Ttem 10 1 Web.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Ttem 10 1 Web.Pdf Vol. 10, No. 1, 2015. ISSN 1840-1503 TECHNICSTTEM TECHNOLOGIES EDUCATION MANAGEMENT JOURNAL OF SOCIETY FOR DEVELOPMENT OF TEACHING AND BUSINESS PROCESSES IN NEW NET ENVIRONMENT IN B&H EDITORIAL BOARD Editor Dzafer Kudumovic Table of Contents Secretary Nadja Sabanovic Technical editor Eldin Huremovic A Study on the Authority Perception of School Administrators .........3 Cover design Almir Rizvanovic Fatih Toremen, Yunus Bozgeyik, Necati Cobanoglu Lector Mirnes Avdic Lector Adisa Spahic Soft Lithography: Part 1 - Anti-fouling and self-cleaning topographies .......................................................................9 Members Klaudio Pap (Croatia) Anka Trajkovska Petkoska, Anita Trajkovska-Broach Nikola Mrvac (Croatia) Slobodan Kralj (Croatia) The application of BIM technology and its reliability Davor Zvizdic (Croatia) in the analysis of structures ...................................................................18 Janez Dijaci (Slovenia) Tatjana Baros Ivan Polajnar (Slovenia) Tadeja Zupancic (Slovenia) Hindrances to the use of E-learning system by architecture students .........................................................................28 Jelena Ivanovic Sekularac Bhzad Sidawi (Serbia) Nebojsa Vidanovic (Serbia) Can Lean Six Sigma implementation experiences Hasan Hanic (Serbia) from Slovenia help Bosnia? ...................................................................42 Amir Pasic Dusan Gosnik, Bojan Mevlja, Klemen Kavcic (Bosnia and Herzegovina) Vesna Maric-Aleksic Proportion of the captain’s house dating from 1842. (Bosnia and Herzegovina) in Lepetani- the Bay of Kotor ................................................................52 Avdo Voloder Dusan Tomanovic, Julija Aleksic, Mirko Grbic (Bosnia and Herzegovina) Samir Causevic Evaluation of the parallel computing performances (Bosnia and Herzegovina) based on the nVIDIA GeForce GPU ........................................................... 60 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Mitko Bogdanoski, Jelena Gjorgjev Address of the Sarajevo, Editorial Board Hamdije Kresevljakovica 7A System for Quality and Risk Management - Managing on-site Courses Using Online Technology: A Study on phone/fax 00387 33 640 407 Al Ain University of Science and Technology .......................................71 [email protected], Loay Alnaji http://www.ttem.ba Expertise of nonmaterial damage due to violation of bodily integrity ....................................................................................78 Published by DRUNPP, Sarajevo Haso Sefo, Nedzad Korajlic, Mustafa Sefo, Muris Mujanovic Volume 10 Number 1, 2015 Contribution to structural analysis of bailey bridges ISSN 1840-1503 according to contemporary regulations in Bosnia and Herzegovina ......................................................................................89 e-ISSN 1986-809X Besim Demirovic, Zijad Pozegic Postural Quality Analyzes for Children Recorded in Kinematic 2D and 3D Contemplas Method .........................................99 Sinisa Kovac, Safet Kapo, Haris Alic, Gordana Manic Table of Contents Investigation of original stone fragments used for the construction of the Aladza Mosque in Foca .......................................107 Nedjo Djuric, Kristina Saric, Dijana Djuric Strikes and social problems as a consequence of the applied model of the privatization of the public companies in the Republic of Serbia .................................................................................112 Mehmed Avdagic, Slobodan Devic, Desnica Radivojevic, Dzenan Golic, Maja Radic Body Composition and Balance Measured by Tanita and BBS - The Importance for Competitive Success of Karate Athletes ......................................................................................119 Safet Kapo, Nedim Covic, Nusret Smajlovic, Husnija Kajmovic, Anida Kapo, Armin Topalovic Employee Attrition in ITeS Call Centers in Selected Clusters of North India: Need to have a Relook ................................124 Gagandeep Kaur, Neeraj Pandey, Ravi Kiran, Shailendra Kumar Instructions for the authors ..................................................................136 Table of Contents technics technologies education management A Study on the Authority Perception of School Administrators Fatih Toremen1, Yunus Bozgeyik2, Necati Cobanoglu3 1 Education Faculty, Zirve University, Turkey, 2 School of Foreign Languages, Gaziantep University, Turkey, 3 Ministry of Education, Turkey. Abstract is the legitimate form of power which emanates This study aims to investigate school admin- from written or unwritten norms and rules and the istrators’ perception of authority and explore personal characteristics of the person who exerts their perception in relation to various variables. power in an organization [2]. At this point it can be The participants included primary and secondary said that authority must be used appropriately to school directors and vice-directors. The findings channel behaviors of the employees in accordance showed that school administrators perceived au- with the goals of the organizations. Moreover, the thority arising from expertise as the most effective findings which shed light on the relationship of authority type in terms of teachers’ fulfilling di- authority with effectiveness related variables such rectives from administrators, and it was followed as job satisfaction, involvement, organizational by Charismatic, Legal, Traditional and Coercive culture etc. testify the importance of studying au- authority. It was also found that there were sig- thority thoroughly. Assessing the perception of nificant differences for Traditional authority in administrative staff in schools about authority and relation to seniority and duty (director or vice di- the relation of with various variables would help rector), Legal authority in relation to duty, Charis- us understand the concept deeper. matic authority in relation to seniority in terms of the perceived effectiveness. These findings were 2. Conceptual Framework discussed in the light of various studies and some suggestions were made. Authority comes originates from the Latin Key words: Authority, Perception, School Ad- word “Auctoritas” and it referred to the prestige, ministrators influence and being able to gain support from the people around. More modern definitions of the term seem to be related with the original term 1. Introduction more or less. [3] defines the term as having the The chance of an organization to survive and right and power to command and obtain obedi- fulfill its aims depends on its effective manage- ence. According to [4] authority can be defined as ment in the hands of skillful administrators. Be- having power and right to command, initiate and ing able to make employees perform certain tasks end a task. In her work called Between Past and constitutes a considerable portion of administra- Future, [5] compares authority to a pyramid. Au- tive activities in schools. When we take into con- thority is embodied in a form of layers which are sideration that one of the most basic definitions of connected with each other from top to the bottom, management is that it is the art of being able to widens as you go down and in this construct lower make employees fulfill the tasks in a desired way, layers carry the ones on the top. According to [6], the question of what constitutes the basic source while management fulfils its functions, fourteen of making employees perform in this manner principles should guide administrators. [6] men- gains importance. Even if all the social organiza- tions about authority as the second principle and tions tend to control its members, the problem of defines it as the right to command and power to control becomes vital in formal organizations and ensure obedience. Although these definitions give the authority constitutes the base of the control us an understanding of the concept, one of the mechanism in such organizations [1]. Authority most comprehensive analysis on authority was Version for preview Volume 10 / Number 1 / 2015 3 technics technologies education management made by [2]. He evaluated the concept in relation the Charismatic authority depends on the follow- to legitimacy and explained it in terms of the basic ers’ perception that the only way to achieve their beliefs of people who are managed about author- goals is to follow the person who has charisma [10]. ity. In order to have authority, the related person Expert: Expert authority refers to a person’s abil- should have some sources. One of these sources is ity to control and direct the behaviors of the follow- comprised of the personal effect of the person who ers as a result of her knowledge, skills and experi- exerts authority such as charisma or expertise. The ence in an area. The basic rule which determines the other source originates from the formal organiza- effectiveness of such authority is that the followers tion or the societal norms. shouldn’t have the related knowledge, skill and ex- perience [11]. The studies about the variables which 2.1. Types of Authority have a force on people’s behavior have shown that one of the most important of them is an individual’s The administrators in formal organizations degree of knowledge, experience and skills in an make use of different kinds of authority and each area [12]. The rationale behind the ability to con- of them has different sources. These authority vince followers to behave in a particular way with types can be numbered as
Recommended publications
  • Some NP-Complete Problems
    Appendix A Some NP-Complete Problems To ask the hard question is simple. But what does it mean? What are we going to do? W.H. Auden In this appendix we present a brief list of NP-complete problems; we restrict ourselves to problems which either were mentioned before or are closely re- lated to subjects treated in the book. A much more extensive list can be found in Garey and Johnson [GarJo79]. Chinese postman (cf. Sect. 14.5) Let G =(V,A,E) be a mixed graph, where A is the set of directed edges and E the set of undirected edges of G. Moreover, let w be a nonnegative length function on A ∪ E,andc be a positive number. Does there exist a cycle of length at most c in G which contains each edge at least once and which uses the edges in A according to their given orientation? This problem was shown to be NP-complete by Papadimitriou [Pap76], even when G is a planar graph with maximal degree 3 and w(e) = 1 for all edges e. However, it is polynomial for graphs and digraphs; that is, if either A = ∅ or E = ∅. See Theorem 14.5.4 and Exercise 14.5.6. Chromatic index (cf. Sect. 9.3) Let G be a graph. Is it possible to color the edges of G with k colors, that is, does χ(G) ≤ k hold? Holyer [Hol81] proved that this problem is NP-complete for each k ≥ 3; this holds even for the special case where k =3 and G is 3-regular.
    [Show full text]
  • Introduction to Graph Theory
    DRAFT Introduction to Graph Theory A short course in graph theory at UCSD February 18, 2020 Jacques Verstraete Department of Mathematics University of California at San Diego California, U.S.A. [email protected] Contents Annotation marks5 1 Introduction to Graph Theory6 1.1 Examples of graphs . .6 1.2 Graphs in practice* . .9 1.3 Basic classes of graphs . 15 1.4 Degrees and neighbourhoods . 17 1.5 The handshaking lemmaDRAFT . 17 1.6 Digraphs and networks . 19 1.7 Subgraphs . 20 1.8 Exercises . 22 2 Eulerian and Hamiltonian graphs 26 2.1 Walks . 26 2.2 Connected graphs . 27 2.3 Eulerian graphs . 27 2.4 Eulerian digraphs and de Bruijn sequences . 29 2.5 Hamiltonian graphs . 31 2.6 Postman and Travelling Salesman Problems . 33 2.7 Uniquely Hamiltonian graphs* . 34 2.8 Exercises . 35 2 3 Bridges, Trees and Algorithms 41 3.1 Bridges and trees . 41 3.2 Breadth-first search . 42 3.3 Characterizing bipartite graphs . 45 3.4 Depth-first search . 45 3.5 Prim's and Kruskal's Algorithms . 46 3.6 Dijkstra's Algorithm . 47 3.7 Exercises . 50 4 Structure of connected graphs 52 4.1 Block decomposition* . 52 4.2 Structure of blocks : ear decomposition* . 54 4.3 Decomposing bridgeless graphs* . 57 4.4 Contractible edges* . 58 4.5 Menger's Theorems . 58 4.6 Fan Lemma and Dirac's Theorem* . 61 4.7 Vertex and edge connectivity . 63 4.8 Exercises . 64 5 Matchings and Factors 67 5.1 Independent sets and covers . 67 5.2 Hall's Theorem .
    [Show full text]
  • Universitatis Scientiarum Budapestinensis De Rolando
    ANNALES Universitatis Scientiarum Budapestinensis de Rolando Eotvos nominatae SECTIO MATHEMATICA TOMUS XLIX. REDIGIT A.´ CSASZ´ AR´ ADIUVANTIBUS L. BABAI, A. BENCZUR,´ K. BEZDEK., M. BOGNAR,K.B´ OR¨ OCZKY,¨ I. CSISZAR,´ J. DEMETROVICS, GY. ELEKES, A. FRANK, J. FRITZ, E. FRIED, A. HAJNAL, G. HALASZ,´ A. IVANYI,´ A. JARAI,´ P. KACSUK, I. KATAI,´ E. KISS, P. KOMJATH,´ M. LACZKOVICH, L. LOVASZ,´ GY. MICHALETZKY, J. MOLNAR,´ P. P. PALFY,´ GY. PETRUSKA, A. PREKOPA,´ A. RECSKI, A. SARK´ OZY,¨ F. SCHIPP, Z. SEBESTYEN,´ L. SIMON, P. SIMON, GY. SOOS,´ J. SURANYI,´ L. SZEIDL, T. SZONYI,˝ G. STOYAN, J. SZENTHE, G. SZEKELY,´ A. SZUCS,˝ L. VARGA, F. WEISZ 2006 2008. februar´ 10. –13:41 ANNALES Universitatis Scientiarum Budapestinensis de Rolando Eotvos nominatae SECTIO BIOLOGICA incepit anno MCMLVII SECTIO CHIMICA incepit anno MCMLIX SECTIO CLASSICA incepit anno MCMXXIV SECTIO COMPUTATORICA incepit anno MCMLXXVIII SECTIO GEOGRAPHICA incepit anno MCMLXVI SECTIO GEOLOGICA incepit anno MCMLVII SECTIO GEOPHYSICA ET METEOROLOGICA incepit anno MCMLXXV SECTIO HISTORICA incepit anno MCMLVII SECTIO IURIDICA incepit anno MCMLIX SECTIO LINGUISTICA incepit anno MCMLXX SECTIO MATHEMATICA incepit anno MCMLVIII SECTIO PAEDAGOGICA ET PSYCHOLOGICA incepit anno MCMLXX SECTIO PHILOLOGICA incepit anno MCMLVII SECTIO PHILOLOGICA HUNGARICA incepit anno MCMLXX SECTIO PHILOLOGICA MODERNA incepit anno MCMLXX SECTIO PHILOSOPHICA ET SOCIOLOGICA incepit anno MCMLXII 2008. februar´ 10. –13:41 ANNALES UNIV. SCI. BUDAPEST., 49 (2006), 3–14 TESSELLATION-LIKE ROD-JOINT FRAMEWORKS By GYULA NAGY Received July 1. Introduction One of the simplest structures in statics are the tessellation-like rod-joint frameworks including grid frameworks. Consider a rod-joint framework in the form of a rectangular grid.
    [Show full text]
  • Graph Colorings, Flows and Perfect Matchings Louis Esperet
    Graph colorings, flows and perfect matchings Louis Esperet To cite this version: Louis Esperet. Graph colorings, flows and perfect matchings. Combinatorics [math.CO]. Université Grenoble Alpes, 2017. tel-01850463 HAL Id: tel-01850463 https://tel.archives-ouvertes.fr/tel-01850463 Submitted on 27 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. HABILITATION A` DIRIGER DES RECHERCHES Specialit´ e´ : Informatique et Mathematiques´ Appliquees´ Present´ ee´ par Louis Esperet prepar´ ee´ au sein du Laboratoire G-SCOP (UMR5272) Graph colorings, flows and perfect matchings Soutenue le 19 Octobre 2017, devant le jury compose´ de : Victor Chepoi Professeur, Aix-Marseille Universite,´ Examinateur Toma´sˇ Kaiser Professeur, University of West Bohemia, Rapporteur Myriam Preissmann Directrice de recherche CNRS, Grenoble, Examinatrice Bruce Reed Directeur de recherche CNRS, Sophia-Antipolis, Rapporteur Gautier Stauffer Professeur, Grenoble-INP, Examinateur Stephan´ Thomasse´ Professeur, ENS de Lyon, Examinateur Cun-Quan Zhang Professeur, West Virginia University,
    [Show full text]
  • The Alternating Sign Matrix Polytope
    The alternating sign matrix polytope Jessica Striker School of Mathematics University of Minnesota Minneapolis, MN 55455 [email protected] Submitted: Jan 4, 2008; Accepted: Mar 16, 2009; Published: Mar 25, 2009 Mathematics Subject Classification: 05C50, 52B05 Abstract We define the alternating sign matrix polytope as the convex hull of n × n alternating sign matrices and prove its equivalent description in terms of inequalities. This is analogous to the well known result of Birkhoff and von Neumann that the convex hull of the permutation matrices equals the set of all nonnegative doubly stochastic matrices. We count the facets and vertices of the alternating sign matrix polytope and describe its projection to the permutohedron as well as give a complete characterization of its face lattice in terms of modified square ice configurations. Furthermore we prove that the dimension of any face can be easily determined from this characterization. 1 Introduction and background The Birkhoff polytope, which we will denote as Bn, has been extensively studied and generalized. It is defined as the convex hull of the n × n permutation matrices as vectors n2 in R . Many analogous polytopes have been studied which are subsets of Bn (see e.g. [8]). In contrast, we study a polytope containing Bn. We begin with the following definitions. Definition 1.1. Alternating sign matrices (ASMs) are square matrices with the following properties: • entries ∈{0, 1, −1} • the entries in each row and column sum to 1 • nonzero entries in each row and column alternate in sign the electronic journal of combinatorics 16 (2009), #R41 1 1 0 0 1 0 0 0 1 0 0 10 0 1 0 0 0 1 1 0 0 1 −1 1 0 0 1 0 1 0 0 0 1 0 10 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 Figure 1: The 3 × 3 ASMs The total number of n × n alternating sign matrices is given by the expression n −1 (3j + 1)! .
    [Show full text]
  • A Some NP-Complete Problems
    A Some NP-Complete Problems To ask the hard question is simple. But what does it mean? What are we going to do? W. H. Auden In this appendix we present a brief list of NP-complete problems; we restrict ourselves to problems which either were mentioned before or are closely related to subjects treated in the book. A much more extensive list can be found in Garey and Johnson [GaJo79]. Chinese postman (cf. Section 14.5) Let G =(V,A,E) be a mixed graph, where A is the set of directed edges and E the set of undirected edges of G. Moreover, let w be a nonnegative length function on A ∪ E,andc be a positive number. Does there exist a cycle of length at most c in G which contains each edge at least once and which uses the edges in A according to their given orientation? This problem was shown to be NP-complete by Papadimitriou [Pap76], even when G is a planar graph with maximal degree 3 and w(e) = 1 for all edges e. However, it is polynomial for graphs and digraphs; that is, if either A = ∅ or E = ∅. See Theorem 14.5.4 and Exercise 14.5.6. Chromatic index (cf. Section 9.3) Let G be a graph. Is it possible to color the edges of G with k colors, that is, does χ(G) ≤ k hold? Holyer [Hol81] proved that this problem is NP-complete for each k ≥ 3; this holds even for the special case where k =3andG is 3-regular.
    [Show full text]
  • 19 Undirected Graphical Models (Markov Random Fields)
    Undirected graphical models (Markov 19 random fields) 19.1 Introduction In Chapter 10, we discussed directed graphical models (DGMs), commonly known as Bayes nets. However, for some domains, being forced to choose a direction for the edges, as required by a DGM, is rather awkward. For example, consider modeling an image. We might suppose that the intensity values of neighboring pixels are correlated. We can create a DAG model with a 2d lattice topology as shown in Figure 19.1(a). This is known as a causal MRF or a Markov mesh (Abend et al. 1965). However, its conditional independence properties are rather unnatural. In particular, the Markov blanket (defined in Section 10.5) of the node X8 in the middle is the other colored nodes (3, 4, 7, 9, 12 and 13) rather than just its 4 nearest neighbors as one might expect. An alternative is to use an undirected graphical model (UGM), also called a Markov random field (MRF) or Markov network. These do not require us to specify edge orientations, and are much more natural for some problems such as image analysis and spatial statistics. For example, an undirected 2d lattice is shown in Figure 19.1(b); now the Markov blanket of each node is just its nearest neighbors, as we show in Section 19.2. Roughly speaking, the main advantages of UGMs over DGMs are: (1) they are symmetric and therefore more “natural” for certain domains, such as spatial or relational data; and (2) discrimi- native UGMs (aka conditional random fields, or CRFs), which define conditional densities of the form p(y x), work better than discriminative DGMs, for reasons we explain in Section 19.6.1.
    [Show full text]
  • Poset and Polytope Perspectives on Alternating Sign Matrices A
    Poset and Polytope Perspectives On Alternating Sign Matrices A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Jessica Palencia Striker IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Dennis Stanton, advisor December 2008 c Jessica Palencia Striker, December 2008 Acknowledgments I would like to extend my sincere thanks to my advisor, Dennis Stanton, for week after week of encouraging conversation, patient explanation, wise counsel, and encouragement not to give up even when none of my attempts seemed to be working. I would also like to thank Professors Dennis White, Ezra Miller, Vic Reiner, and Dick McGehee for their comments on this work and for their educational guidance throughout my graduate studies. Special thanks to Ezra for making each student in the polytopes class do a project, without which Chapter 3 of this thesis would not exist. I also wish to thank Professor Jay Goldman for introducing me to combinatorics as an undergraduate and Mr. Argent for giving me a glimpse of the beauty of higher mathematics in the tenth grade. Many thanks to my husband, mom, and sister for countless summer days and Saturdays of baby care without which I would not have finished. Thanks to many friends, especially Janette, for babysitting above and beyond the call of friendship. Finally, I would like to thank Jesus Christ “in whom are hidden all the treasures of wisdom and knowledge” for illumining this little bit of his creation for me to discover. i Dedication This thesis is dedicated to Ryan my constant encourager and Hazel my sweet little joy.
    [Show full text]
  • FLOPPY GRIDS - Discovering the Mathematics of Grid Bracing
    FLOPPY GRIDS - Discovering the Mathematics of Grid Bracing A COMAP FAIM Project by G. Klatt, CC Edwards, S. Heubach, and V. Howe ABSTRACT We examine the problem of determining when a rectangular grid of squares with some diagonal braces is rigid. We use this problem to model the process of making and testing conjectures, and to show a mathematical approach to problem solving. Through the modeling process, we recast the problem into a bipartite graph version and a matrix version to illustrate the advantage of translating a problem into a different setting and to motivate a brief look at those areas of mathematics. A highlight for students is a game version of the grid bracing problem that encourages their discovery of good tests for grid rigidity. TABLE OF CONTENTS Section 1 Introduction to the problem Section 2 First principles of grid bracing Section 3 Algorithms for deciding rigidity Section 4 Other settings for the rigidity problem Section 5 Grids and graphs Section 6 The matrix setting Section 7 Suggestions for further explorations and references Appendix I Some comments and answers to Activities and Exercises Appendix II Some ideas for enrichment with calculators and computers 1 SECTION 1 INTRODUCTION You probably know that a triangle is inherently rigid. That is, if you build a triangle with three sticks attached at the ends with nails, it won’t deform its shape. In contrast, a square built the same way can deform into a variety of parallelograms, or even fall completely down. triangle square is rigid is floppy 1.1 STATEMENT OF THE PROBLEM The problem we will examine is how to make a grid of squares rigid by adding diagonals.
    [Show full text]
  • The Alternating Sign Matrix Polytope
    The alternating sign matrix polytope Jessica Striker School of Mathematics University of Minnesota Minneapolis, MN 55455 [email protected] October 22, 2018 Abstract We define the alternating sign matrix polytope as the convex hull of n×n alternating sign matrices and prove its equivalent description in terms of inequalities. This is analogous to the well known result of Birkhoff and von Neumann that the convex hull of the permutation matrices equals the set of all nonnegative doubly stochastic matrices. We count the facets and vertices of the alternating sign matrix polytope and describe its projection to the permutohedron as well as give a complete characterization of its face lattice in terms of modified square ice configurations. Furthermore we prove that the dimension of any face can be easily determined from this characterization. 1 Introduction and background The Birkhoff polytope, which we will denote as Bn, has been extensively studied and gen- eralized. It is defined as the convex hull of the n × n permutation matrices as vectors in n2 R . Many analogous polytopes have been studied which are subsets of Bn (see e.g. [8]). In contrast, we study a polytope containing Bn. We begin with the following definitions. Definition 1.1. Alternating sign matrices (ASMs) are square matrices with the following arXiv:0705.0998v2 [math.CO] 19 Jan 2009 properties: • entries ∈{0, 1, −1} • the entries in each row and column sum to 1 • nonzero entries in each row and column alternate in sign The total number of n × n alternating sign matrices is given by the expression n −1 (3j + 1)! .
    [Show full text]
  • Lightweight Structures for Remote Areas
    Lightweight Structures for Remote Areas Jessica Bak A thesis submitted for the degree of Doctor of Philosophy University of Bath Department of Architecture and Civil Engineering December 2015 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with the author. A copy of this thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that they must not copy it or use material from it except as permitted by law or with the consent of the author. This thesis may be made available for consultation within the University Library and may be photocopied or lent to other libraries for the purposes of consultation. Jessica Bak This thesis is dedicated to my husband Andreas and daughter Isabel. i Acknowledgements I firstly want to thank to the Chilean Council for Science and Technology (CONICYT) for providing me with this opportunity by funding my MPhil and PhD studies at the University of Bath. My sincerest gratitude goes to my supervisor, Dr. Paul Shepherd, whose knowl- edge, creativity and support has been essential for the fulfillment of this endeavour. I am truly honoured to have completed this research under Dr. Shepherd’s supervision and have been part of the Digital Architectonics Research Group. This thesis would have not been possible without the invaluable advice and uncondi- tional support of Andreas Bak, from Søren Jensen’s Computational Design Group. I certainly cannot not express my gratitude for the help received at different stages of my research. I also want to thank my second supervisor, Professor Paul Richens, for providing me with enlightening advice, particularly during the early stages of my studies, as well as my examiners, Dr.
    [Show full text]
  • Provable Security Workshop 2018 (In Conjunction with the 12Th International Conference on Provable Security)
    Provable Security Workshop 2018 (in conjunction with the 12th International Conference on Provable Security) 25th October 2018 Jeju Island, Republic of Korea Organized by Associated with Contents I. Welcome to ProvSec 2018 ................................................................................................. 1 II. ProvSec 2018 Conference/Workshop Organization .......................................................... 2 III. List of Papers ...................................................................................................................... 4 ProvSec Workshop 2018 is also in association with x KIISC Research Group on 5G Security x Innovative Information Science & Technology Research Group, Korea i I. Welcome to ProvSec 2018 ProvSec 2018 is organized by the Institute of Cybersecurity and Cryptology at the University of Wollongong and the Laboratory of Mobile Internet Security at Soonchunhyang University. The first ProvSec conference was started in Wollongong, Australia in 2007. The series of ProvSec conferences were then held successfully in Shanghai, China (2008), Guangzhou, China (2009), Malacca, Malaysia (2010), Xian, China (2011), Chengdu, China (2012), Malacca, Malaysia (2013) , Hong Kong, China (2014), Kanazawa Japan (2015), Nanjing, China (2016) and Xian, China (2017). This was the first ProvSec held in Korea. This year we received 48 submissions of high quality from 19 countries. Among the accepted regular papers, the paper that received the highest weighted review mark was given the Best Paper Award: “Security Notions for Cloud Storage and Deduplication" by Colin Boyd, Gareth T. Davies, Kristian Gjøsteen, Håvard Raddum and Mohsen Toorani. The program also included an invited talk presented by Prof. Jung Hee Cheon from Seoul National University, Korea, titled “Recent Development of Homomorphic Encryptions and Their Applications". ProvSec Workshop 2018 is jointly held with the conference. Twelve selected papers will be presented during the workshop. We deeply thank all the authors of the submitted papers.
    [Show full text]