Lecture 1. Seiberg–Witten Theory: Preliminaries
Lecture 1. Seiberg–Witten theory: preliminaries DIRAC OPERATORS (the local theory) Factorizations of the Laplace operator Let C∞(U; CN ) be the linear space of the smooth CN -valuedfunctionsonanopenset U⊂Rn,and Xn ∂2 ∆:C∞(U;CN)−→ C ∞ ( U ; C N ) , ∆=− , ∂x2 j=1 j the Laplace operator. Any first order differential operator D : C∞(U; CN ) −→ C ∞ ( U ; C N ) such that D2 = ∆ is called a (local) Dirac operator. P n ∂ Let D = Ak where Ak are complex (N × N)–matrices. Then k=1 ∂xk X 2 ∂ ∂ D = Ak (A` ) ∂xk ∂x` k,` X ∂2 = AkA` ∂xk∂x` k,` X 2 X 2 2 ∂ ∂ = Ak 2 + (AkA` + A`Ak) . ∂x ∂xk∂x` k k k<` and one can easily see that the condition D2 = ∆ implies that ( A2 = −1 for all k, and k (1.1) AkA` + A`Ak =0 forallk=6 ` As soon as we have n matrices A1,... ,An satisfying the conditions (1.1), we have a Dirac operator. Examples ∂ n=1. Take N = 1 and A1 = i,thenD=i∂x is a Dirac operator. n=2.LetN= 2 and A and A are the matrices 1 2 0 i 01 A = A = 1 i 0 2 −10 n=3 (‘Pauli spin matrices’) One can take N = 2 again, then A1 and A2 can be chosen as above, and i 0 A = 3 0 −i prepared by Alexei Kovalev 1 2 To generalize these simple examples to arbitrary dimensions we need to take a closer look at the nature of the matrices A1,... ,An. Representation theory of Clifford algebras n n Let e1,..
[Show full text]