Persistent Hyperinsulinemic Hypoglycemia and Maturity-Onset Diabetes of the Young Due to Heterozygous HNF4A Mutations Ritika R

Total Page:16

File Type:pdf, Size:1020Kb

Persistent Hyperinsulinemic Hypoglycemia and Maturity-Onset Diabetes of the Young Due to Heterozygous HNF4A Mutations Ritika R BRIEF REPORT Persistent Hyperinsulinemic Hypoglycemia and Maturity-Onset Diabetes of the Young Due to Heterozygous HNF4A Mutations Ritika R. Kapoor,1 Jonathan Locke,2 Kevin Colclough,3 Jerry Wales,4 Jennifer J. Conn,5 Andrew T. Hattersley,2 Sian Ellard,2,3 and Khalid Hussain1 OBJECTIVE—Mutations in the human HNF4A gene encoding the hepatocyte nuclear factor (HNF)-4␣ are known to cause maturity-onset diabetes of the young (MODY), which is charac- yperinsulinemic hypoglycemia is characterized terized by autosomal-dominant inheritance and impaired glu- by the inappropriate secretion of insulin in cose-stimulated insulin secretion from pancreatic ␤-cells. relation to the blood glucose concentration and HNF-4␣ has a key role in regulating the multiple transcriptional Hcan be transient or persistent. Recent studies factor networks in the islet. Recently, heterozygous mutations in established that heterozygous mutations in the transcrip- the HNF4A gene were reported to cause transient hyperinsuline- tion factor hepatocyte nuclear factor (HNF)-4␣ (encoded mic hypoglycemia associated with macrosomia. by the HNF4A gene) are associated with a mild form of RESEARCH DESIGN AND METHODS—Three infants pre- transient hyperinsulinemic hypoglycemia and consider- sented with macrosomia and severe hypoglycemia with a posi- able risk of macrosomia (1,2). HNF-4␣ is a transcription tive family history of MODY. The hypoglycemia was confirmed to factor of the nuclear hormone receptor superfamily and is be due to hyperinsulinism, and all three patients required diazox- expressed in liver, kidney, gut, and pancreatic islets (3). It ide therapy to maintain normoglycemia. Two of the three infants plays a key role in the regulation of pancreatic insulin are still requiring diazoxide therapy at 8 and 18 months, whereas secretion. Loss-of-function HNF4A mutations have been one of them had resolution of hyperinsulinemic hypoglycemia at identified in maturity-onset diabetes of the young (MODY) 32 months of age. families in both coding and regulatory regions of the gene, RESULTS—Sequencing of the HNF4A gene identified heterozy- including the P2 promoter region, which is suggested to be gous mutations in all three families. In family 1, a frameshift the primary transcriptional start site used in ␤-cells (4,5). mutation L330fsdel17ins9 (c.987 1003del17ins9; p.Leu330fs) MODY is characterized by an autosomal-dominant inheri- was present in the proband; a mutation affecting the conserved A tance pattern and impaired glucose-stimulated insulin nucleotide of the intron 2 branch site (c.264–21AϾG) was secretion from pancreatic ␤-cells (4). identified in the proband of family 2; and finally a nonsense The finding of transient mild hyperinsulinemic hypogly- mutation, Y16X (c.48CϾG, p.Tyr16X), was found in the proband cemia is unexpected, since heterozygous mutations in the of family 3. HNF4A gene lead to loss of glucose-induced insulin secre- CONCLUSIONS—Heterozygous HNF4A mutations can there- tion with glucose intolerance in these patients. We now fore cause both transient and persistent hyperinsulinemic hypo- extend the observations of two previous studies (1,2) and glycemia associated with macrosomia. We recommend that report that heterozygous HNF4A mutations can cause macrosomic infants with transient or persistent hyperinsuline- macrosomia with severe and persistent hyperinsulinemic mic hypoglycemia should be screened for HNF4A mutations if hypoglycemia as well as MODY in three families. there is a family history of youth-onset diabetes. Diabetes 57: 1659–1663, 2008 RESEARCH DESIGN AND METHODS Patient 1. Patient 1 was born at 39 weeks’ gestation with a birth weight of 5.9 kg after a vaginal delivery. The From the 1London Centre for Paediatric Endocrinology and Metabolism, Great Ormond Street Hospital for Children NHS Trust, and The Institute of Child delivery was complicated with a prolonged second stage Health, University College London, London, U.K.; the 2Institute of Biomedical and shoulder dystocia. After delivery, the baby developed and Clinical Science, Peninsula Medical School, Exeter, U.K.; the 3Department severe symptomatic hypoglycemia (jitteriness and irrita- of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Exeter, U.K.; the 4Department of Paediatric Endocrinology, Sheffield Children’s Hos- bility with a blood glucose concentration of 0.8 mmol/l). pital, Sheffield, U.K.; and the 5Royal Women’s Hospital, Carlton, Victoria, He required a continuous infusion of 25% dextrose deliv- Australia. ering 25 mg ⅐ kgϪ1 ⅐ minϪ1 glucose, as well as an infusion Corresonding author: Dr. K. Hussain, Developmental Endocrinology Re- search Group, Molecular Genetics Unit, Institute of Child Health, University of glucagon to maintain normoglycemia. Biochemical anal- College London, 30 Guilford St., London WC1N 1EH. E-mail: k.hussain@ ysis showed an inappropriately raised level of insulin (103 ich.ucl.ac.uk. mU/l) during hypoglycemia (glucose 1.6 mmol/l) along Received for publication 23 November 2007 and accepted in revised form 21 with undetectable serum ketone bodies and fatty acids. January 2008. Ϫ1 Ϫ1 Published ahead of print at http://diabetes.diabetesjournals.org on 11 Feb- The hypoglycemia was responsive to 10 mg ⅐ kg ⅐ day ruary 2008. DOI: 10.2337/db07-1657. of diazoxide. An 18fluoro-L-Dopa positron emission tomog- 18F-DOPA-PET, 18fluoro-L-Dopa positron emission tomography; HNF, hepa- raphy (18F-DOPA-PET) scan showed intense uptake of tocyte nuclear factor; MODY, maturity-onset diabetes of the young; PPAR, peroxisome proliferator–activated receptor. tracer throughout the pancreas consistent with increased © 2008 by the American Diabetes Association. metabolic activity of the islets (Fig. 1). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance The child was admitted again at 7 months for a trial off with 18 U.S.C. Section 1734 solely to indicate this fact. medications. During the 24-h profile, several hypoglycemic DIABETES, VOL. 57, JUNE 2008 1659 HETEROZYGOUS HNF4A MUTATIONS AND PERSISTENT HYPOGLYCEMIA TABLE 1 Clinical characteristics of patients with hyperinsulinism Patient 1 Patient 2 Patient 3 Birth weight (g) 5,900 4,200 4,055 Gestational age (weeks) 39/40 37/40 36/40 Age of presentation (days) 1 2 1 Maximum glucose infusion rate (mg ⅐ kgϪ1 ⅐ minϪ1) 25 12.5 11 Glucagon infusion required Yes Yes Yes Diazoxide responsive dose (mg ⅐ kgϪ1 ⅐ dayϪ1) 10 10 6 Family history of diabetes Yes Yes Yes Attempted withdrawal of diazoxide Not successful Not successful Successful at at 7 months at 18 months 32 months (blood glucose levels down to 2.1 mmol/l) episodes were nosis of hyperinsulinemic hypoglycemia was made and her documented, and therefore therapy was reinitiated with a hypoglycemia responded well to 10 mg ⅐ kgϪ1 ⅐ dayϪ1 good response. At the age of 8 months, the child remains diazoxide and 10 mg ⅐ kgϪ1 ⅐ dayϪ1 chlorothiazide. An on8mg⅐ kgϪ1 ⅐ dayϪ1 diazoxide and 5 mg ⅐ kgϪ1 ⅐ dayϪ1 attempt at stopping the diazoxide at 18 months of age chlorothiazide with normoglycemia. resulted in further hypoglycemic episodes, and therapy Family history. Our patient is the first child born to had to be reinitiated. nonconsanguineous parents. There is a strong family his- Family history. There was a strong family history of tory of diabetes, which is summarized in Fig. 2 (pedigree young-onset diabetes (Fig. 2, pedigree 2). At age 23 years, 1). The patient’s father was diagnosed with diabetes at age the child’s father was diagnosed with diabetes, which was 26 years and was treated with oral hypoglycemic agents. initially controlled by diet. He was started on oral hypo- Interestingly, he was born macrosomic at 26 weeks’ ges- glycemic agents at age 25 years and had been on subcuta- tation with a birth weight of 2.79 kg. The paternal grand- neous insulin since age 37 years. Two of the paternal mother was diagnosed with diabetes at age 17 years and uncles and the paternal grandfather were also diagnosed was started on subcutaneous insulin therapy. with diabetes in their 20s. Interestingly, one of the uncles Patient 2. Patient 2 was born at 37 weeks’ gestation with had a birth weight of Ͼ5.4 kg. The father and both the a birth weight of 4.2 kg via a ventouse delivery. Delivery uncles required neonatal intensive care, but further details was difficult and associated with a right-sided Erb’s palsy. were not available. There is further history of youth-onset She developed hypoglycemia (blood glucose 2.5 mmol/l) at diabetes in the extended family shown in Fig. 2 (pedigree 2 days of age with a seizure. The child required a contin- 2). An HNF4A mutation, Y16X, had previously been iden- uous intravenous infusion of 20% glucose solution deliver- tified in the proband’s cousin (1). ing 12.5 mg ⅐ kgϪ1 ⅐ minϪ1 glucose and an intravenous Patient 3. Patient 3 was born at 36 weeks’ gestation via infusion of glucagon to maintain normoglycemia. A diag- vacuum extraction, with a birth weight of 4.05 kg. Delivery Body Head Tail FIG. 1. 18F-DOPA-PET/CT scan showing uptake of the 18F-L-Dopa throughout the whole of the pancreas in patient 1. The principle of this test is that pancreatic islets take up L-3,4-dihydroxyphenylalanine (L-DOPA) and convert it to dopamine by Dopa decarboxylase, present in the islet cells. The standard uptake value (SUV) reflects the intensity of uptake of DOPA. The 18F-DOPA-PET/CT scan in this patient shows uniformly (in the head, body, and tail of the pancreas) increased uptake of 18F-L-Dopa, reflecting increased metabolic activity of the islets. The intensity of ؉ 18 uptake of the F-L-Dopa by the islets was equivalent to that observed in patients with defects in pancreatic ATP-sensitive K (KATP) channels (7). This fits in with the clinical observation of severe hyperinsulinemic hypoglycemia. 1660 DIABETES, VOL. 57, JUNE 2008 R.R.
Recommended publications
  • Hyperinsulinemic Hypoglycemia in Infancy: Current Concepts in Diagnosis and Management
    RRR EEE VVV III EEE WWW AAA RRR TTT III CCC LLL EEE Hyperinsulinemic Hypoglycemia in Infancy: Current Concepts in Diagnosis and Management SHRENIK VORA, SURESH CHANDRAN, VICTOR SAMUEL RAJADURAI AND #KHALID HUSSAIN From Department of Neonatology, KK Women’s and Children’s Hospital, Singapore; and #Genetics and Epigenetics in Health and Disease Genetics and Genomic Medicine Programme, UCL Institute of Child Health, Great Ormond Street Hospital for Children, 30 Guilford Street, London, UK. Correspondence to: Dr Shrenik Vora, Senior Staff Registrar, Department of Neonatology, KK Women’s and Children’s Hospital, 100, Bukit Timah Road, Singapore 229899. [email protected] Purpose: Molecular basis of various forms of hyperinsulinemic hypoglycemia, involving defects in key genes regulating insulin secretion, are being increasingly reported. However, the management of medically unresponsive hyperinsulinism still remains a challenge as current facilities for genetic diagnosis and appropriate imaging are limited only to very few centers in the world. We aim to provide an overview of spectrum of clinical presentation, diagnosis and management of hyperinsulinism. Methods: We searched the Cochrane library, MEDLINE and EMBASE databases, and reference lists of identified studies. Conclusions: Analysis of blood samples, collected at the time of hypoglycemic episodes, for intermediary metabolites and hormones is critical for diagnosis and treatment. Increased awareness among clinicians about infants “at-risk” of hypoglycemia, and recent advances in genetic diagnosis have made remarkable contribution to the diagnosis and management of hyperinsulinism. Newer drugs like lanreotide (long acting somatostatin analogue) and sirolimus (mammalian target of rapamycin (mTOR) inhibitor) appears promising as patients with diffuse disease can be treated successfully without subtotal pancreatectomy, minimizing the long-term sequelae of diabetes and pancreatic insufficiency.
    [Show full text]
  • Mechanisms of Disease: Advances in Diagnosis and Treatment of Hyperinsulinism in Neonates Diva D De León and Charles a Stanley*
    REVIEW www.nature.com/clinicalpractice/endmet Mechanisms of Disease: advances in diagnosis and treatment of hyperinsulinism in neonates Diva D De León and Charles A Stanley* SUMMARY INTRODUCTION Etiology of neonatal hypoglycemia Hyperinsulinism is the single most common mechanism of hypoglycemia Hypoglycemia is a frequent problem in newborn in neonates. Dysregulated insulin secretion is responsible for the infants that must be diagnosed and treated effi- transient and prolonged forms of neonatal hypoglycemia, and congenital ciently to avoid seizures and permanent brain genetic disorders of insulin regulation represent the most common damage. Management is complicated by the fact of the permanent disorders of hypoglycemia. Mutations in at least five genes have been associated with congenital hyperinsulinism: they that neonates present a remarkably wide range of encode glucokinase, glutamate dehydrogenase, the mitochondrial possible causes for hypoglycemia. These include enzyme short-chain 3-hydroxyacyl-CoA dehydrogenase, and the two transient forms of hypoglycemia that can occur components (sulfonylurea receptor 1 and potassium inward rectifying in normal infants, more prolonged forms of channel, subfamily J, member 11) of the ATP-sensitive potassium hypoglycemia that are associated with compli- channels (K channels). K hyperinsulinism is the most common and cations of gestation and delivery, and neonatal ATP ATP presentation of permanent hypo glycemia severe form of congenital hyperinsulinism. Infants suffering from KATP hyperinsulinism present shortly after birth with severe and persistent dis orders due to endocrine or metabolic diseases hypoglycemia, and the majority are unresponsive to medical therapy, thus (Box 1). The risks of these various forms change requiring pancreatectomy. In up to 40–60% of the children with KATP hyperinsulinism, the defect is limited to a focal lesion in the pancreas.
    [Show full text]
  • Hypoglycemia Diagnosis and Management
    HYPOGLYCEMIA DIAGNOSIS AND MANAGEMENT Beckwith-Wiedemann syndrome (BWS) is a rare disorder involving changes on a region of chromosome 11p15 that influence pre- and postnatal growth. These changes disrupt the normal balance of growth gene expression and lead to the overgrowth seen in patients with BWS. Depending on which parts of the body are affected, children with BWS can have different features. These include overgrowth of the pancreas leading to hypoglycemia or hyperinsulinism. What is hypoglycemia? Hypoglycemia is low blood sugar. It is important for the body to have normal blood sugar levels because low sugar levels can cause problems including seizures and brain damage. Approximately half of infants with BWS will have hypoglycemia. In most of these children, hypoglycemia will only last for a few days and can easily be treated with frequent feedings and/or medical doses of sugar (dextrose infusions). However, in 5-10% of children with BWS, hypoglycemia can persist, requiring additional monitoring and medical care. What causes hypoglycemia in children with BWS? Although hypoglycemia can happen for many reasons, in children with BWS, it is usually caused when the pancreas makes too much insulin (hyperinsulinism). Insulin lowers blood sugar (also called glucose) levels. We suspect that low blood sugar levels in BWS have to do with the genes on chromosome 11p15 that control growth. Additionally, there are some other genes on chromosome 11 that affect how some of the cells in the pancreas work. How do we test for hypoglycemia? A normal blood sugar level is 70 – 120 mg/dL. Low glucose levels are common in the first 24 hours of life; after the second day of life, glucose levels should normalize.
    [Show full text]
  • Congenital Hyperinsulinism
    Winner of the Case of the Year SWISS SOCIETY OF NEONATOLOGY Award 2012 Congenital hyperinsulinism FEBRUARY 2012 2 Morgillo D, Berger TM, Caduff JH, Barthlen W, Mohnike K, Mohnike W, Neonatal and Pediatric Intensive Care Unit (MD, BTM), Department of Pediatric Radiology (CJH), Children‘s Hospital of Lucerne, Lucerne, Switzerland, Department of Pediatric Surgery, University Medicine Greifswald (BW), Greifswald, Germany, Department of Pediatrics, University Hospital of Magdeburg (MK), Magdeburg, Germany, Diagnostic Therapeutic Centre Frankfurter Tor (MW), Berlin, Germany © Swiss Society of Neonatology, Thomas M Berger, Webmaster 3 Congenital hyperinsulinism (CHI) is characterized by INTRODUCTION inappropriate secretion of insulin by the ß cells of the islets of Langerhans and is an extremely heterogene- ous condition in terms of clinical presentation, histo- logical subgroups and underlying molecular biology. Histologically, CHI has been classified into two major subgroups: diffuse (affecting the whole pancreas) and focal (being localized to a single region of the pancreas) disease. Advances in molecular genetics, radiological imaging techniques (such as fluorine-18 L-3,4-dihydroxyphenylalanine-PET-CT (18FDOPA-PET-CT) scanning) and surgical techniques have completely changed the clinical approach to infants with severe congenital forms of hyperinsulinemic hypoglycemia. This male infant was born to a healthy 35-year-old G3/P3 CASE REPORT by spontaneous vaginal delivery at 38 4/7 weeks. His birth weight was 3530 g (P 50-75), his head circum- ference was 35 cm (P 25) and his length was 50 cm (P 25-50). Postnatal adaptation was normal with an arterial cord pH of 7.28 and Apgar scores of 8, 9, and 9 at 1, 5, and 10 minutes, respectively.
    [Show full text]
  • Functional Imaging of Insulitis in Type 1 Diabetes
    FUNCTIONAL IMAGING OF INSULITIS IN TYPE 1 DIABETES Teemu Kalliokoski TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS Sarja - ser. D osa - tom. 1135 | Medica - Odontologica | Turku 2014 University of Turku Faculty of Medicine Department of Clinical Medicine Pediatrics and Turku PET Centre Doctoral Programme of Clinical Investigation Supervised by Professor emeritus Olli Simell (MD, PhD) Adjunct professor Merja Haaparanta-Solin (MSc, PhD) University of Turku, Faculty of Medicine University of Turku, Faculty of Medicine Department of Pediatrics Turku PET Centre Reviewed by Professor Timo Otonkoski (MD, PhD) Docent Olof Eriksson (MSc, PhD) University of Helsinki Uppsala University Children’s Hospital Department of Medicinal Chemistry Opponent Professor Alberto Signore (MD, PhD) Sapienza University Nuclear Medicine Unit Rome, Italy The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin OriginalityCheck service. ISBN 978-951-29-5859-7 (PRINT) ISBN 978-951-29-5860-3 (PDF) ISSN 0355-9483 Painosalama Oy - Turku, Finland 2014 Adjunct professor Merja Haaparanta-Solin (MSc, PhD) University of Turku, Faculty of Medicine Turku PET Centre To Mervi, and our children Elias and Iiris 4 Abstract ABSTRACT Teemu Kalliokoski FUNCTIONAL IMAGING OF INSULITIS IN TYPE 1 DIABETES Department of Pediatrics and Turku PET Centre, Faculty of Medicine, University of Turku Annales Universitatis Turkuensis, 2014, Turku, Finland Type 1 diabetes (T1D) is an immune-mediated disease characterized by autoimmune inflammation (insulitis), leading to destruction of insulin-producing pancreatic β-cells and consequent dependence on exogenous insulin. Current evidence suggests that T1D arises in genetically susceptible children who are exposed to poorly characterized environmental triggers.
    [Show full text]
  • Cell Death During Progression to Diabetes
    insight review articles b-Cell death during progression to diabetes Diane Mathis, Luis Vence & Christophe Benoist Section on Immunology and Immunogenetics, Joslin Diabetes Centre; Department of Medicine, Brigham and Women’s Hospital; Harvard Medical School, One Joslin Place, Boston, Massachusetts 02215, USA (e-mail: [email protected]) The hallmark of type 1 diabetes is specific destruction of pancreatic islet b-cells. Apoptosis of b-cells may be crucial at several points during disease progression, initiating leukocyte invasion of the islets and terminating the production of insulin in islet cells. b-Cell apoptosis may also be involved in the occasional evolution of type 2 into type 1 diabetes. ype 1 diabetes is an autoimmune disease sis of autoimmune diabetes. We do not know what triggers resulting from specific destruction of the it, have little understanding of the genetic and environmen- insulin-producing b-cells of the islets of tal factors regulating its progression, and have a confused Langerhans of the pancreas1. It has two distinct view of the final effector mechanism(s). Consequently, we phases: insulitis, when a mixed population of still do not know how to prevent or reverse type 1 diabetes in Tleukocytes invades the islets; and diabetes, when most a sufficiently innocuous manner to be therapeutically b-cells have been killed off, and there is no longer useful. Faced with the difficulties of addressing these issues sufficient insulin production to regulate blood glucose in humans, many investigators have turned to small-animal levels, resulting in hyperglycaemia. Individuals can have models of diabetes, in particular the non-obese diabetic covert insulitis for a long time (years in humans, months (NOD) mouse and transgenic derivatives of it (Box 1).
    [Show full text]
  • Diazoxide-Responsive Hyperinsulinism
    Diazoxide-responsive Hyperinsulinism Linda Boyajian , CRNP Diva D. De León-Crutchlow, MD, MSCE Congenital Hyperinsulinism Center The Children’s Hospital of Philadelphia Picture courtesy of Dr. Colin Hawkes Outline Definition of diazoxide-responsiveness Genetic mutations in diazoxide-responsive hyperinsulinism Treatment of diazoxide-unresponsive hyperinsulinism Diazoxide-responsiveness Able to wean intravenous dextrose Able to maintain normal plasma glucose during: . Normal feeding schedule . Overnight fast Diazoxide-Responsive HI • Common Genetic – GDH-HI (HI-HA Syndrome) – KATP-HI • Very common non-Genetic – Perinatal-Stress HI • Rarer Genetic – HNFs-HI Frequency of diazoxide-unresponsive hyperinsulinism FOCAL HI n = 207 (50%) SURGICAL DIFFUSE HI n = 415 n = 192 (46%) (92%) Diazoxide LINE HI Unresponsive n = 13 (3%) n = 451 (58%) NON- ATYPICAL SURGICAL n = 3 (1%) HI Panel ‡ n = 36 (8%) N = 782 Diazoxide Responsive n = 263 (34%) § ‡ = ABCC8, KCNJ11, GCK, GLUD1 § = add’l genes: HNF4A, HNF1A, HADH, UCP2 Syndromic-HI n = 68 (8%) Children with hyperinsulinism seen at CHOP between 1997-2015 Genotype of 705 children (1997-2014) 1 dom GLUD1 No mutations Focal (1 rec KATP) 1 dom KATP Diffuse (2 rec KATP) Diazoxide-Unresponsive Diazoxide-Responsive (434) (219) KATP-HI: the most common genetic form of hyperinsulinism • Caused by inactivating mutations of SUR1 or Kir6.2 (ABCC8, KCNJ11) on chromosome 11p • Four clinical types 1. Recessive mutations: Diffuse HI, severe neonatal onset hypoglycemia, diazoxide non-responsive 2. Focal adenomatosis: Focal HI; clinically indistinguishable from severe recessive KATP-HI; paternally-derived recessive KATP mutation PLUS maternal 11p LOH; curable by surgery(!) 3. Dominant mutations (severe): Diffuse HI, severe neonatal onset hypoglycemia, diazoxide non-responsive 4.
    [Show full text]
  • Congenital Hyperinsulinism
    Congenital hyperinsulinism Description Congenital hyperinsulinism is a condition that causes individuals to have abnormally high levels of insulin, which is a hormone that helps control blood sugar levels. People with this condition have frequent episodes of low blood sugar (hypoglycemia). In infants and young children, these episodes are characterized by a lack of energy (lethargy), irritability, or difficulty feeding. Repeated episodes of low blood sugar increase the risk for serious complications such as breathing difficulties, seizures, intellectual disability, vision loss, brain damage, and coma. The severity of congenital hyperinsulinism varies widely among affected individuals, even among members of the same family. About 60 percent of infants with this condition experience a hypoglycemic episode within the first month of life. Other affected children develop hypoglycemia by early childhood. Unlike typical episodes of hypoglycemia, which occur most often after periods without food (fasting) or after exercising, episodes of hypoglycemia in people with congenital hyperinsulinism can also occur after eating. Frequency Congenital hyperinsulinism affects approximately 1 in 50,000 newborns. This condition is more common in certain populations, affecting up to 1 in 2,500 newborns. Causes Congenital hyperinsulinism is caused by mutations in genes that regulate the release ( secretion) of insulin, which is produced by beta cells in the pancreas. Insulin clears excess sugar (in the form of glucose) from the bloodstream by passing glucose into cells to be used as energy. Gene mutations that cause congenital hyperinsulinism lead to over-secretion of insulin from beta cells. Normally, insulin is secreted in response to the amount of glucose in the bloodstream: when glucose levels rise, so does insulin secretion.
    [Show full text]
  • Stem Cells from Patients with Congenital Hyperinsulinism
    Stem cells from patients with Congenital Hyperinsulinism A thesis submitted to the University of Manchester for the degree of doctor of philosophy in the Faculty of Biology, Medicine and Health School of Medical Sciences Sophie Grace Kellaway 2016 Contents 0.1 Abbreviations . 9 0.2 Abstract . 11 0.3 Declaration . 12 0.4 Copyright statement . 12 0.5 Acknowledgements . 13 0.6 Thesis organisation . 14 0.7 Author note . 15 1 Literature Review 16 1.1 Introduction . 16 1.2 The Pancreas . 17 1.2.1 Anatomy . 17 1.2.2 Development . 20 1.2.3 Post developmental endocrine proliferation . 23 1.2.4 Cell cycle in the pancreas . 23 1.2.5 Signalling and markers . 25 1.3 Congenital hyperinsulinism (CHI) . 27 1.3.1 Symptoms and causes . 27 1.3.2 Hyperproliferation . 30 1.3.3 Treatment . 30 1.3.4 Experimental models . 30 1.4 Diabetes . 31 1.4.1 Epidemiology . 31 1.4.2 Pathogenesis . 32 1.4.3 Treatment . 33 1.5 Stem Cells . 34 1.5.1 Pancreatic stem cells . 34 1.5.2 Mesenchymal stem cells . 35 2 1.5.3 Pluripotent stem cells . 38 1.5.4 Generation of iPSCs . 41 1.6 Aims . 43 1.7 References . 43 2 A Novel Source of Mesenchymal Stem Cells derived from the Pancreas of Patients with Congenital Hyperinsulinism. 64 2.1 Abstract . 65 2.2 Introduction . 66 2.3 Methods . 68 2.3.1 Derivation of CHI pancreatic mesenchymal stem cell (CHI pMSC) lines . 68 2.3.2 Cell culture . 68 2.3.3 Karyotyping .
    [Show full text]
  • Glucokinase MODY Is the Most Prevalent Subtype Responsible for About 70% of Confirmed Cases
    life Article A Comprehensive Analysis of Hungarian MODY Patients—Part II: Glucokinase MODY Is the Most Prevalent Subtype Responsible for about 70% of Confirmed Cases Zsolt Gaál 1, Zsuzsanna Sz ˝ucs 2, Irén Kántor 3 , Andrea Luczay 4,Péter Tóth-Heyn 4, Orsolya Benn 5, Enik˝oFelszeghy 6, Zsuzsanna Karádi 5,László Madar 2 and István Balogh 2,* 1 4th Department of Medicine, Jósa András Teaching Hospital, 4400 Nyíregyháza, Hungary; [email protected] 2 Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; [email protected] (Z.S.); [email protected] (L.M.) 3 Department of Pediatrics, Jósa András Teaching Hospital, 4400 Nyíregyháza, Hungary; [email protected] 4 1st Department of Pediatrics, Semmelweis University, 1085 Budapest, Hungary; [email protected] (A.L.); [email protected] (P.T.-H.) 5 Department of Pediatrics, Szent György Hospital of Fejér County, 8000 Székesfehérvár, Hungary; [email protected] (O.B.); [email protected] (Z.K.) 6 Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; [email protected] * Correspondence: [email protected] Citation: Gaál, Z.; Sz˝ucs,Z.; Kántor, I.; Luczay, A.; Tóth-Heyn, P.; Benn, O.; Abstract: MODY2 is caused by heterozygous inactivating mutations in the glucokinase (GCK) gene Felszeghy, E.; Karádi, Z.; Madar, L.; that result in persistent, stable and mild fasting hyperglycaemia (5.6–8.0 mmol/L, glycosylated Balogh, I. A Comprehensive Analysis haemoglobin range of 5.6–7.3%). Patients with GCK mutations usually do not require any drug of Hungarian MODY Patients—Part treatment, except during pregnancy.
    [Show full text]
  • Maternal Hyperglycaemia and Foetal Hyperinsulinism in Diabetic Pregnancy James W
    Postgrad Med J: first published as 10.1136/pgmj.38.445.612 on 1 November 1962. Downloaded from POSTGRAD. MED. J. (I962), 38, 6IZ MATERNAL HYPERGLYCAEMIA AND FOETAL HYPERINSULINISM IN DIABETIC PREGNANCY JAMES W. FARQUHAR, M.D., F.R.C.P.(Edin.) Department of Child Life and Health, University of Edinburgh; Simpson Memorial Maternity Pavilion, Royal Infirmary, Edinburgh THE babies born to diabetic women, and to those implied such retention of water that it made a women whose diabetes declares itself only in later significant contribution to the excessive birth life, are usually heavier than average for their weight, and that in shedding it as urine the infants gestational age, and their overall length may be lost much more than the usual amount of weight greater. They have a pronounced tendency to during the first week of life. The fact that Cardell develop brief neonatal hypoglycxmia and a con- (I953a) found little cedema in his autopsy series siderable increase both in pancreatic islet cell area could be explained by the infants having shed and in the insulin-secreting response to injected their fluid before death, and the first real challenge glucose. Under ideal conditions and in large to the popular ' waterlogged baby ' story came series they have a perinatal mortality rate which when we surprised ourselves by finding that in may be four times that for babies of normal the Edinburgh series the babies had not lost sig- women, and which even in good hospitals may be nificantly more weight than control infants during six or seven times greater than normal (Farquhar, the first week of life when they were matched as I958a).
    [Show full text]
  • A.Cicognani, L.Mazzanti*, O,Parisini*, A.Pellacanix. 0.Tassinarix, P.Anendt*, K.-D.Kohnert* (1Ntrod.B~ R.Illig) V.Venturoli*, S.Sandri*, A.Foraboscox
    A.Cicognani, L.Mazzanti*, O,Parisini*, A.Pellacanix. 0.TassinariX, P.Anendt*, K.-D.Kohnert* (1ntrod.b~ R.Illig) V.Venturoli*, S.Sandri*, A.ForaboscoX. E.Cacciari. 164 Childrens Hospital, Humboldt University, Berlin and Central Institute of Diabetes, 2nd Pediatric Clinic, University of Bologna and Chair of Hystology Karlsburg, German Democratic Republic. and Eabryology. University of Modena. Italy. THE HYPERINSULINEMIC HYPOGLYCEMIA IN INFANTS DIFFERENCES IN GLUCOSE TOLERANCE IN TURNER'S SYNDROME DEPENDING ON AND CHILDREN. A STUDY ON 9 CASES. AGE. Carbohydrate homeostasis was evaluated in 41 Turner-syndrose (aean age 11.5: Circulating levels of blood glucose, immunoreactive 2.7, range 5-16yrs) and in 25 short normal girls (mean age 10.8+2.1. range 6-16 insulin (IRI) and C-peptide immunoreactivity (CPR) were measured in 6 infants (4 had islet cell adenoma yrs) by means of OGTT. Impaired glucose tolerance was present in 31.7% of and 2 had nesidioblastosis) and 3 children (all had patients and in 8% of controls (p (0.025). Mean glucose at 60' (P<0.05). 90' islet cell adenoma) with hyperinsulinemic hypoglyce- (p C 0.01). 120' (p L 0.05), glucose peak (p c 0.005). and the integrated curve mia. The ratio blood glucose : insulin on several (p C0.005) were significantly higher in the patients. Mean insulin levels uere days had high value for diagnosis of hyperinsulinemic louer than in controls and the difference was significant at 30' (pd0.05)and for hypoglycemia. The oral glucose load gave variable re- the mean peak (p (0.05). The insulinogenic index was louer in the patients sults, and the arginine infusion was without abnorma- lity of hormone secretion.
    [Show full text]