Classification and Diagnosis of Iron Overload
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Iron Dysregulation in Movement Disorders
Neurobiology of Disease 46 (2012) 1–18 Contents lists available at SciVerse ScienceDirect Neurobiology of Disease journal homepage: www.elsevier.com/locate/ynbdi Review Iron dysregulation in movement disorders Petr Dusek a,c, Joseph Jankovic a,⁎, Weidong Le b a Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA b Parkinson's Disease Research Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA c Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic article info abstract Article history: Iron is an essential element necessary for energy production, DNA and neurotransmitter synthesis, myelination Received 9 November 2011 and phospholipid metabolism. Neurodegeneration with brain iron accumulation (NBIA) involves several genetic Revised 22 December 2011 disorders, two of which, aceruloplasminemia and neuroferritinopathy, are caused by mutations in genes directly Accepted 31 December 2011 involved in iron metabolic pathway, and others, such as pantothenate-kinase 2, phospholipase-A2 and fatty acid Available online 12 January 2012 2-hydroxylase associated neurodegeneration, are caused by mutations in genes coding for proteins involved in phospholipid metabolism. Phospholipids are major constituents of myelin and iron accumulation has been linked Keywords: Iron to myelin derangements. Another group of NBIAs is caused by mutations in lysosomal enzymes or transporters Neurodegeneration such as ATP13A2, mucolipin-1 and possibly also β-galactosidase and α-fucosidase. Increased cellular iron uptake Dystonia in these diseases may be caused by impaired recycling of iron which normally involves lysosomes. -
Primary Liver Cancer: Epidemiological And
PRIMARY LIVER CANCER: EPIDEMIOLOGICAL AND BIOMARKER DISCOVERY STUDIES Nimzing Gwamzhi Ladep Imperial College London Department of Medicine December 2013 Thesis submitted for Doctor of Philosophy 1 THESIS ABSTRACT With previous reports indicating changes in mortality, risk factors and management of primary liver cancer (PLC), evaluation of current trends in the incidence and mortality rates was indicated. Late diagnosis has been implicated to be a major contributor to the high fatality rates of PLC. This work aimed at: studying trends of PLC by subcategories globally in general, and in England and Wales, in particular; investigating liver-related morbidities of HIV infected patients in an African setting; and discovering urinary biomarkers of hepatocellular carcinoma. The World Health Organisation (WHO) and Small Area Health Statistics Unit (SAHSU) databases were interrogated respectively, in order to achieve the first aim. The second aim was achieved through utilisation of databases of an African-based HIV treatment programme- AIDS Prevention Initiative in Nigeria (APIN), located in Jos, Nigeria. The European Union-funded Prevention of Liver Fibrosis and Cancer in Africa (PROLIFICA) case-control study in three West African countries was the platform through which urinary metabolic profiling was accomplished. Proton nuclear magnetic resonance spectroscopy (NMR) and parallel ultra-performance liquid chromatography mass spectrometry (UPLC-MS) were used for biomarker discovery studies. Mortality rates of intrahepatic bile duct carcinoma (IHBD) increased in all countries that were studied. Misclassification of hilar cholangiocarcinoma accounted for only a small increase in the rate of IHBD in England and Wales. With over 90% screening rate for viral hepatitides, the rates of hepatitis B (HBV), hepatitis C (HCV) and 2 HBV/HCV in HIV-infected patients in the APIN programme were 17.8%, 11.3% and 2.5% respectively. -
Nutrient Deficiency and Drug Induced Cardiac Injury and Dysfunction
Editorial Preface to Hearts Special Issue “Nutrient Deficiency and Drug Induced Cardiac Injury and Dysfunction” I. Tong Mak * and Jay H. Kramer * Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington DC, WA 20037, USA * Correspondence: [email protected] (I.T.M.); [email protected] (J.H.K.) Received: 30 October 2020; Accepted: 1 November 2020; Published: 3 November 2020 Keywords: cardiac injury/contractile dysfunction; micronutrient deficiency; macromineral deficiency or imbalance; impact by cardiovascular and/or anti-cancer drugs; systemic inflammation; oxidative/nitrosative stress; antioxidant defenses; supplement and/or pathway interventions Cardiac injury manifested as either systolic or diastolic dysfunction is considered an important preceding stage that leads to or is associated with eventual heart failure (HF). Due to shifts in global age distribution, as well as general population growth, HF is the most rapidly growing public health issue, with an estimated prevalence of approximately 38 million individuals globally, and it is associated with considerably high mortality, morbidity, and hospitalization rates [1]. According to the US Center for Disease Control and The American Heart Association, there were approximately 6.2 million adults suffering from heart failure in the United States from 2013 to 2016, and heart failure was listed on nearly 380,000 death certificates in 2018 [2]. Left ventricular systolic heart failure means that the heart is not contracting well during heartbeats, whereas left ventricular diastolic failure indicates the heart is not able to relax normally between beats. Both types of left-sided heart failure may lead to right-sided failure. There have been an increasing number of studies recognizing that the deficiency and/or imbalance of certain essential micronutrients, vitamins, and macrominerals may be involved in the pathogenesis of cardiomyopathy/cardiac injury/contractile dysfunction. -
Syllabus METAL ION EXCESS TOXICITY
Syllabus Metalionexcesstoxicity-Feexcesstoxicity-Africansiderosis,hemosiderosis, hemochromatosis(bronzediabetes)anddetoxification.Cuexcesstoxicity:Wilson’sdisease andtreatment. Heavymetaliontoxicity:Hg,Pb,Cd,Astoxiceffects–mechanismoftoxiceffects.Heavy metaltoxicitytreatment-chelationtherapy:chelatingagentsforHg,Pb,Cd,Astoxicity. Metalcomplexesasdrugs:cis-plainasanticanceragent:mechanismofactionandside effects;goldcomplexesasantiarthriticdrugs-chrysotherapy.Metalcomplexesindiagnosis- Gdcomplexesinmagneticresonanceimaging(MRI). METALIONEXCESSTOXICITY Ironexcesstoxicity ü ItisduetoaccidentalintakeofFeSO4tabletscausingerosionofthegastrointestinal tract. ü Hemochomatosisisageneticdisorder,depositionofironoccursinvitalorganslike liver,spleen,pancreas,skinetc.Itleadstobronzepigmentationontheskiniscalled bronzediabetes. ü Siderosis(depositionofFeOdustinthelungs)isassociatedwithexcessofiron. ü AfricansiderosisisanironoverloaddisorderfirstobservedamongpeopleofSouthern AfricaandCentralAfrica.Dietaryironoverloadistheconsumptionoflargeamount ofhome-brewedbeerwithhighamountofironcontentinit. Detoxification : Siderophore desferrioxamine is a chelating antidote used for Fe removal Coppertoxicity Copper is a principal component of several metalloproteins and some naturally occurring pigments.Ahealthyadultpossessescopperbetween200to300mgandthehighestamountis concentratedin the locus of brain. Wilson’sdiseaseand Menkes’ kinky hair syndromeare associatedwithageneticdisorderinthemetabolismofcopper. Wilson’sdisease ü In Wilson'sdisease,the copper-content -
Secondary Hemochromatosis As a Result of Acute Transfusion-Induced Iron Overload in a Burn Patient Michael Amatto1 and Hernish Acharya2*
Amatto and Acharya Burns & Trauma (2016) 4:10 DOI 10.1186/s41038-016-0034-z CASE REPORT Open Access Secondary hemochromatosis as a result of acute transfusion-induced iron overload in a burn patient Michael Amatto1 and Hernish Acharya2* Abstract Background: Red blood cell transfusions are critical in burn management. The subsequent iron overload that can occur from this treatment can lead to secondary hemochromatosis with multi-organ damage. Case Presentation: While well recognized in patients receiving chronic transfusions, we present a case outlining the acute development of hemochromatosis secondary to multiple transfusions in a burn patient. Conclusions: Simple screening laboratory measures and treatment options exist which may significantly reduce morbidity; thus, we believe awareness of secondary hemochromatosis in those treating burn patients is critical. Keywords: Secondary hemochromatosis, Transfusion, Iron overload, Burn patients Background of parental iron or RBC transfusions, neonatal iron over- Acute and chronic treatment of the severely burned indi- load, aceruloplasminemia, and African iron overload [6, 7]. vidual is often complex due to many physical and psycho- Hemochromatosis is a disease characterized by iron logical factors [1, 2]. Resuscitation involving packed red accumulation in tissues. Initial symptoms and signs in- blood cell (RBC) transfusion is often essential [3]. How- clude skin pigmentation, fatigue, erectile dysfunction, ever, RBC transfusion carries potential risks including and arthralgia while later stages of the disease result in hemolytic reactions and infections, as well as other com- cardiomyopathy, diabetes mellitus, hypogonadism, hypo- plications that are often overlooked such as iron overload pituitarism, and hypoparathyroidism, as well as liver fi- [4, 5]. Each unit of RBCs contains 200–250 mg of iron, brosis and cirrhosis which can lead to hepatocellular and with no physiologic excretion mechanism, multiple carcinoma [6]. -
Chelation Therapy
Corporate Medical Policy Chelation Therapy File Name: chelation_therapy Origination: 12/1995 Last CAP Review: 2/2021 Next CAP Review: 2/2022 Last Review: 2/2021 Description of Procedure or Service Chelation therapy is an established treatment for the removal of metal toxins by converting them to a chemically inert form that can be excreted in the urine. Chelation therapy comprises intravenous or oral administration of chelating agents that remove metal ions such as lead, aluminum, mercury, arsenic, zinc, iron, copper, and calcium from the body. Specific chelating agents are used for particular heavy metal toxicities. For example, desferroxamine (not Food and Drug Administration [FDA] approved) is used for patients with iron toxicity, and calcium-ethylenediaminetetraacetic acid (EDTA) is used for patients with lead poisoning. Note that disodium-EDTA is not recommended for acute lead poisoning due to the increased risk of death from hypocalcemia. Another class of chelating agents, called metal protein attenuating compounds (MPACs), is under investigation for the treatment of Alzheimer’s disease, which is associated with the disequilibrium of cerebral metals. Unlike traditional systemic chelators that bind and remove metals from tissues systemically, MPACs have subtle effects on metal homeostasis and abnormal metal interactions. In animal models of Alzheimer’s disease, they promote the solubilization and clearance of β-amyloid protein by binding to its metal-ion complex and also inhibit redox reactions that generate neurotoxic free radicals. MPACs therefore interrupt two putative pathogenic processes of Alzheimer’s disease. However, no MPACs have received FDA approval for treating Alzheimer’s disease. Chelation therapy has also been investigated as a treatment for other indications including atherosclerosis and autism spectrum disorder. -
Orphanet Report Series Rare Diseases Collection
Marche des Maladies Rares – Alliance Maladies Rares Orphanet Report Series Rare Diseases collection DecemberOctober 2013 2009 List of rare diseases and synonyms Listed in alphabetical order www.orpha.net 20102206 Rare diseases listed in alphabetical order ORPHA ORPHA ORPHA Disease name Disease name Disease name Number Number Number 289157 1-alpha-hydroxylase deficiency 309127 3-hydroxyacyl-CoA dehydrogenase 228384 5q14.3 microdeletion syndrome deficiency 293948 1p21.3 microdeletion syndrome 314655 5q31.3 microdeletion syndrome 939 3-hydroxyisobutyric aciduria 1606 1p36 deletion syndrome 228415 5q35 microduplication syndrome 2616 3M syndrome 250989 1q21.1 microdeletion syndrome 96125 6p subtelomeric deletion syndrome 2616 3-M syndrome 250994 1q21.1 microduplication syndrome 251046 6p22 microdeletion syndrome 293843 3MC syndrome 250999 1q41q42 microdeletion syndrome 96125 6p25 microdeletion syndrome 6 3-methylcrotonylglycinuria 250999 1q41-q42 microdeletion syndrome 99135 6-phosphogluconate dehydrogenase 67046 3-methylglutaconic aciduria type 1 deficiency 238769 1q44 microdeletion syndrome 111 3-methylglutaconic aciduria type 2 13 6-pyruvoyl-tetrahydropterin synthase 976 2,8 dihydroxyadenine urolithiasis deficiency 67047 3-methylglutaconic aciduria type 3 869 2A syndrome 75857 6q terminal deletion 67048 3-methylglutaconic aciduria type 4 79154 2-aminoadipic 2-oxoadipic aciduria 171829 6q16 deletion syndrome 66634 3-methylglutaconic aciduria type 5 19 2-hydroxyglutaric acidemia 251056 6q25 microdeletion syndrome 352328 3-methylglutaconic -
Nr 1. Each Patient Suffering from Acute Coronary Syndrome Must Be Treated With
SED - 3 - VERSION I February 2009 Nr 1. Each patient suffering from acute coronary syndrome must be treated with: A. Acetylsalicylic acid (ASA). B. ASA or clopidogrel. C. ASA and clopidogrel. D. depending on the type of myocardial infarction – ASA and clopidogrel or ASA only. E. depending on the mode of treatment (invasive vs noninvasive) – ASA and clopidogrel or ASA only. Nr 2. A patient in the class IV of Killip-Kimball classification has: A. pulmonary oedema. B. cardiogenic shock. C. blood retention (haemostasis) below the level of inferior angles of scapulae. D. no signs of heart insufficiency. E. chronic heart insufficiency, previously at least in NYHA class III. Nr 3. Schőnlein-Henoch purpura is a vasculitis that: A. is characterized by nephritic syndrome with cANCA antibodies. B. may present as rapidly progressive glomerulonephritis. C. is often accompanied by granulomas in the lungs. D. is typically treated by a surgical excision of granuloma. E. is typically treated by nephrectomy of the kidney with granulomas. Nr 4. Which of the below given drugs can cause hyperkalemia? 1) angiotensin converting enzyme inhibitors. 2) loop diuretics. 3) aldosterone antagonist. 4) thiazide. 5) indapamide. The correct answer is: A. 1,3. B. 1,2,3. C. 1,3,4. D. 1,3,5. E. all of the above. Nr 5. Which of the below is an absolute contraindication to thrombolytic therapy in acute myocardial infarction: A. age above 75. B. suspected dissecting aortic aneurysm. C. past cerebral stroke 2 years ago. D. high blood pressure >175/110 mmHg. E. invasive cardiology unit available on duty, which can be reached within 90 minutes. -
Mackenzie's Mission Gene & Condition List
Mackenzie’s Mission Gene & Condition List What conditions are being screened for in Mackenzie’s Mission? Genetic carrier screening offered through this research study has been carefully developed. It is focused on providing people with information about their chance of having children with a severe genetic condition occurring in childhood. The screening is designed to provide genetic information that is relevant and useful, and to minimise uncertain and unclear information. How the conditions and genes are selected The Mackenzie’s Mission reproductive genetic carrier screen currently includes approximately 1300 genes which are associated with about 750 conditions. The reason there are fewer conditions than genes is that some genetic conditions can be caused by changes in more than one gene. The gene list is reviewed regularly. To select the conditions and genes to be screened, a committee comprised of experts in genetics and screening was established including: clinical geneticists, genetic scientists, a genetic pathologist, genetic counsellors, an ethicist and a parent of a child with a genetic condition. The following criteria were developed and are used to select the genes to be included: • Screening the gene is technically possible using currently available technology • The gene is known to cause a genetic condition • The condition affects people in childhood • The condition has a serious impact on a person’s quality of life and/or is life-limiting o For many of the conditions there is no treatment or the treatment is very burdensome for the child and their family. For some conditions very early diagnosis and treatment can make a difference for the child. -
A Curated Gene List for Reporting Results of Newborn Genomic Sequencing
© American College of Medical Genetics and Genomics ORIGINAL RESEARCH ARTICLE A curated gene list for reporting results of newborn genomic sequencing Ozge Ceyhan-Birsoy, PhD1,2,3, Kalotina Machini, PhD1,2,3, Matthew S. Lebo, PhD1,2,3, Tim W. Yu, MD3,4,5, Pankaj B. Agrawal, MD, MMSC3,4,6, Richard B. Parad, MD, MPH3,7, Ingrid A. Holm, MD, MPH3,4, Amy McGuire, PhD8, Robert C. Green, MD, MPH3,9,10, Alan H. Beggs, PhD3,4, Heidi L. Rehm, PhD1,2,3,10; for the BabySeq Project Purpose: Genomic sequencing (GS) for newborns may enable detec- of newborn GS (nGS), and used our curated list for the first 15 new- tion of conditions for which early knowledge can improve health out- borns sequenced in this project. comes. One of the major challenges hindering its broader application Results: Here, we present our curated list for 1,514 gene–disease is the time it takes to assess the clinical relevance of detected variants associations. Overall, 954 genes met our criteria for return in nGS. and the genes they impact so that disease risk is reported appropri- This reference list eliminated manual assessment for 41% of rare vari- ately. ants identified in 15 newborns. Methods: To facilitate rapid interpretation of GS results in new- Conclusion: Our list provides a resource that can assist in guiding borns, we curated a catalog of genes with putative pediatric relevance the interpretive scope of clinical GS for newborns and potentially for their validity based on the ClinGen clinical validity classification other populations. framework criteria, age of onset, penetrance, and mode of inheri- tance through systematic evaluation of published evidence. -
Revisiting Hemochromatosis: Genetic Vs
731 Review Article on Unresolved Basis Issues in Hepatology Page 1 of 16 Revisiting hemochromatosis: genetic vs. phenotypic manifestations Gregory J. Anderson1^, Edouard Bardou-Jacquet2 1Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute and School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia; 2Liver Disease Department, University of Rennes and French Reference Center for Hemochromatosis and Iron Metabolism Disease, Rennes, France Contributions: (I) Conception and design: Both authors; (II) Administrative support: None; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: None; (V) Data analysis and interpretation: None; (VI) Manuscript writing: Both authors; (VII) Final approval of manuscript: Both authors. Correspondence to: Gregory J. Anderson. Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland 4006, Australia. Email: [email protected]. Abstract: Iron overload disorders represent an important class of human diseases. Of the primary iron overload conditions, by far the most common and best studied is HFE-related hemochromatosis, which results from homozygosity for a mutation leading to the C282Y substitution in the HFE protein. This disease is characterized by reduced expression of the iron-regulatory hormone hepcidin, leading to increased dietary iron absorption and iron deposition in multiple tissues including the liver, pancreas, joints, heart and pituitary. The phenotype of HFE-related hemochromatosis is quite variable, with some individuals showing little or no evidence of increased body iron, yet others showing severe iron loading, tissue damage and clinical sequelae. The majority of genetically predisposed individuals show at least some evidence of iron loading (increased transferrin saturation and serum ferritin), but a minority show clinical symptoms and severe consequences are rare. -
Diagnosis and Treatment of Wilson Disease: an Update
AASLD PRACTICE GUIDELINES Diagnosis and Treatment of Wilson Disease: An Update Eve A. Roberts1 and Michael L. Schilsky2 This guideline has been approved by the American Asso- efit versus risk) and level (assessing strength or certainty) ciation for the Study of Liver Diseases (AASLD) and rep- of evidence to be assigned and reported with each recom- resents the position of the association. mendation (Table 1, adapted from the American College of Cardiology and the American Heart Association Prac- Preamble tice Guidelines3,4). These recommendations provide a data-supported ap- proach to the diagnosis and treatment of patients with Introduction Wilson disease. They are based on the following: (1) for- Copper is an essential metal that is an important cofac- mal review and analysis of the recently-published world tor for many proteins. The average diet provides substan- literature on the topic including Medline search; (2) tial amounts of copper, typically 2-5 mg/day; the American College of Physicians Manual for Assessing recommended intake is 0.9 mg/day. Most dietary copper 1 Health Practices and Designing Practice Guidelines ; (3) ends up being excreted. Copper is absorbed by entero- guideline policies, including the AASLD Policy on the cytes mainly in the duodenum and proximal small intes- Development and Use of Practice Guidelines and the tine and transported in the portal circulation in American Gastroenterological Association Policy State- association with albumin and the amino acid histidine to 2 ment on Guidelines ; (4) the experience of the authors in the liver, where it is avidly removed from the circulation. the specified topic.