Sok: Fully Homomorphic Encryption Compilers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Survey Report on Partially Homomorphic Encryption Techniques in Cloud Computing
International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 2 Issue 12, December - 2013 A Survey Report On Partially Homomorphic Encryption Techniques In Cloud Computing 1. S. Ramachandram 2. R.Sridevi 3. P. Srivani 1. Professor &Vice Principal, Oucollege Of Engineering,Dept Of Cse,Hyd 2. Associate Professor, Jntuh, Dept Of Cse,Hyd 3. Research Scholar & Asso.Prof., Det Of Cse, Hitam, Hyd Abstract: Homomorphic encryption is a used to create secure voting systems, form of encryption which allows specific collision-resistant hash functions, private types of computations to be carried out on information retrieval schemes and enable cipher text and obtain an encrypted result widespread use of cloud computing by which decrypted matches the result of ensuring the confidentiality of processed operations performed on the plaintext. As data. cloud computing provides different services, homomorphic encryption techniques can be There are several efficient, partially used to achieve security. In this paper , We homomorphic cryptosystems. Although a presented the partially homomorphic cryptosystem which is unintentionally encryption techniques. homomorphic can be subject to attacks on this basis, if treated carefully, Keywords: Homomorphic, ElGamal, Pailler, homomorphism can also be used to perform RSA, Goldwasser–Micali , Benaloh, computations securely. Section 2 describes Okamoto Uchiyama cryptosystemIJERT, IJERTabout the partially homomorphic encryption Naccache–Stern cryptosystem, RNS. techniques. 2. Partially Homomorphic Encryption Techniques 1. INTRODUCTION RSA Security is a desirable feature in modern system architectures. Homomorphic In cryptography, RSA[1] is an asymmetric encryption would allow the chaining encryption system. If the RSA public key is together of different services without modulus and exponent , then the exposing the data to each of those services. -
ARTIFICIAL INTELLIGENCE and ALGORITHMIC LIABILITY a Technology and Risk Engineering Perspective from Zurich Insurance Group and Microsoft Corp
White Paper ARTIFICIAL INTELLIGENCE AND ALGORITHMIC LIABILITY A technology and risk engineering perspective from Zurich Insurance Group and Microsoft Corp. July 2021 TABLE OF CONTENTS 1. Executive summary 03 This paper introduces the growing notion of AI algorithmic 2. Introduction 05 risk, explores the drivers and A. What is algorithmic risk and why is it so complex? ‘Because the computer says so!’ 05 B. Microsoft and Zurich: Market-leading Cyber Security and Risk Expertise 06 implications of algorithmic liability, and provides practical 3. Algorithmic risk : Intended or not, AI can foster discrimination 07 guidance as to the successful A. Creating bias through intended negative externalities 07 B. Bias as a result of unintended negative externalities 07 mitigation of such risk to enable the ethical and responsible use of 4. Data and design flaws as key triggers of algorithmic liability 08 AI. A. Model input phase 08 B. Model design and development phase 09 C. Model operation and output phase 10 Authors: D. Potential complications can cloud liability, make remedies difficult 11 Zurich Insurance Group 5. How to determine algorithmic liability? 13 Elisabeth Bechtold A. General legal approaches: Caution in a fast-changing field 13 Rui Manuel Melo Da Silva Ferreira B. Challenges and limitations of existing legal approaches 14 C. AI-specific best practice standards and emerging regulation 15 D. New approaches to tackle algorithmic liability risk? 17 Microsoft Corp. Rachel Azafrani 6. Principles and tools to manage algorithmic liability risk 18 A. Tools and methodologies for responsible AI and data usage 18 Christian Bucher B. Governance and principles for responsible AI and data usage 20 Franziska-Juliette Klebôn C. -
Practical Homomorphic Encryption and Cryptanalysis
Practical Homomorphic Encryption and Cryptanalysis Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) an der Fakult¨atf¨urMathematik der Ruhr-Universit¨atBochum vorgelegt von Dipl. Ing. Matthias Minihold unter der Betreuung von Prof. Dr. Alexander May Bochum April 2019 First reviewer: Prof. Dr. Alexander May Second reviewer: Prof. Dr. Gregor Leander Date of oral examination (Defense): 3rd May 2019 Author's declaration The work presented in this thesis is the result of original research carried out by the candidate, partly in collaboration with others, whilst enrolled in and carried out in accordance with the requirements of the Department of Mathematics at Ruhr-University Bochum as a candidate for the degree of doctor rerum naturalium (Dr. rer. nat.). Except where indicated by reference in the text, the work is the candidates own work and has not been submitted for any other degree or award in any other university or educational establishment. Views expressed in this dissertation are those of the author. Place, Date Signature Chapter 1 Abstract My thesis on Practical Homomorphic Encryption and Cryptanalysis, is dedicated to efficient homomor- phic constructions, underlying primitives, and their practical security vetted by cryptanalytic methods. The wide-spread RSA cryptosystem serves as an early (partially) homomorphic example of a public- key encryption scheme, whose security reduction leads to problems believed to be have lower solution- complexity on average than nowadays fully homomorphic encryption schemes are based on. The reader goes on a journey towards designing a practical fully homomorphic encryption scheme, and one exemplary application of growing importance: privacy-preserving use of machine learning. -
Information Guide
INFORMATION GUIDE 7 ALL-PRO 7 NFL MVP LAMAR JACKSON 2018 - 1ST ROUND (32ND PICK) RONNIE STANLEY 2016 - 1ST ROUND (6TH PICK) 2020 BALTIMORE DRAFT PICKS FIRST 28TH SECOND 55TH (VIA ATL.) SECOND 60TH THIRD 92ND THIRD 106TH (COMP) FOURTH 129TH (VIA NE) FOURTH 143RD (COMP) 7 ALL-PRO MARLON HUMPHREY FIFTH 170TH (VIA MIN.) SEVENTH 225TH (VIA NYJ) 2017 - 1ST ROUND (16TH PICK) 2020 RAVENS DRAFT GUIDE “[The Draft] is the lifeblood of this Ozzie Newsome organization, and we take it very Executive Vice President seriously. We try to make it a science, 25th Season w/ Ravens we really do. But in the end, it’s probably more of an art than a science. There’s a lot of nuance involved. It’s Joe Hortiz a big-picture thing. It’s a lot of bits and Director of Player Personnel pieces of information. It’s gut instinct. 23rd Season w/ Ravens It’s experience, which I think is really, really important.” Eric DeCosta George Kokinis Executive VP & General Manager Director of Player Personnel 25th Season w/ Ravens, 2nd as EVP/GM 24th Season w/ Ravens Pat Moriarty Brandon Berning Bobby Vega “Q” Attenoukon Sarah Mallepalle Sr. VP of Football Operations MW/SW Area Scout East Area Scout Player Personnel Assistant Player Personnel Analyst Vincent Newsome David Blackburn Kevin Weidl Patrick McDonough Derrick Yam Sr. Player Personnel Exec. West Area Scout SE/SW Area Scout Player Personnel Assistant Quantitative Analyst Nick Matteo Joey Cleary Corey Frazier Chas Stallard Director of Football Admin. Northeast Area Scout Pro Scout Player Personnel Assistant David McDonald Dwaune Jones Patrick Williams Jenn Werner Dir. -
Decentralized Evaluation of Quadratic Polynomials on Encrypted Data
This paper is a slight variant of the Extended Abstract that appears in the Proceedings of the 22nd Information Security Conference, ISC 2019 (September 16–18, New-York, USA) Springer-Verlag, LNCS ?????, pages ???–???. Decentralized Evaluation of Quadratic Polynomials on Encrypted Data Chloé Hébant1,2, Duong Hieu Phan3, and David Pointcheval1,2 1 DIENS, École normale supérieure, CNRS, PSL University, Paris, France 2 INRIA, Paris, France 3 Université de Limoges, France Abstract Since the seminal paper on Fully Homomorphic Encryption (FHE) by Gentry in 2009, a lot of work and improvements have been proposed, with an amazing number of possible applications. It allows outsourcing any kind of computations on encrypted data, and thus without leaking any information to the provider who performs the computations. This is quite useful for many sensitive data (finance, medical, etc.). Unfortunately, FHE fails at providing some computation on private inputs to a third party, in cleartext: the user that can decrypt the result is able to decrypt the inputs. A classical approach to allow limited decryption power is distributed decryption. But none of the actual FHE schemes allows distributed decryption, at least with an efficient protocol. In this paper, we revisit the Boneh-Goh-Nissim (BGN) cryptosystem, and the Freeman’s variant, that allow evaluation of quadratic polynomials, or any 2-DNF formula. Whereas the BGN scheme relies on integer factoring for the trapdoor in the composite-order group, and thus possesses one public/secret key only, the Freeman’s scheme can handle multiple users with one general setup that just needs to define a pairing-based algebraic structure. -
Homomorphic Encryption Library
Ludwig-Maximilians-Universit¨at Munchen¨ Prof. Dr. D. Kranzlmuller,¨ Dr. N. gentschen Felde Data Science & Ethics { Microsoft SEAL { Exercise 1: Library for Matrix Operations Microsoft's Simple Encrypted Arithmetic Library (SEAL)1 is a publicly available homomorphic encryption library. It can be found and downloaded at http://sealcrypto.codeplex.com/. Implement a library 13b MS-SEAL.h supporting matrix operations using homomorphic encryption on basis of the MS SEAL. due date: 01.07.2018 (EOB) no. of students: 2 deliverables: 1. Implemenatation (including source code(s)) 2. Documentation (max. 10 pages) 3. Presentation (10 { max. 15 minutes) 13b MS-SEAL.h #i n c l u d e <f l o a t . h> #i n c l u d e <s t d b o o l . h> typedef struct f double ∗ e n t r i e s ; unsigned int width; unsigned int height; g matrix ; /∗ Initialize new matrix: − reserve memory only ∗/ matrix initMatrix(unsigned int width, unsigned int height); /∗ Initialize new matrix: − reserve memory − set any value to 0 ∗/ matrix initMatrixZero(unsigned int width, unsigned int height); /∗ Initialize new matrix: − reserve memory − set any value to random number ∗/ matrix initMatrixRand(unsigned int width, unsigned int height); 1https://www.microsoft.com/en-us/research/publication/simple-encrypted-arithmetic-library-seal-v2-0/# 1 /∗ copy a matrix and return its copy ∗/ matrix copyMatrix(matrix toCopy); /∗ destroy matrix − f r e e memory − set any remaining value to NULL ∗/ void freeMatrix(matrix toDestroy); /∗ return entry at position (xPos, yPos), DBL MAX in case of error -
Arxiv:2102.00319V1 [Cs.CR] 30 Jan 2021
Efficient CNN Building Blocks for Encrypted Data Nayna Jain1,4, Karthik Nandakumar2, Nalini Ratha3, Sharath Pankanti5, Uttam Kumar 1 1 Center for Data Sciences, International Institute of Information Technology, Bangalore 2 Mohamed Bin Zayed University of Artificial Intelligence 3 University at Buffalo, SUNY 4 IBM Systems 5 Microsoft [email protected], [email protected], [email protected]/[email protected], [email protected], [email protected] Abstract Model Owner Model Architecture 푴 Machine learning on encrypted data can address the concerns Homomorphically Encrypted Model Model Parameters 퐸(휽) related to privacy and legality of sharing sensitive data with Encryption untrustworthy service providers, while leveraging their re- Parameters 휽 sources to facilitate extraction of valuable insights from oth- End-User Public Key Homomorphically Encrypted Cloud erwise non-shareable data. Fully Homomorphic Encryption Test Data {퐸(퐱 )}푇 Test Data 푖 푖=1 FHE Computations Service 푇 Encryption (FHE) is a promising technique to enable machine learning {퐱푖}푖=1 퐸 y푖 = 푴(퐸 x푖 , 퐸(휽)) Provider and inferencing while providing strict guarantees against in- Inference 푇 Decryption formation leakage. Since deep convolutional neural networks {푦푖}푖=1 Homomorphically Encrypted Inference Results {퐸(y )}푇 (CNNs) have become the machine learning tool of choice Private Key 푖 푖=1 in several applications, several attempts have been made to harness CNNs to extract insights from encrypted data. How- ever, existing works focus only on ensuring data security Figure 1: In a conventional Machine Learning as a Ser- and ignore security of model parameters. They also report vice (MLaaS) scenario, both the data and model parameters high level implementations without providing rigorous anal- are unencrypted. -
Fundamentals of Fully Homomorphic Encryption – a Survey
Electronic Colloquium on Computational Complexity, Report No. 125 (2018) Fundamentals of Fully Homomorphic Encryption { A Survey Zvika Brakerski∗ Abstract A homomorphic encryption scheme is one that allows computing on encrypted data without decrypting it first. In fully homomorphic encryption it is possible to apply any efficiently com- putable function to encrypted data. We provide a survey on the origins, definitions, properties, constructions and uses of fully homomorphic encryption. 1 Homomorphic Encryption: Good, Bad or Ugly? In the seminal RSA cryptosystem [RSA78], the public key consists of a product of two primes ∗ N = p · q as well as an integer e, and the message space is the set of elements in ZN . Encrypting a message m involved simply raising it to the power e and taking the result modulo N, i.e. c = me (mod N). For the purpose of the current discussion we ignore the decryption process. It is not hard to see that the product of two ciphertexts c1 and c2 encrypting messages m1 and m2 allows e to compute the value c1 · c2 (mod N) = (m1m2) (mod N), i.e. to compute an encryption of m1 · m2 without knowledge of the secret private key. Rabin's cryptosystem [Rab79] exhibited similar behavior, where a product of ciphertexts corresponded to an encryption of their respective plaintexts. This behavior can be expressed in formal terms by saying that the ciphertext space and the plaintext space are homomorphic (multiplicative) groups. The decryption process defines the homomorphism by mapping a ciphertext to its image plaintext. Rivest, Adleman and Dertouzos [RAD78] realized the potential advantage of this property. -
Homomorphic Encryption Applied to the Cloud Computing Security
Proceedings of the World Congress on Engineering 2012 Vol I WCE 2012, July 4 - 6, 2012, London, U.K. Homomorphic Encryption Applied to the Cloud Computing Security Maha TEBAA, Saïd EL HAJJI, Abdellatif EL GHAZI Abstract—Cloud computing security challenges and it’s also In Section II, we are introducing the concept of Cloud an issue to many researchers; first priority was to focus on Computing and the necessity to adopt Homomorphic security which is the biggest concern of organizations that are Encryption to secure the calculation of data hosted by the considering a move to the cloud. The advantages of cloud Cloud provider. In section III, we’ll define Homomorphic computing include reduced costs, easy maintenance and re- provisioning of resources, and thereby increased profits. But Encryption and we’ll illustrate some examples of existing the adoption and the passage to the Cloud Computing applies Homomorphic cryptosystems. In section IV, we’ll present only if the security is ensured. How to guaranty a better data our scheme and our implementation. The conclusion and security and also how can we keep the client private perspectives will be mentioned in section V. information confidential? There are two major questions that present a challenge to Cloud Computing providers. When the data transferred to the Cloud we use standard encryption methods to secure the operations and the storage of II. Cloud computing the data. But to process data located on a remote server, the Definition [1]: By cloud computing we mean: The Cloud providers need to access the raw data. In this paper we Information Technology (IT) model for computing, which is are proposing an application of a method to execute operations composed of all the IT components (hardware, software, on encrypted data without decrypting them which will provide networking, and services) that are necessary to enable us with the same results after calculations as if we have worked development and delivery of cloud services via the Internet directly on the raw data. -
Multicast Routing Over Computer Networks: Secure Performance Designs
Digital Forensics in the Cloud: Encrypted Data Evidence Tracking ZHUANG TIAN, BSc (Hons) a thesis submitted to the graduate faculty of design and creative technologies Auckland University of Technology in partial fulfilment of the requirements for the degree of Master of Forensic Information Technology School of Computer and Mathematical Sciences Auckland, New Zealand 2014 ii Declaration I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor material which to a substantial extent has been accepted for the qualification of any other degree or diploma of a University or other institution of higher learning, except where due acknowledgement is made in the acknowledgements. ........................... Zhuang Tian iii Acknowledgements This thesis was completed at the Faculty of Design and Creative Technologies in the school of Computing and Mathematical Sciences at Auckland University of Technology, New Zealand. While conducting the research project I received support from many people in one way or another, without whose support, this thesis would not have been completed in its present form. It is my pleasure to take this opportunity to thank all of you, without the intention or possibility to be complete. I would like to apologize to those who I did not mention by name here; however, I highly value your kind support. Firstly, I would like to deeply thank my thesis supervisor Prof. Brian Cusack for the exceptional support given during the thesis project. He provided me with the freedom to explore research directions and to choose the routes that I wanted to investigate. -
MP2ML: a Mixed-Protocol Machine Learning Framework for Private Inference∗ (Full Version)
MP2ML: A Mixed-Protocol Machine Learning Framework for Private Inference∗ (Full Version) Fabian Boemer Rosario Cammarota Daniel Demmler [email protected] [email protected] [email protected] Intel AI Intel Labs hamburg.de San Diego, California, USA San Diego, California, USA University of Hamburg Hamburg, Germany Thomas Schneider Hossein Yalame [email protected] [email protected] darmstadt.de TU Darmstadt TU Darmstadt Darmstadt, Germany Darmstadt, Germany ABSTRACT 1 INTRODUCTION Privacy-preserving machine learning (PPML) has many applica- Several practical services have emerged that use machine learn- tions, from medical image evaluation and anomaly detection to ing (ML) algorithms to categorize and classify large amounts of financial analysis. nGraph-HE (Boemer et al., Computing Fron- sensitive data ranging from medical diagnosis to financial eval- tiers’19) enables data scientists to perform private inference of deep uation [14, 66]. However, to benefit from these services, current learning (DL) models trained using popular frameworks such as solutions require disclosing private data, such as biometric, financial TensorFlow. nGraph-HE computes linear layers using the CKKS ho- or location information. momorphic encryption (HE) scheme (Cheon et al., ASIACRYPT’17), As a result, there is an inherent contradiction between utility and relies on a client-aided model to compute non-polynomial acti- and privacy: ML requires data to operate, while privacy necessitates vation functions, such as MaxPool and ReLU, where intermediate keeping sensitive information private [70]. Therefore, one of the feature maps are sent to the data owner to compute activation func- most important challenges in using ML services is helping data tions in the clear. -
A Fully Homomorphic Encryption Scheme
A FULLY HOMOMORPHIC ENCRYPTION SCHEME A DISSERTATION SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Craig Gentry September 2009 °c Copyright by Craig Gentry 2009 All Rights Reserved ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. (Dan Boneh) Principal Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. (John Mitchell) I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. (Serge Plotkin) Approved for the University Committee on Graduate Studies. iii Abstract We propose the ¯rst fully homomorphic encryption scheme, solving a central open problem in cryptography. Such a scheme allows one to compute arbitrary functions over encrypted data without the decryption key { i.e., given encryptions E(m1);:::;E(mt) of m1; : : : ; mt, one can e±ciently compute a compact ciphertext that encrypts f(m1; : : : ; mt) for any e±- ciently computable function f. This problem was posed by Rivest et al. in 1978. Fully homomorphic encryption has numerous applications. For example, it enables private queries to a search engine { the user submits an encrypted query and the search engine computes a succinct encrypted answer without ever looking at the query in the clear.