DNA Double-Strand Breaks Induced by Reactive Oxygen Species Promote

Total Page:16

File Type:pdf, Size:1020Kb

DNA Double-Strand Breaks Induced by Reactive Oxygen Species Promote bioRxiv preprint doi: https://doi.org/10.1101/533422; this version posted January 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 DNA double-strand breaks induced by reactive oxygen 2 species promote DNA polymerase IV activity in 3 Escherichia coli 4 5 Sarah S. Henrikus1,2, Camille Henry3, John P. McDonald4, Yvonne Hellmich5, 6 Elizabeth A. Wood3, Roger Woodgate4, Michael M. Cox3, Antoine M. van Oijen1,2, 7 Harshad Ghodke1,2, Andrew Robinson1,2* 8 1Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University 9 of Wollongong, Wollongong, Australia 10 2Illawarra Health and Medical Research Institute, Wollongong, Australia 11 3Department of Biochemistry, University of Wisconsin-Madison, United States of America 12 4Laboratory of Genomic Integrity, National Institute of Child Health and Human 13 Development, National Institutes of Health, Bethesda, Maryland, United States of America 14 5Institute of Biochemistry, Goethe Universität, Frankfurt, Germany 15 *Corresponding author. Mailing address: School of Chemistry, University of Wollongong, 16 Wollongong, NSW 2500, Australia. Email: [email protected]. 17 1 bioRxiv preprint doi: https://doi.org/10.1101/533422; this version posted January 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Under many conditions the killing of bacterial cells by antibiotics is potentiated by 2 DNA damage induced by reactive oxygen species (ROS)1–3. A primary cause of ROS- 3 induced cell death is the accumulation of DNA double-strand breaks (DSBs)1,4–6. DNA 4 polymerase IV (pol IV), an error-prone DNA polymerase produced at elevated levels in 5 cells experiencing DNA damage, has been implicated both in ROS-dependent killing 6 and in DSBR7–15. Here, we show using single-molecule fluorescence microscopy that 7 ROS-induced DSBs promote pol IV activity in two ways. First, exposure to the 8 antibiotics ciprofloxacin and trimethoprim triggers an SOS-mediated increase in 9 intracellular pol IV concentrations that is strongly dependent on both ROS and DSBR. 10 Second, in cells that constitutively express pol IV, treatment with an ROS scavenger 11 dramatically reduces the number of pol IV foci formed upon exposure to antibiotics, 12 indicating a role for pol IV in the repair of ROS-induced DSBs. 13 Two mechanisms for ROS-induced DSB formation have been proposed (Figure 1a). 14 The first invokes oxidisation of the cellular nucleotide pool, leading to increased 15 incorporation of oxidised nucleotide triphosphates (e.g. 8-oxo-dGTP) into the DNA by DNA 16 polymerases4,7,16. Subsequent initiation of base-excision repair (BER) creates single- 17 stranded DNA (ssDNA) gaps. In cases where BER is initiated at nearby sites, DSBs may be 18 formed1,4,7. Evidence for a second mechanism of ROS-dependent DSB formation has 19 emerged from a recent mechanistic study of thymineless death in Escherichia coli5. The 20 ROS-driven potentiation of killing by both antibiotic treatment and thymineless death can be 21 abrogated through the addition of ROS scavengers to the culture medium5,17,18. Using 22 microscopy to quantify ssDNA gaps and DSBs in cells undergoing thymineless death, Hong 23 and co-workers recently discovered that thymine starvation initially leads to the accumulation 24 of ssDNA gaps, which are subsequently converted to DSBs in an ROS-dependent process5 25 (Figure 1b). In cells treated with ROS scavengers, gaps are not converted to DSBs and 26 cells are tolerant to thymine starvation5. 27 Several lines of evidence implicate pol IV in ROS-dependent DSB formation and/or 28 processing. Pol IV efficiently incorporates 8-oxo-dGTP into DNA in vitro7. Over-expression of 29 pol IV is lethal to cells and the lethality is ROS-dependent4,7,19. Cells lacking pol IV are 30 partially protected against killing by ampicillin under conditions where the nucleotide pool 31 becomes oxidised7. These observations are suggestive of pol IV playing a role in the BER- 32 dependent mechanism for DSB formation4 (Figure 1a). Other studies indicate that pol IV has 33 a role in the repair of DSBs6,9,10,12,13,20–26. First, pol IV physically interacts with the RecA 34 recombinase; a key player in DSB repair (DSBR)24. Second, when expressed from a low- 35 copy plasmid, fluorescently labelled pol IV colocalises with RecA extensively in cells treated 36 with DNA-damaging agents10. Pol IV colocalises at sites of induced DSBs in cells10. Third, 37 genetic studies reveal that the gene encoding pol IV, dinB, is required for both induced and 38 spontaneous error-prone DSBR6,9,12,13,22,23. Fourth, intermediates of DSBR known as 39 recombination D-loops are efficiently utilised as substrates by pol IV in vitro25. Interestingly, 40 pol IV’s mutagenic potential is modulated by interaction with the recombinase RecA20,21,24,26. 41 Notably, the cellular concentration of pol IV increases significantly upon induction of the SOS 42 response27,28. Single-stranded DNA formed during DSBR (through RecBCD-dependent end- 43 resection) is a major trigger for SOS induction under some conditions29–31. 44 Here, we used single-molecule fluorescence microscopy to investigate whether ROS, 45 and the DSBs they create, influence pol IV activity in cells. We made use of two antibiotics 46 for which killing is known to involve ROS generation; ciprofloxacin and trimethoprim (Figure 47 1a)32–35. For ciprofloxacin, a DNA gyrase inhibitor, a second, ROS-independent pathway 48 exists in which gyrase-stabilised cleavage complexes dissociate, creating a DSB (Figure 2 bioRxiv preprint doi: https://doi.org/10.1101/533422; this version posted January 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 1b)32,33,36,37. During antibiotic treatment, we would expect that some pol IV binding would be 2 dependent on ROS and/or DSB processing while others would be independent of these 3 factors. Throughout the study, we used dimethyl sulfoxide (DMSO) to create low ROS 4 conditions. DMSO is an effective scavenger of antibiotic-induced ROS5,38. In agreement with 5 the scheme in Figure 1a, co-treatment with DMSO increases survival in cells exposed to 6 both ciprofloxacin and trimethoprim5,38 (Supplementary figure 1,2). 7 To compare pol IV behaviour under high-ROS (no DMSO) and low-ROS (DMSO 8 added) conditions, we recorded time-lapse movies (180 min duration)28,39 of cells treated 9 with i) ciprofloxacin alone, ii) ciprofloxacin and DMSO in combination, iii) trimethoprim alone 10 or iv) trimethoprim and DMSO in combination (Figure 2). Following antibiotic addition, we 11 recorded time-lapse movies capturing fluorescence from a functional DinB-YPet fusion28. 12 Cells treated with ciprofloxacin became filamentous and showed a clear increase in DinB- 13 YPet intensity (Figure 2a,b; Supplementary figure 3). This is consistent with our previous 14 study in which we measured a six-fold increase in intracellular DinB-YPet (pol IV) 15 concentrations from 6 ± 1 nM prior to treatment to 34 ± 3 nM 180 min after ciprofloxacin 16 addition28. Interestingly, inclusion of the ROS scavenger DMSO led to a significant reduction 17 in ciprofloxacin-induced up-regulation of pol IV levels; 180 min after ciprofloxacin addition, 18 cellular DinB-YPet intensities were increased above basal levels by less than 3 fold (Figure 19 2a,b), corresponding to a final concentration of ~17 nM (see Materials and Methods). 20 Treatment with trimethoprim alone led to a significant increase in DinB-YPet fluorescence; 21 180 min after trimethoprim addition the mean fluorescence intensity increased by 50% of 22 ciprofloxacin-alone levels (Figure 2a,b), corresponding to a final intracellular pol IV 23 concentration of ~20 nM. Inclusion of DMSO led to a significant reduction in trimethoprim- 24 induced up-regulation; cell-associated DinB-YPet intensities increased by only 11% 25 compared with ciprofloxacin-alone treatment, corresponding to a final pol IV concentration of 26 ~9 nM. Thus, for both the ciprofloxacin and trimethoprim treatments, addition of the ROS 27 scavenger DMSO significantly reduces the up-regulation of pol IV in response to antibiotic 28 treatment. 29 Ciprofloxacin-treated cells also produced multiple DinB-YPet foci (Figure 2c). These 30 foci require the catalytic activity of pol IV and are produced as individual DinB-YPet 31 molecules bind to DNA and thus experience decreased diffusional mobility28, a phenomenon 32 known as detection by localisation40. Prior to the addition of ciprofloxacin, cells contained on 33 average 0.6 ± 0.2 foci per cell in the absence of DMSO, and 0.4 ± 0.1 foci per cell in the 34 presence of DMSO (Figure 2c). Following treatment with ciprofloxacin alone, the number of 35 foci steadily increased. By 180 min, cells had 4.2 ± 1.1 foci per cell. Upon ciprofloxacin- 36 DMSO treatment, cells contained 1.8 ± 0.4 foci per cell; a significant reduction compared to 37 ciprofloxacin-alone measurements. Addition of DMSO reduced the number of DinB-YPet foci 38 by >50%. Prior to the addition of trimethoprim, cells contained on average 0.5 ± 0.1 foci in 39 the absence of DMSO and 0.4 ± 0.1 foci in the presence of DMSO. Trimethoprim-alone 40 treatment induced a slight increase in the number of DinB-YPet foci with 0.9 ± 0.2 per cell at 41 180 min. This is lower than the number of foci observed for ciprofloxacin-DMSO treatment 42 (1.8 ± 0.4 per cell), despite the measured pol IV concentration being marginally higher after 43 trimethoprim-alone treatment (Figure 2b).
Recommended publications
  • Vibrio Cholerae Filamentation Promotes Chitin Surface Attachment at the Expense of Competition in Biofilms
    Vibrio cholerae filamentation promotes chitin surface attachment at the expense of competition in biofilms Benjamin R. Wuchera, Thomas M. Bartlettb, Mona Hoyosc, Kai Papenfortc, Alexandre Persatd,e, and Carey D. Nadella,1 aDepartment of Biological Sciences, Dartmouth College, Hanover, NH 03755; bDepartment of Microbiology, Harvard Medical School, Boston, MA 02115; cDepartment of Microbiology, Faculty of Biology I, Ludwig Maximilians University of Munich, 82152 Martinsried, Germany; dInstitute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; and eGlobal Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland Edited by Thomas J. Silhavy, Princeton University, Princeton, NJ, and approved June 3, 2019 (received for review November 13, 2018) Collective behavior in spatially structured groups, or biofilms, is the adapted to colonize chitin surfaces, exploit the resources em- norm among microbes in their natural environments. Though bedded in them, and spread to other particles are thus likely to biofilm formation has been studied for decades, tracing the be more frequently represented in estuarine conditions (20, 21). mechanistic and ecological links between individual cell morphol- The marine natural history of V. cholerae makes this bacterium ogies and the emergent features of cell groups is still in its infancy. an ideal candidate for studying the effects of different surface- Here we use single-cell–resolution confocal microscopy to explore occupation strategies that might occur in estuarine and oceanic biofilms of the human pathogen Vibrio cholerae in conditions environments (16, 18, 20, 22, 23). mimicking its marine habitat. Prior reports have noted the occurrence Many strains of V.
    [Show full text]
  • Downloaded from Bindingdb ( Et Al., 2006) Used As a Reference Database
    Development of evolution drugs - antibacterial compounds that block pathways to resistance. Yanmin Zhang1,2#, Sourav Chowdhury2#, João V. Rodrigues 2, Eugene. Shakhnovich2 1School of Science, China Pharmaceutical University 639 Longmian Avenue, Jiangning District Nanjing, Jiangsu 211198 P.R China 2Department of Chemistry and Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 # contributed equally Abstract Antibiotic resistance is a worldwide challenge. A potential approach to block resistance is to simultaneously inhibit WT and known escape variants of the target bacterial protein. Here we applied an integrated computational and experimental approach to discover compounds that inhibit both WT and trimethoprim (TMP) resistant mutants of E. coli dihydrofolate reductase (DHFR). We identified a novel compound (CD15-3) that inhibits WT DHFR and its TMP resistant variants L28R, P21L and A26T with IC50 50-75 µM against WT and TMP-resistant strains. Resistance to CD15-3 was dramatically delayed compared to TMP in in vitro evolution. Whole genome sequencing of CD15-3 resistant strains showed no mutations in the target folA locus. Rather, gene duplication of several efflux pumps gave rise to weak (about twofold increase in IC50) resistance against CD15-3. Altogether, our results demonstrate the promise of strategy to develop evolution drugs - compounds which block evolutionary escape routes in pathogens. 1. Introduction Fast paced artificial selection in bacteria against common antibiotics has led to the emergence of highly resistant bacterial strains which potentially render a wide variety of antibiotics clinically ineffective. Emergence of these “superbugs” including ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) (Peneş et al., 2017) call for novel approaches to design antibiotic compounds that act as “evolution drugs” by blocking evolutionary escape from antibiotic stressor.
    [Show full text]
  • Filamentation by Escherichia Coli Subverts Innate Defenses During Urinary Tract Infection
    Filamentation by Escherichia coli subverts innate defenses during urinary tract infection Sheryl S. Justice*†, David A. Hunstad*‡, Patrick C. Seed*‡§, and Scott J. Hultgren* Departments of *Molecular Microbiology and ‡Pediatrics, Washington University School of Medicine, St. Louis, MO 63110 Edited by M. J. Osborn, University of Connecticut Health Center, Farmington, CT, and approved November 8, 2006 (received for review July 26, 2006) To establish disease, an infecting organism must overcome a vast initial UTI. Many women use antibiotics daily to reduce the risk array of host defenses. During cystitis, uropathogenic Escherichia of recurrence only to suffer recrudescence when this prophylac- coli (UPEC) subvert innate defenses by invading superficial um- tic regimen is discontinued. The use of in vitro and in vivo models brella cells and rapidly increasing in numbers to form intracellular has allowed the description of events that delineate the acute and bacterial communities (IBCs). In the late stages of the IBC pathway, chronic stages of UTI. Mannosylated uroplakin proteins coating filamentous and bacillary UPEC detach from the biofilm-like IBC, the surface of the superficial umbrella cells of the bladder serve fluxing out of this safe haven to colonize the surrounding epithe- as the receptors for binding and invasion of UPEC by means of lium and initiate subsequent generations of IBCs, and eventually the FimH adhesin at the tips of type 1 pili (3, 4). During murine they establish a quiescent intracellular reservoir. Filamentous UPEC cystitis, intracellular bacterial communities (IBCs) appear ini- are not observed during acute infection in mice lacking functional tially as rod-shaped, loosely organized colonies with a doubling Toll-like receptor 4 (TLR4), suggesting that the filamentous phe- time of 30 min (5).
    [Show full text]
  • Activation of the Saccharomyces Cerevisiae Filamentation/Invasion Pathway by Osmotic Stress in High-Osmolarity Glycogen Pathway Mutants
    Copyright 1999 by the Genetics Society of America Activation of the Saccharomyces cerevisiae Filamentation/Invasion Pathway by Osmotic Stress in High-Osmolarity Glycogen Pathway Mutants K. D. Davenport, K. E. Williams, B. D. Ullmann and M. C. Gustin Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892 Manuscript received January 7, 1999 Accepted for publication July 6, 1999 ABSTRACT Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the ®ve MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identi®ed: MSG5, CAK1, and TRX1. Msg5p is a dual-speci®city phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1D could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a ®lamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of ®lamentation/invasion pathway repression contributes to the HOG mutant phenotype.
    [Show full text]
  • Developing Rapid Antimicrobial Susceptibility Testing for Motile/Non
    biosensors Article Developing Rapid Antimicrobial Susceptibility Testing for Motile/Non-Motile Bacteria Treated with Antibiotics Covering Five Bactericidal Mechanisms on the Basis of Bead-Based Optical Diffusometry Yao-Tzu Yang 1, Jhih-Cheng Wang 2 and Han-Sheng Chuang 1,3,* 1 Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; [email protected] 2 Department of Urology, Chi-Mei Medical Center, Tainan 71004, Taiwan; [email protected] 3 Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan * Correspondence: [email protected] Received: 17 September 2020; Accepted: 17 November 2020; Published: 19 November 2020 Abstract: Rapid antimicrobial susceptibility testing (AST) is an effective measure in the treatment of infections and the prevention of bacterial drug resistance. However, diverse antibiotic types and bacterial characteristics have formed complicated barriers to rapid diagnosis. To counteract these limitations, we investigated the interactions between antibiotic-treated bacteria and functionalized microbeads in optical diffusometry. The conjugation with bacteria increased the effective microbead complex size, thereby resulting in a temporal diffusivity change. The yielded data were sorted and analyzed to delineate a pattern for the prediction of antimicrobial susceptibility. The outcome showed that a completed rapid AST based on the trend of microbead diffusivity could provide results within 3 h (2 h measurement + 1 h computation). In this research, we studied four bacterial strains, including Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Staphylococcus aureus, and six antibiotics. Despite the different inhibitory effects caused by various antibiotics, similar trends in diffusivity alteration for all susceptible and resistant cases in the last 40 min of the 2-h measurement period were deduced.
    [Show full text]
  • Bacterial Filament Division Dynamics Allows Rapid Post-Stress Cell
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.16.993345; this version posted March 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Bacterial filament division dynamics allows rapid post-stress cell proliferation 2 3 4 Julien Cayron1, Annick Dedieu1, Christian Lesterlin1* 5 6 7 Affiliations: 8 1Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, 9 CNRS, Inserm, UMR5086, 69007, Lyon, France 10 *Correspondence to: [email protected] 11 12 13 Keywords: 14 Bacterial filaments, exit from filamentation, cell division, chromosome intracellular 15 organisation, stress response, real-time microscopy in live-cells. 16 17 18 One Sentence Summary: 19 Bacterial filaments recover by successive, frequent and Min-dependent asymmetric 20 tip-divisions that rapidly produce multiple daughter cells with normal size and 21 viability 22 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.16.993345; this version posted March 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 23 Abstract 24 Many bacterial species grow into filaments under stress conditions. Initially regarded 25 as an indicator of cell death, filamentation is now proposed to be a transient 26 morphological change that improves bacterial survival in hostile environments.
    [Show full text]
  • The Role of Cytoskeletal Elements in Shaping Bacterial Cells Hongbaek Cho*
    J. Microbiol. Biotechnol. (2015), 25(3), 307–316 http://dx.doi.org/10.4014/jmb.1409.09047 Research Article Review jmb The Role of Cytoskeletal Elements in Shaping Bacterial Cells Hongbaek Cho* Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA Received: September 16, 2014 Revised: September 26, 2014 Beginning from the recognition of FtsZ as a bacterial tubulin homolog in the early 1990s, many Accepted: September 26, 2014 bacterial cytoskeletal elements have been identified, including homologs to the major eukaryotic cytoskeletal elements (tubulin, actin, and intermediate filament) and the elements unique in prokaryotes (ParA/MinD family and bactofilins). The discovery and functional First published online characterization of the bacterial cytoskeleton have revolutionized our understanding of September 29, 2014 bacterial cells, revealing their elaborate and dynamic subcellular organization. As in *Corresponding author eukaryotic systems, the bacterial cytoskeleton participates in cell division, cell morphogenesis, Phone: +1-617-432-6970; DNA segregation, and other important cellular processes. However, in accordance with the Fax: +1-617-432-6970; vast difference between bacterial and eukaryotic cells, many bacterial cytoskeletal proteins E-mail: hongbaek_cho@hms. harvard.edu play distinct roles from their eukaryotic counterparts; for example, control of cell wall synthesis for cell division and morphogenesis. This review is aimed at providing an overview of the bacterial cytoskeleton, and discussing the roles and assembly dynamics of bacterial cytoskeletal proteins in more detail in relation to their most widely conserved functions, DNA pISSN 1017-7825, eISSN 1738-8872 segregation and coordination of cell wall synthesis. Copyright© 2015 by The Korean Society for Microbiology Keywords: Bacterial cytoskeleton, DNA segregation, FtsZ, MreB, ParA, peptidoglycan and Biotechnology Introduction cytokinesis, and cell morphogenesis.
    [Show full text]
  • Antibiotic Acyldepsipeptides Activate Clpp Peptidase to Degrade the Cell Division Protein Ftsz
    Antibiotic acyldepsipeptides activate ClpP peptidase to degrade the cell division protein FtsZ Peter Sassa,b, Michaele Jostena, Kirsten Famullab, Guido Schifferc, Hans-Georg Sahla, Leendert Hamoend, and Heike Brötz-Oesterheltb,1 aInstitute of Medical Microbiology, Immunology, and Parasitology, Pharmaceutical Microbiology Unit, University of Bonn, 53115 Bonn, Germany; bInstitute for Pharmaceutical Biology, University of Düsseldorf, 40204 Düsseldorf, Germany; cAiCuris GmbH & Co. KG, 42117 Wuppertal, Germany; and dCentre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle NE2 4AX, United Kingdom Edited* by Richard P. Novick, New York University School of Medicine, New York, New York, and approved September 11, 2011 (received for review June 27, 2011) The worldwide spread of antibiotic-resistant bacteria has lent ur- bacterial ATP-dependent caseinolytic protease. The Clp pro- gency to the search for antibiotics with new modes of action that tease is a crucial factor in maintaining vital cellular functions in are devoid of preexisting cross-resistances. We previously de- protein quality control and protein homeostasis as well as in scribed a unique class of acyldepsipeptides (ADEPs) that exerts controlling developmental processes like cell motility, genetic prominent antibacterial activity against Gram-positive pathogens competence, cell differentiation, and sporulation (13, 14). ClpP including streptococci, enterococci, as well as multidrug-resistant is a tightly regulated protein, which is unable to degrade proteins Staphylococcus aureus. Here, we report that ADEP prevents cell on its own, and strictly depends on Clp ATPases and accessory division in Gram-positive bacteria and induces strong filamenta- proteins for proteolytic activation (15). The Gram-positive model tion of rod-shaped Bacillus subtilis and swelling of coccoid S.
    [Show full text]
  • Emergence of Antibiotic Resistance from Multinucleated Bacterial Filaments
    Emergence of antibiotic resistance from multinucleated bacterial filaments Julia Bosa, Qiucen Zhangb, Saurabh Vyawaharea, Elizabeth Rogersc, Susan M. Rosenbergc, and Robert H. Austina,1 aDepartment of Physics, Princeton University, Princeton, NJ 08544-0708; bDepartment of Physics, University of Illinois at Urbana–Champaign, Urbana, IL 61801- 3080; and cDepartments of Molecular and Human Genetics, Biochemistry and Molecular Biology, and Molecular Virology and Microbiology, and the Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030 Contributed by Robert H. Austin, November 3, 2014 (sent for review August 26, 2014) Bacteria can rapidly evolve resistance to antibiotics via the SOS sized offspring cells (8). However, the mechanisms underlying the response, a state of high-activity DNA repair and mutagenesis. We evolution of filamentous bacteria when the selective pressure is explore here the first steps of this evolution in the bacterium maintained have been poorly described, in part because most studies Escherichia coli. Induction of the SOS response by the genotoxic have used stress conditions that were evolutionarily unfavorable and antibiotic ciprofloxacin changes the E. coli rod shape into multichro- instead led to irreversible bacterial growth arrest and/or rapid death. mosome-containing filaments. We show that at subminimal inhib- Bacterial cell-division arrest resulting from inhibition of DNA itory concentrations of ciprofloxacin the bacterial filament divides replication after cipro exposure (2) is caused by the induction of asymmetrically repeatedly at the tip. Chromosome-containing buds a division inhibitor (e.g., SulA in E. coli) (13, 15). sulA gene in- are made that, if resistant, propagate nonfilamenting progeny with duction is part of a set of over 30 induced genes involved in DNA enhanced resistance to ciprofloxacin as the parent filament dies.
    [Show full text]
  • Gram-Negative Synergy and Mechanism of Action of Alkynyl
    www.nature.com/scientificreports OPEN Gram-negative synergy and mechanism of action of alkynyl bisbenzimidazoles Received: 10 August 2018 Jordan Chamberlin1, Sandra Story2, Nihar Ranjan1,3, Geofrey Chesser1 & Dev P. Arya 1,2 Accepted: 15 August 2019 Bisbenzimidazoles with terminal alkynyl linkers, selective inhibitors of bacterial topoisomerase I, have Published: xx xx xxxx been evaluated using bacterial cytological profling (BCP) to ascertain their mechanism of action and screened for synergism to improve Gram-negative bacterial coverage. Principal component analysis of high throughput fuorescence images suggests a dual-mechanism of action afecting DNA synthesis and cell membrane integrity. Fluorescence microscopy of bacteria challenged with two of the alkynyl- benzimidazoles revealed changes in the cellular ultrastructure that difered from topoisomerase II inhibitors including induction of spheroplasts and membrane lysis. The cytoskeleton recruitment enzyme inhibitor A22 in combination with one of the alkynyl-benzimidazoles was synergistic against Acinetobacter baumannii and Escherichia coli. Gram-positive coverage remained unchanged in the A22-alkynyl bisbenzimidazole combination. Efux inhibitors were not synergistic, suggesting that the Gram-negative outer membrane was a signifcant barrier for alkynyl-bisbenzimidazole uptake. Time- kill assays demonstrated the A22-bisbenzimidazole combination had a similar growth inhibition curve to that of norfoxacin in E.coli. Bisbenzimidazoles with terminal alkynyl linkers likely impede bacterial growth by compromising cell membrane integrity and by interfering with DNA synthesis against Gram- positive pathogens and in the synergistic combination against Gram-negative pathogens including E. coli and multidrug-resistant A. baumanii. Tere is a dire need for new classes of antibiotics with novel mechanisms of action (MOA), for which there are currently few options.
    [Show full text]
  • Global Analysis of Fungal Morphology Exposes Mechanisms of Host Cell Escape
    ARTICLE Received 4 Nov 2014 | Accepted 24 Feb 2015 | Published 31 Mar 2015 DOI: 10.1038/ncomms7741 OPEN Global analysis of fungal morphology exposes mechanisms of host cell escape Teresa R. O’Meara1,*, Amanda O. Veri1,*, Troy Ketela1, Bo Jiang2, Terry Roemer3 & Leah E. Cowen1 Developmental transitions between single-cell yeast and multicellular filaments underpin virulence of diverse fungal pathogens. For the leading human fungal pathogen Candida albicans, filamentation is thought to be required for immune cell escape via induction of an inflammatory programmed cell death. Here we perform a genome-scale analysis of C. albicans morphogenesis and identify 102 negative morphogenetic regulators and 872 positive regulators, highlighting key roles for ergosterol biosynthesis and N-linked glycosylation. We demonstrate that C. albicans filamentation is not required for escape from host immune cells; instead, macrophage pyroptosis is driven by fungal cell-wall remodelling and exposure of glycosylated proteins in response to the macrophage phagosome. The capacity of killed, previously phagocytized cells to drive macrophage lysis is also observed with the distantly related fungal pathogen Cryptococcus neoformans. This study provides a global view of morphogenetic circuitry governing a key virulence trait, and illuminates a new mechanism by which fungi trigger host cell death. 1 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8. 2 Bioprocess Technology & Expression, Merck Research Laboratories, 2000 Galloping Hill Rd, Kenilworth, New Jersey 07033, USA. 3 Department of Infectious Diseases, Merck Research Laboratories, 2000 Galloping Hill Rd, Kenilworth, New Jersey 07033, USA. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to L.E.C.
    [Show full text]
  • The Effects of Sub-Lethal Concentrations of Biocides Copper, Pyrethrins and Atrazine on Antibiotic Tolerance of Escherichia Coli
    The effects of sub-lethal concentrations of biocides copper, pyrethrins and atrazine on antibiotic tolerance of Escherichia coli A Thesis submitted in partial fulfillment of the requirements for the Degree of Master of Science in Biochemistry at the University of Canterbury By Hyun Jun University of Canterbury 2017 Table of Contents 1. Introduction____________________________________________________________11 1.1 Antibiotic, use and mode of action 1.2 Biocides 1.3 Physiological heterogeneity 1.4 Objectives of this study 2. Methods_______________________________________________________________19 2.1 Experimental protocols 2.1.1 Bacterial strains, culture conditions and chemicals 2.1.2 Determining the effect of biocides on antibiotic tolerance – Killing curve assay 2.1.3 Dose response assay 2.1.4 Measuring biocide mutagenicity 2.1.5 Determining the reversibility of copper biocide induced tetracycline resistance in E. coli 2.1.6 Investigating the copper and tetracycline induced morphological change in E. coli 2.1.7 Determination of bacteria concentration using a haemocytometer 2.1.8 Investigating the relationship between bacteria count on haemocytometer and colony forming units 2.1.9 Determining the transience of elevated tetracycline tolerance phenotype after being exposed to copper and tetracycline 2.2 Statistical analysis 2.2.1 Determining the effect of biocides on antibiotic tolerance 2.2.2 Dose response assay 2.2.3 Measuring biocide mutagenicity 2.2.4 Investigating the relationship between bacteria count on haemocytometer and colony forming units 2.2.5 Determining the transience of elevated tetracycline tolerance phenotype after being exposed to copper and tetracycline 2.3 Microscopy protocols 3. Escherichia coli’s response to three biocides and four antibiotics__________________29 3.1 Introduction 3.2 Results 3.2.1 Determination of the absolute MIC and NOEL of biocides on E.
    [Show full text]