Draft version October 29, 2018 A Preprint typeset using L TEX style emulateapj v. 14/09/00 ENTROPY EVOLUTION IN GALAXY GROUPS AND CLUSTERS: A COMPARISON OF EXTERNAL AND INTERNAL HEATING Fabrizio Brighenti1,2 and William G. Mathews1 1University of California Observatories/Lick Observatory, Board of Studies in Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064
[email protected] 2Dipartimento di Astronomia, Universit`adi Bologna, via Ranzani 1, Bologna 40127, Italy
[email protected] Draft version October 29, 2018 ABSTRACT The entropy in hot, X-ray emitting gas in galaxy groups and clusters is a measure of past heating events, except for the entropy lost by radiation from denser regions. Observations of galaxy groups indicate higher entropies than can be achieved in the accretion shock experienced by gas when it fell into the dark halos. These observations generally refer to the dense, most luminous inner regions where the gas that first entered the halo may still reside. It has been proposed that this non-gravitational entropy excess results from some heating process in the early universe which is external to the group and cluster halos and that it occurred before most of the gas had entered the dark halos. This universal heating of cosmic gas could be due to AGN, population III stars, or some as yet unidentified source. Alternatively, the heating of the hot gas in groups may be produced internally by Type II supernovae when the galactic stars in these systems formed. We investigate here the consequences of various amounts of external, high redshift heating with a suite of gas dynamical calculations.