K-Stability and Kähler Manifolds with Transcendental Cohomology Class Zakarias Sjöström Dyrefelt

Total Page:16

File Type:pdf, Size:1020Kb

K-Stability and Kähler Manifolds with Transcendental Cohomology Class Zakarias Sjöström Dyrefelt K-stability and Kähler manifolds with transcendental cohomology class Zakarias Sjöström Dyrefelt To cite this version: Zakarias Sjöström Dyrefelt. K-stability and Kähler manifolds with transcendental cohomology class. General Mathematics [math.GM]. Université Paul Sabatier - Toulouse III, 2017. English. NNT : 2017TOU30126. tel-01899546 HAL Id: tel-01899546 https://tel.archives-ouvertes.fr/tel-01899546 Submitted on 19 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSETHÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) Présentée et soutenue le 15/09/2017 par : Zakarias SJÖSTRÖM DYREFELT K-stabilité et variétés kähleriennes avec classe transcendante JURY Jacopo STOPPA SISSA Trieste Rapporteur Sébastien BOUCKSOM École Polytechnique Directeur de thèse Vincent GUEDJ Université Paul Sabatier Directeur de thèse Paul GAUDUCHON École Polytechnique Examinateur Éveline LEGENDRE Université Paul Sabatier Examinateur Julien KELLER Université Aix-Marseille Examinateur École doctorale et spécialité : MITT : Domaine Mathématiques : Mathématiques fondamentales Unité de Recherche : Institut de Mathématiques de Toulouse (UMR 5219) Directeur(s) de Thèse : Sébastien BOUCKSOM et Vincent GUEDJ Rapporteurs : Robert BERMAN et Jacopo STOPPA iii Remerciements La présente thèse a été réalisée en co-direction entre l’Université Paul Sabatier à Toulouse et l’École Polytechnique à Paris. Cela a entrainé un grand nombre d’aller-retours notamment en- tre Paris et Toulouse. Je tiens à remercier tous mes collègues dans les deux labos concernés pour leur accueil chaleureux. Ces voyages ont de plus été l’occasion de faire de nouvelles dé- couvertes (mathématiques et autres) et rencontrer un grand nombre de personnages fascinants et généreux, qui m’ont souvent beaucoup aidé, d’une manière directe ou indirecte, à réaliser le travail qui a aboutit a cette thèse. Tout d’abord, je tiens plus spécialement à remercier mes directeurs de thèse, les professeurs Sébastien Boucksom et Vincent Guedj, pour leur générosité, et leur volonté de me guider lors de mes premiers pas dans le monde de la recherche mathématique, de m’avoir montré la richesse de la tradition scientifique française, et de m’avoir permis de passer trois ans a decouvrir ce pays incroyable qui est la France. En particulier, je leur exprime ma sincère gratitude de m’avoir dirigé dans des projets influencé par plusieurs domaines mathématiques passionnants, et d’avoir partagé leurs idées avec moi. Je tiens également a remercier les membres du jury de m’avoir fait l’honneur d’être venu à ma soutenance. Je remercie les rapporteurs Jacopo Stoppa et Robert Berman pour un travail méticuleux de relecture du manuscrit de thèse. Des remerciements particuliers sont ici adressés au professeur Robert Berman, qui a joué un rôle déterminant pour mon parcours, avec son soutien constant, et en partageant des idées et des projets avec moi. Il a aussi beaucoup contribué a mon développement dans mes études de doctorat, ce dont je lui suis fortement reconnaissant. Pendant ces années j’ai eu la chance de rencontrer de nombreux collègues du monde entier avec qui j’ai pu échanger des idées mathématiques, qui ont joué des rôles importants pour mon parcours, et qui sont devenus des amis. Je remercie ainsi Ruadhai Dervan, Julius Ross, Robert Berman, Bo Berndtsson, David Witt-Nyström, Tamás Darvas, Yanir A. Rubinstein, Gabor Székelyhidi, Ahmed Zeriahi, Carl Tipler, Éveline Legendre et Paul Gauduchon. Je remercie tous les membres du projet ANR EMARKS pour l’interêt porté à mon travail. Un merci tout particulier est destiné ici à mes frères et sœurs de thèse: Chinh H. Lu, Eleonora Di Nezza, Tat Dat Tô et Henri Guenancia. Merci pour la disponibilité, l’amitié et le soutien dont vous m’avez fait part. Je remercie également toutes les collegues du CMLS et de l’IMT, le personnel administratif inclus, notamment Agnès, Jocelyne et Pascale pour leur grande disponibilité et générosité, ainsi que pour leur aide avec des procédures parfois compliqués a comprendre pour un étranger ! iv Je tiens a remercier mes collègues doctorant/post-doc à Toulouse et à Paris: André, Jordi, Suzanna, Fabrizio, Danny, Dat, Anne, Damien, Laura, Jorge, Jules, Ibrahim, Daniel, Sergio, Anton, Bac, Rita, Jacek, René... Sur une note plus personnelle je tiens, bien sur, à remercier ma famille et tous mes amis, qui sont restés toujours disponibles, souvent malgré une distance géographique considérable. Je suis reconnaissant à Bogdan, qui a toujours cru en moi. Je remercie également Cat d’avoir bien voulu partager avec moi l’aventure de venir poursuivre des études de doctorat en France. Finalement, je remercie en particulier mes parents pour leur soutien constant et inconditionel. Sans vous cette thèse ne serait pas devenue ce qu’elle est aujourd’hui. Merci à vous tous ! Zakarias Sjöström Dyrefelt Toulouse, le 15 Septembre 2017 R´esum´e Dans cette th`esenous ´etudionsdes questions de stabilit´eg´eom´etriquepour des vari´et´es k¨ahleriennes`acourbure scalaire constante (cscK) avec classe de cohomologie transcen- dante. En tant que point de d´epart,nous introduisons des notions g´en´eralis´ees de K- stabilit´e,´etendant une image classique introduite par G. Tian et S. Donaldson dans le cadre des vari´et´espolaris´ees. Contrairement `ala th´eorie classique, ce formalisme nous permet de traiter des questions de stabilit´epour des vari´et´esk¨ahleriennescompactes non projectives ainsi que des vari´et´esprojectives munis de polarisations non rationnelles. Dans une premi`erepartie, nous ´etudionsles rayons sous-g´eod´esiquesassoci´esaux configurations tests dites cohomologiques, objets introduitent dans cette th`ese. Nous ´etablissonsainsi des formules fondamentales pour la pente asymptotique d’une famille de fonctionnelles d’´energie,le long de ces rayons g´eod´esiques. Ceci est li´eau couplage de Deligne en g´eom´etriealg´ebrique,et ce formalise permet en particulier de comprendre le comportement asymptotique d’un grand nombre de fonctionelles d’´energieclassiques en g´eom´etriek¨ahlerienne,y compris la fonctionnelle d’Aubin-Mabuchi et la K-´energie. En particulier, ceci fournit une approche pluripotentielle naturelle pour ´etudierle com- portement asymptotique des fonctionelles d’´energiedans la th´eoriede K-stabilit´e. En s’appuyant sur cette premi`erepartie, nous d´emontrons ensuite un certain nombre de r´esultatsde stabilit´epour les vari´et´escscK. Tout d’abord, nous prouvons que les vari´et´escscK sont K-semistables dans notre sens g´en´eralis´e,prolongeant ainsi un r´esultat dˆu`aDonaldson dans le cadre projectif. En supposant que le groupe d’automorphisme est discret, nous montrons en outre que la K-stabilit´eest une condition n´ecessaire pour l’existence des m´etriquescscK sur des vari´et´esk¨ahleriennescompactes. Plus pr´ecis´ement, nous prouvons que la coercivit´ede la K-´energieimplique la K-stabilit´euniforme, ainsi g´en´eralisant des r´esultatsde Mabuchi, Stoppa, Berman, Dervan et Boucksom-Hisamoto- Jonsson pour des vari´et´espolaris´ees. Cela donne une preuve nouvelle et plus g´en´erale d’une direction de la conjecture Yau-Tian-Donaldson dans ce contexte. L’autre direction (suffisance de K-stabilit´e)est consid´er´eecomme l’un des probl`emesouverts les plus importants en g´eom´etriek¨ahlerienne. Nous donnons enfin des r´esultatspartiels dans le cas des vari´et´esk¨ahleriennescom- pactes qui admettent des champs de vecteurs holomorphes non triviaux. Nous discutons ´egalement autour des perspectives et applications de notre th´eoriede K-stabilit´epour les vari´et´esk¨ahleriennes avec classe transcendante, notamment `al’´etudedes lieux de stabilit´edans le cˆonede K¨ahler. 1 Abstract In this thesis we are interested in questions of geometric stability for constant scalar curvature K¨ahler(cscK) manifolds with transcendental cohomology class. As a starting point we develop generalized notions of K-stability, extending a classical picture for polarized manifolds due to G. Tian, S. Donaldson, and others, to the setting of arbitrary compact K¨ahler manifolds. We refer to these notions as cohomological K-stability. By contrast to the classical theory, this formalism allows us to treat stability questions for non-projective compact K¨ahlermanifolds as well as projective manifolds endowed with non-rational polarizations. As a first main result and a fundamental tool in this thesis, we study subgeodesic rays associated to test configurations in our generalized sense, and establish formulas for the asymptotic slope of a certain family of energy functionals along these rays. This is related to the Deligne pairing construction in algebraic geometry, and covers many of the classical energy functionals in K¨ahlergeometry (including Aubin’s J-functional and the Mabuchi K-energy functional). In particular, this yields a natural potential-theoretic aproach to energy functional asymptotics in the theory of K-stability. Building on this foundation we establish a number of stability results for cscK man- ifolds: First, we show that cscK manifolds are K-semistable in our generalized sense, extending a result due to S. Donaldson in the projective setting. Assuming that the au- tomorphism group is discrete we further show that K-stability is a necessary condition for existence of constant scalar curvature K¨ahlermetrics on compact K¨ahlermanifolds. More precisely, we prove that coercivity of the Mabuchi functional implies uniform K- stability, generalizing results of T. Mabuchi, J. Stoppa, R. Berman, R. Dervan as well as S. Boucksom, T. Hisamoto and M.
Recommended publications
  • Riemann Surfaces
    RIEMANN SURFACES AARON LANDESMAN CONTENTS 1. Introduction 2 2. Maps of Riemann Surfaces 4 2.1. Defining the maps 4 2.2. The multiplicity of a map 4 2.3. Ramification Loci of maps 6 2.4. Applications 6 3. Properness 9 3.1. Definition of properness 9 3.2. Basic properties of proper morphisms 9 3.3. Constancy of degree of a map 10 4. Examples of Proper Maps of Riemann Surfaces 13 5. Riemann-Hurwitz 15 5.1. Statement of Riemann-Hurwitz 15 5.2. Applications 15 6. Automorphisms of Riemann Surfaces of genus ≥ 2 18 6.1. Statement of the bound 18 6.2. Proving the bound 18 6.3. We rule out g(Y) > 1 20 6.4. We rule out g(Y) = 1 20 6.5. We rule out g(Y) = 0, n ≥ 5 20 6.6. We rule out g(Y) = 0, n = 4 20 6.7. We rule out g(C0) = 0, n = 3 20 6.8. 21 7. Automorphisms in low genus 0 and 1 22 7.1. Genus 0 22 7.2. Genus 1 22 7.3. Example in Genus 3 23 Appendix A. Proof of Riemann Hurwitz 25 Appendix B. Quotients of Riemann surfaces by automorphisms 29 References 31 1 2 AARON LANDESMAN 1. INTRODUCTION In this course, we’ll discuss the theory of Riemann surfaces. Rie- mann surfaces are a beautiful breeding ground for ideas from many areas of math. In this way they connect seemingly disjoint fields, and also allow one to use tools from different areas of math to study them.
    [Show full text]
  • Uniformization of Riemann Surfaces Revisited
    UNIFORMIZATION OF RIEMANN SURFACES REVISITED CIPRIANA ANGHEL AND RARES¸STAN ABSTRACT. We give an elementary and self-contained proof of the uniformization theorem for non-compact simply-connected Riemann surfaces. 1. INTRODUCTION Paul Koebe and shortly thereafter Henri Poincare´ are credited with having proved in 1907 the famous uniformization theorem for Riemann surfaces, arguably the single most important result in the whole theory of analytic functions of one complex variable. This theorem generated con- nections between different areas and lead to the development of new fields of mathematics. After Koebe, many proofs of the uniformization theorem were proposed, all of them relying on a large body of topological and analytical prerequisites. Modern authors [6], [7] use sheaf cohomol- ogy, the Runge approximation theorem, elliptic regularity for the Laplacian, and rather strong results about the vanishing of the first cohomology group of noncompact surfaces. A more re- cent proof with analytic flavour appears in Donaldson [5], again relying on many strong results, including the Riemann-Roch theorem, the topological classification of compact surfaces, Dol- beault cohomology and the Hodge decomposition. In fact, one can hardly find in the literature a self-contained proof of the uniformization theorem of reasonable length and complexity. Our goal here is to give such a minimalistic proof. Recall that a Riemann surface is a connected complex manifold of dimension 1, i.e., a connected Hausdorff topological space locally homeomorphic to C, endowed with a holomorphic atlas. Uniformization theorem (Koebe [9], Poincare´ [15]). Any simply-connected Riemann surface is biholomorphic to either the complex plane C, the open unit disk D, or the Riemann sphere C^.
    [Show full text]
  • Uniformization of Riemann Surfaces
    CHAPTER 3 Uniformization of Riemann surfaces 3.1 The Dirichlet Problem on Riemann surfaces 128 3.2 Uniformization of simply connected Riemann surfaces 141 3.3 Uniformization of Riemann surfaces and Kleinian groups 148 3.4 Hyperbolic Geometry, Fuchsian Groups and Hurwitz’s Theorem 162 3.5 Moduli of Riemann surfaces 178 127 128 3. UNIFORMIZATION OF RIEMANN SURFACES One of the most important results in the area of Riemann surfaces is the Uni- formization theorem, which classifies all simply connected surfaces up to biholomor- phisms. In this chapter, after a technical section on the Dirichlet problem (solutions of equations involving the Laplacian operator), we prove that theorem. It turns out that there are very few simply connected surfaces: the Riemann sphere, the complex plane and the unit disc. We use this result in 3.2 to give a general formulation of the Uniformization theorem and obtain some consequences, like the classification of all surfaces with abelian fundamental group. We will see that most surfaces have the unit disc as their universal covering space, these surfaces are the object of our study in 3.3 and 3.5; we cover some basic properties of the Riemaniann geometry, §§ automorphisms, Kleinian groups and the problem of moduli. 3.1. The Dirichlet Problem on Riemann surfaces In this section we recall some result from Complex Analysis that some readers might not be familiar with. More precisely, we solve the Dirichlet problem; that is, to find a harmonic function on a domain with given boundary values. This will be used in the next section when we classify all simply connected Riemann surfaces.
    [Show full text]
  • Surfaces and Complex Analysis (Lecture 34)
    Surfaces and Complex Analysis (Lecture 34) May 3, 2009 Let Σ be a smooth surface. We have seen that Σ admits a conformal structure (which is unique up to a contractible space of choices). If Σ is oriented, then a conformal structure on Σ allows us to view Σ as a Riemann surface: that is, as a 1-dimensional complex manifold. In this lecture, we will exploit this fact together with the following important fact from complex analysis: Theorem 1 (Riemann uniformization). Let Σ be a simply connected Riemann surface. Then Σ is biholo- morphic to one of the following: (i) The Riemann sphere CP1. (ii) The complex plane C. (iii) The open unit disk D = fz 2 C : z < 1g. If Σ is an arbitrary surface, then we can choose a conformal structure on Σ. The universal cover Σb then inherits the structure of a simply connected Riemann surface, which falls into the classification of Theorem 1. We can then recover Σ as the quotient Σb=Γ, where Γ ' π1Σ is a group which acts freely on Σb by holmorphic maps (if Σ is orientable) or holomorphic and antiholomorphic maps (if Σ is nonorientable). For simplicity, we will consider only the orientable case. 1 If Σb ' CP , then the group Γ must be trivial: every orientation preserving automorphism of S2 has a fixed point (by the Lefschetz trace formula). Because Γ acts freely, we must have Γ ' 0, so that Σ ' S2. To see what happens in the other two cases, we need to understand the holomorphic automorphisms of C and D.
    [Show full text]
  • TEICHM¨ULLER SPACE Contents 1. Introduction 1 2. Quasiconformal
    TEICHMULLER¨ SPACE MATTHEW WOOLF Abstract. It is a well-known fact that every Riemann surface with negative Euler characteristic admits a hyperbolic metric. But this metric is by no means unique { indeed, there are uncountably many such metrics. In this paper, we study the space of all such hyperbolic structures on a Riemann surface, called the Teichm¨ullerspace of the surface. We will show that it is a complete metric space, and that it is homeomorphic to Euclidean space. Contents 1. Introduction 1 2. Quasiconformal maps 2 3. Beltrami Forms 3 4. Teichm¨ullerSpace 4 5. Fenchel-Nielsen Coordinates 6 References 9 1. Introduction Much of the theory of Riemann surfaces boils down to the following theorem, the two-dimensional equivalent of Thurston's geometrization conjecture: Proposition 1.1 (Uniformization theorem). Every simply connected Riemann sur- face is isomorphic either to the complex plane C, the Riemann sphere P1, or the unit disk, D. By considering universal covers of Riemann surfaces, we can see that every sur- face admits a spherical, Euclidean, or (this is the case for all but a few surfaces) hyperbolic metric. Since almost all surfaces are hyperbolic, we will restrict our attention in the following material to them. The natural question to ask next is whether this metric is unique. We see almost immediately that the answer is no (almost any change of the fundamental region of a surface will give rise to a new metric), but this answer gives rise to a new question. Does the set of such hyper- bolic structures of a given surface have any structure itself? It turns out that the answer is yes { in fact, in some ways, the structure of this set (called the Teichm¨uller space of the surface) is more interesting than that of the Riemann surface itself.
    [Show full text]
  • The Uniformization Theorem Donald E. Marshall the Koebe Uniformization Theorem Is a Generalization of the Riemann Mapping The- O
    The Uniformization Theorem Donald E. Marshall The Koebe uniformization theorem is a generalization of the Riemann mapping The- orem. It says that a simply connected Riemann surface is conformally equivalent to either the unit disk D, the plane C, or the sphere C∗. We will give a proof that illustrates the power of the Perron method. As is standard, the hyperbolic case (D) is proved by constructing Green’s function. The novel part here is that the non-hyperbolic cases are treated in a very similar manner by constructing the Dipole Green’s function. A Riemann surface is a connected Hausdorff space W , together with a collection of open subsets Uα ⊂ W and functions zα : Uα → C such that (i) W = ∪Uα (ii) zα is a homeomorphism of Uα onto the unit disk D, and −1 (iii) if Uα ∩ Uβ = ∅ then zβ ◦ zα is analytic on zα(Uα ∩ Uβ). The functions zα are called coordinate functions, and the sets Uα are called coordinate disks. We can extend our collection of coordinate functions and disks to form a base for −1 D 1 the topology on W by setting Uα,r = zα (r ) and zα,r = r zα|Uα,r , for r < 1. We can also compose each zα with a M¨obius transformation of the disk onto itself so that we can assume that for each coordinate disk Uα and each p0 ∈ Uα there is a coordinate function zα with zα(p0) = 0. For the purposes of the discussion below, we will assume that our collection {zα,Uα} includes all such maps, except that we will further assume that each Uα has compact closure in W , by restricting our collection.
    [Show full text]
  • The Automorphism Groups on the Complex Plane Aron Persson
    The Automorphism Groups on the Complex Plane Aron Persson VT 2017 Essay, 15hp Bachelor in Mathematics, 180hp Department of Mathematics and Mathematical Statistics Abstract The automorphism groups in the complex plane are defined, and we prove that they satisfy the group axioms. The automorphism group is derived for some domains. By applying the Riemann mapping theorem, it is proved that every automorphism group on simply connected domains that are proper subsets of the complex plane, is isomorphic to the automorphism group on the unit disc. Sammanfattning Automorfigrupperna i det komplexa talplanet definieras och vi bevisar att de uppfyller gruppaxiomen. Automorfigruppen på några domän härleds. Genom att applicera Riemanns avbildningssats bevisas att varje automorfigrupp på enkelt sammanhängande, öppna och äkta delmängder av det komplexa talplanet är isomorf med automorfigruppen på enhetsdisken. Contents 1. Introduction 1 2. Preliminaries 3 2.1. Group and Set Theory 3 2.2. Topology and Complex Analysis 5 3. The Definition of the Automorphism Group 9 4. Automorphism Groups on Sets in the Complex Plane 17 4.1. The Automorphism Group on the Complex Plane 17 4.2. The Automorphism Group on the Extended Complex Plane 21 4.3. The Automorphism Group on the Unit Disc 23 4.4. Automorphism Groups and Biholomorphic Mappings 25 4.5. Automorphism Groups on Punctured Domains 28 5. Automorphism Groups and the Riemann Mapping Theorem 35 6. Acknowledgements 43 7. References 45 1. Introduction To study the geometry of complex domains one central tool is the automorphism group. Let D ⊆ C be an open and connected set. The automorphism group of D is then defined as the collection of all biholomorphic mappings D → D together with the composition operator.
    [Show full text]
  • Partial Differential Equations
    PARTIAL DIFFERENTIAL EQUATIONS SERGIU KLAINERMAN 1. Basic definitions and examples To start with partial differential equations, just like ordinary differential or integral equations, are functional equations. That means that the unknown, or unknowns, we are trying to determine are functions. In the case of partial differential equa- tions (PDE) these functions are to be determined from equations which involve, in addition to the usual operations of addition and multiplication, partial derivatives of the functions. The simplest example, which has already been described in section 1 of this compendium, is the Laplace equation in R3, ∆u = 0 (1) ∂2 ∂2 ∂2 where ∆u = ∂x2 u + ∂y2 u + ∂z2 u. The other two examples described in the section of fundamental mathematical definitions are the heat equation, with k = 1, − ∂tu + ∆u = 0, (2) and the wave equation with k = 1, 2 − ∂t u + ∆u = 0. (3) In these last two cases one is asked to find a function u, depending on the variables t, x, y, z, which verifies the corresponding equations. Observe that both (2) and (3) involve the symbol ∆ which has the same meaning as in the first equation, that is ∂2 ∂2 ∂2 ∂2 ∂2 ∂2 ∆u = ( ∂x2 + ∂y2 + ∂z2 )u = ∂x2 u+ ∂y2 u+ ∂z2 u. Both equations are called evolution equations, simply because they are supposed to describe the change relative to the time parameter t of a particular physical object. Observe that (1) can be interpreted as a particular case of both (3) and (2). Indeed solutions u = u(t, x, y, z) of either (3) or (2) which are independent of t, i.e.
    [Show full text]
  • Correspondance De Maillages Dynamiques Basée Sur Les Caractéristiques Vasyl Mykhalchuk
    Correspondance de maillages dynamiques basée sur les caractéristiques Vasyl Mykhalchuk To cite this version: Vasyl Mykhalchuk. Correspondance de maillages dynamiques basée sur les caractéristiques. Vision par ordinateur et reconnaissance de formes [cs.CV]. Université de Strasbourg, 2015. Français. NNT : 2015STRAD010. tel-01289431 HAL Id: tel-01289431 https://tel.archives-ouvertes.fr/tel-01289431 Submitted on 16 Mar 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie ICube CNRS UMR 7357 École doctorale mathématiques, sciences de l'information et de l'ingénieur THÈSE présentée pour obtenir le grade de Docteur de l'Université de Strasbourg Mention: Informatique par Vasyl Mykhalchuk Correspondance de maillages dynamiques basée sur les caractéristiques Soutenu publiquement le 9 Avril 2015 Members of the jury: M. Florent Dupont………………………………………………………………………………...Rapporteur Professeur, Université Claude Bernard Lyon 1, France M. Hervé Delingette………………………………………………………………….……….…...Rapporteur
    [Show full text]
  • Issue 93 ISSN 1027-488X
    NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Interview Yakov Sinai Features Mathematical Billiards and Chaos About ABC Societies The Catalan Photograph taken by Håkon Mosvold Larsen/NTB scanpix Mathematical Society September 2014 Issue 93 ISSN 1027-488X S E European M M Mathematical E S Society American Mathematical Society HILBERT’S FIFTH PROBLEM AND RELATED TOPICS Terence Tao, University of California In the fifth of his famous list of 23 problems, Hilbert asked if every topological group which was locally Euclidean was in fact a Lie group. Through the work of Gleason, Montgomery-Zippin, Yamabe, and others, this question was solved affirmatively. Subsequently, this structure theory was used to prove Gromov’s theorem on groups of polynomial growth, and more recently in the work of Hrushovski, Breuillard, Green, and the author on the structure of approximate groups. In this graduate text, all of this material is presented in a unified manner. Graduate Studies in Mathematics, Vol. 153 Aug 2014 338pp 9781470415648 Hardback €63.00 MATHEMATICAL METHODS IN QUANTUM MECHANICS With Applications to Schrödinger Operators, Second Edition Gerald Teschl, University of Vienna Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrödinger operators. Graduate Studies in Mathematics, Vol. 157 Nov 2014 356pp 9781470417048 Hardback €61.00 MATHEMATICAL UNDERSTANDING OF NATURE Essays on Amazing Physical Phenomena and their Understanding by Mathematicians V.
    [Show full text]
  • The Uniformization Theorem
    THE UNIFORMIZATION THEOREM ZACHARY HALBERSTAM Abstract. Riemann surfaces lie at the intersection of many areas of math. The Uniformization theorem is a major result in Riemann surface theory. This paper, written at the 2019 Michigan REU, gives a modern proof of the Uniformization theorem, investigating a lot of interesting math along the way. Contents Introduction 1 1. Riemann Surfaces and Covering Theory 1 1.1. Maps between Riemann Surfaces 2 1.2. Coverings and the Fundamental Group 3 1.3. Universal Covers 6 2. The Uniformization Theorem 8 2.1. The Riemann-Roch Theorem 9 2.2. Cohomology 14 3. Riemann's Existence Theorem and Final Proofs 20 3.1. Proof of Riemann-Roch 21 3.2. Proof of Uniformization 26 Acknowledgements 28 References 28 Introduction In Section 1, we give basic definitions and constructions relating to Riemann surfaces. In Section 2, we state and interpret the Uniformization theorem and develop some of the machinery needed to prove the theorem, including the Riemann-Roch theorem and cohomology. Finally we tie everything together in Section 3 with a proof of the Uniformization theorem via the Riemann-Roch theorem and the Hodge Decomposition theorem for Riemann surfaces, along with a few analysis results which lie at the heart of Riemann surface theory. 1. Riemann Surfaces and Covering Theory Definition 1.1 (Riemann Surface). A Riemann surface is a 1-dimensional complex manifold. That is, it is a Hausdorff space R such that for all p 2 R; there is an open neighborhood Up of p and a homeomorphism 'p (called a \chart") from Up to an open subset of C satisfying the following compatibility criterion: For all p; q 2 R; if Up \ Uq 6= ;, then the transition function −1 'p ◦ 'q : 'q(Up \ Uq) ! 'p(Up \ Uq) is holomorphic.
    [Show full text]
  • Examensarbete on Poincarés Uniformization Theorem Gabriel
    Examensarbete On Poincar´esUniformization Theorem Gabriel Bartolini LITH-MAT-EX–2006/14 On Poincar´esUniformization Theorem Applied Mathematics, Link¨opingsUniversitet Gabriel Bartolini LITH-MAT-EX–2006/14 Examensarbete: 20 p Level: D Supervisor: Milagros Izquierdo Barrios, Applied Mathematics, Link¨opingsUniversitet Examiner: Milagros Izquierdo Barrios, Applied Mathematics, Link¨opingsUniversitet Link¨oping: December 2006 Avdelning, Institution Datum Division, Department Date Matematiska Institutionen December 2006 581 83 LINKOPING¨ SWEDEN Spr˚ak Rapporttyp ISBN Language Report category ISRN Svenska/Swedish Licentiatavhandling x Engelska/English x Examensarbete LITH-MAT-EX–2006/14 C-uppsats Serietitel och serienummer ISSN D-uppsats Title of series, numbering Ovrig¨ rapport URL f¨orelektronisk version Titel On Poincar´esUniformization Theorem Title F¨orfattare Gabriel Bartolini Author Sammanfattning Abstract A compact Riemann surface can be realized as a quotient space U/Γ, where U is the sphere Σ, the euclidian plane C or the hyperbolic plane H and Γ is a discrete group of automorphisms. This induces a covering p : U → U/Γ. For each Γ acting on H we have a polygon P such that H is tesselated by P under the actions of the elements of Γ. On the other hand if P is a hyperbolic polygon with a side pairing satisfying certain conditions, then the group Γ generated by the side pairing is discrete and P tesselates H under Γ. Nyckelord Keyword Hyperbolic plane, automorphism, Fuchsian group, Riemann surface, cov- ering, branched covering, orbifold, uniformization, fundamental domain, Poincar´estheorem vi Abstract A compact Riemann surface can be realized as a quotient space U/Γ, where U is the sphere Σ, the euclidian plane C or the hyperbolic plane H and Γ is a discrete group of automorphisms.
    [Show full text]