARTNER ASTRONOMY GROUPS (Dated: October 6, 2017) ABSTRACT On August 17, 2017 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB170817A) with a time-delay of 1.7swith respect to the merger ⇠ time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance +8 of 40 8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range− 0.86 to 2.26 M . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT2017gfo) in NGC 4993 (at 40 Mpc) less ⇠ than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1-m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over 10 days. Following early non-detections, X-ray and radio emission were discovered at the ⇠ transient’s position 9 and 16 days, respectively, after the merger. -
First Low-Frequency Einstein@Home All-Sky Search for Continuous Gravitational Waves in Advanced LIGO Data
First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data The LIGO Scientific Collaboration and The Virgo Collaboration et al. We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Home project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitationalp wave signals from the target population, corresponding to a sensitivity depth of 48:7 [1/ Hz]. At the frequency of best strain sensitivity, near 100 Hz, we set 90% confidence upper limits of 1:8×10−25. At the low end of our frequency range, 20 Hz, we achieve upper limits of 3:9×10−24. At 55 Hz we can exclude sources with ellipticities greater than 10−5 within 100 pc of Earth with fiducial value of the principal moment of inertia of 1038kg m2. I. INTRODUCTION ≈ 20 at 50 Hz. For this reason all-sky searches did not include frequencies below 50 Hz on initial LIGO data. In this paper we report the results of a deep all-sky Ein- Since interferometers sporadically fall out of operation stein@Home [1] search for continuous, nearly monochro- (\lose lock") due to environmental or instrumental dis- matic gravitational waves (GWs) in data from the first turbances or for scheduled maintenance periods, the data Advanced LIGO observing run (O1).