Metal-Matrix Composites

Total Page:16

File Type:pdf, Size:1020Kb

Metal-Matrix Composites ASM Handbook, Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials Copyright © 1990 ASM International® ASM Handbook Committee, p 903-912 All rights reserved. DOI: 10.1361/asmhba0001101 www.asminternational.org Metal-Matrix Composites John V. Foltz, Metallic Materials Branch, Naval Surface Warfare Center, White Oak Laboratory Charles M. Blackmon, Applied Materials Technology Branch, Naval Surface Warfare Center, Dahlgren Laboratory METAL-MATRIX COMPOSITES elastic modulus and strength of unidirec- Primary processing is the operation by (MMCs) are a class of materials with poten- tionally reinforced composites, are suffi- which the composite is synthesized from its tial for a wide variety of structural and ciently high in some MMCs to permit use of raw materials. It involves introducing the thermal management applications. Metal- the unidirectional lay-up in engineering reinforcement into the matrix in the appro- matrix composites are capable of providing structures. priate amount and location, and achieving higher-temperature operating limits than This article will give an overview of the proper bonding of the constituents. Second- their base metal counterparts, and they can current status of MMCs, including informa- ary processing consists of all the additional be tailored to give improved strength, stiff- tion on physical and mechanical properties, steps needed to make the primary compos- ness, thermal conductivity, abrasion resis- processing methods, distinctive features, ite into a finished hardware component. tance, creep resistance, or dimensional sta- and the various types of continuously and Many reinforcement and matrix materials bility. Unlike resin-matrix composites, they discontinuously reinforced MMCs. More are not inherently compatible, and such are nonflammable, do not outgas in a vacu- information on the processing and proper- materials cannot be processed into a com- um, and suffer minimal attack by organic ties of MMCs is available in the Section posite without tailoring the properties of an fluids such as fuels and solvents. "Metal, Carbon/Graphite, and Ceramic Ma- interface between them. In some compos- The principle of incorporating a high- trix Composites" in Composites, Volume 1 ites the coupling between the reinforcing performance second phase into a conven- of the Engineered Materials Handbook agent and the metal is poor and must be tional engineering material to produce a published by ASM INTERNATIONAL. enhanced. For MMCs made from reactive combination with features not obtainable constituents, the challenge is to avoid ex- from the individual constituents is well Property Prediction cessive chemical activity at the interface, known. In a MMC, the continuous, or ma- which would degrade the properties of the trix, phase is a monolithic alloy, and the Property predictions of MMCs can be material. These problems are usually re- reinforcement consists of high-performance obtained from mathematical models, which solved either by applying a surface treat- carbon, metallic, or ceramic additions. Re- require as input a knowledge of the proper- ment or coating to the reinforcement or by inforced intermetallic compounds such as ties and geometry of the constituents. For modifying the composition of the matrix the aluminides of titanium, nickel, and iron metals reinforced by straight, parallel con- alloy. are also discussed in this article (for more tinuous fibers, three properties that are fre- Solidification processing (Ref 4, 5), solid- information on intermetallic compounds, quently of interest are the elastic modulus, state bonding, and matrix deposition tech- see the article "Ordered Intermetallics" in the coefficient of thermal expansion, and niques have been used to fabricate MMCs. this Volume). the thermal conductivity in the fiber direc- Solidification processing offers a near-net- Reinforcements, characterized as either tion. Reasonable values can be obtained shape manufacturing capability, which is continuous or discontinuous, may consti- from rule-of-mixture expressions for economically attractive. Developers have tute from 10 to 60 vol% of the composite. Young's modulus (Ref 1): explored various liquid metal techniques Continuous fiber or filament reinforce- Ec = Ef vf +Em Vm (Eq 1) that use multifilament yarns, chopped fi- ments include graphite (Gr), silicon car- coefficient of thermal expansion (Ref 2): bers, or particulates as the reinforcement. bide (SIC), boron, aluminum oxide A castable ceramic/aluminum MMC is now (A1203), and refractory metals. Discontin- otfvfEf + ot m v mE m commercially available (Ref 6); cast com- a¢ = (Eq 2) uous reinforcements consist mainly of SiC Ef vf + Em v m ponents of this composite are shown in in whisker (w) form, particulate (p) types Fig. 2. Solid-state methods use lower fab- of SiC, A1203, or titanium diboride (TiB2), and thermal conductivity (Ref 3): rication temperatures with potentially bet- and short or chopped fibers of A1203 or kc = kfvf + kmvm (Eq3) ter control of the interface thermodynam- graphite. Figure 1 shows cross sections of where v is volume fraction, and E, et, and k ics and kinetics. The two principal typical continuous and discontinuous rein- are the modulus, coefficient of thermal ex- categories of solid-state fabrication are dif- forcement MMCs. pansion, and thermal conductivity in the fusion bonding of materials in thin sheet The salient characteristics of metals as fiber direction, respectively. The subscripts form (Ref 7) and powder metallurgy tech- matrices are manifested in a variety of c, f, and m refer to composite, fiber, and niques (Ref 8). Matrix deposition pro- ways; in particular, a metal matrix imparts a matrix, respectively. cesses, in which the matrix is deposited on metallic nature to the composite in terms of the fiber, include electrochemical plating, thermal and electrical conductivity, manu- Processing Methods plasma spraying, and physical vapor de- facturing operations, and interaction with position (Ref 7). A new method, metal the environment. Matrix-dominated me- Processing methods for MMCs are divid- spray deposition, is currently being inves- chanical properties, such as the transverse ed into primary and secondary categories. tigated (Ref 9). After deposition process- 904 / Special-Purpose Materials (a) 100 ~m 100 I~m 10 iLm (d) ~ (el (0 I I 10 i~m Cross sections of typical fiber-reinforced MMCs. (a) Continuous-fiber-reinforced boron/aluminum composite. Shown here are 142 i~m diam boron filaments Fig. 1 coated with BaC in a 6061 aluminum alloy matrix. (b) Discontinuous graphite/aluminum composite. Cross section shows 10 i~m diam chopped graphite fibers (40 vol%) in a 2014 aluminum alloy matrix. (c) A 6061 aluminum alloy matrix reinforced with 40 vol% SiC particles. (d) Whisker-reinforced (20 vol% SiC) aluminum MMC. (e) and (f) MMCs manufactured using the PRIMEXTM pressureless metal infiltration process. (e) An AI203-reinforced (60 vol%) aluminum MMC. (f) A highly reinforced (81 vol%) MMC consisting of SiC particles in an aluminum alloy matrix. The black specks in the matrix are particles of an inorganic preform binder and do not indicate porosity. (a) and (b) Courtesy of DWA Composite Specialties, Inc. (c) and (d) Courtesy of Advanced Composite Materials Corporation. (e) and (f) Courtesy of Lanxide Corporation ing, a secondary consolidation step such as Aluminum-Matrix Composites Continuous Fiber Aluminum MMC. diffusion bonding often is needed to pro- Boron/aluminum is a technologically ma- duce a component. Most of the commercial work on MMCs ture continuous fiber MMC (Fig. la). Ap- Which secondary processes are appropri- has focused on aluminum as the matrix metal. plications for this composite include tubular ate for a given MMC depends largely on The combination of light weight, environmen- truss members in the midfuselage structure whether the reinforcement is continuous or tal resistance, and useful mechanical proper- of the Space Shuttle orbiter and cold plates discontinuous. Discontinuously reinforced ties has made aluminum alloys very popular; in electronic microchip carrier multilayer MMCs are amenable to many common met- these properties also make aluminum well boards. Fabrication processes for B/A1 al forming operations, including extrusion, suited for use as a matrix metal. The melting composites are based on hot-press diffusion forging, and rolling. Because a high percent- point of aluminum is high enough to satisfy bonding or plasma spraying methods (Ref age of the materials used to reinforce dis- many application requirements, yet low 13). Selected properties of a B/A1 composite continuous MMCs are hard oxides or car- enough to render composite processing rea- are given in Table 1. bides, machining can be difficult, and sonably convenient. Also, aluminum can ac- Continuous SiC fibers (SiC¢) are now methods such as diamond sawing, electrical commodate a variety of reinforcing agents, commercially available; these fibers are discharge machining (Ref 10), and abrasive including continuous boron, AI203, SiC, and candidate replacements for boron fibers be- waterjet cutting (Ref 11) are sometimes uti- graphite fibers, and various particles, short cause they have similar properties and offer lized (see Machining, Volume 16 of the 9th fibers, and whiskers (Ref 12). The microstruc- a potential cost advantage. One such SiC Edition of Metals Handbook for more infor- tures of various aluminum matrix MMCs are fiber is SCS, which can be manufactured mation about these machining
Recommended publications
  • Aluminium Metal Matrix Composition with Reinforcement Particles of Tungsten Carbide and Graphite
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-4S5, December 2019 Aluminium Metal Matrix Composition with Reinforcement Particles of Tungsten Carbide and Graphite Shivashankar R, G V Naveen Prakash, K B Vinay simplicity, low cost and can be used in industrial scale Abstract: Aluminium Metal Matrix composition were used in production [6].Mechanical properties and tribological application of the aerospace and automobiles because of its properties has greater influences on reinforcements of steel strength and stiffness. Although tribological characteristics of machining chips [8]. Many researches were carried out in the the materials like wear resistance is low. Many research has AMC with various reinforcement particles to increase the been carried out in the particle reinforcement with the Aluminium Metal Matrix. In this paper, the several reinforced mechanical property, corrosion and wear resistance [9, 10]. particles with the aluminium matrix were reviewed. The In this paper, various studies involve in the fabrication of reinforced materials like Tungsten carbide, graphite or hybrid AMC with the reinforcement material of Tungsten Carbide reinforced materials were analyzed. The stir casting process is and graphite were reviewed. the common technique to fabricate these materials. The The paper is formulated as tungsten carbide reinforced reinforcement of graphite particles in aluminium materials were AMC is reviewed in the section II, graphite particle shows the considerable mechanical properties. reinforced AMC is reviewed in the section III, hybrid Keywords: Aluminium Metal Matrix Composition, Graphite, reinforcement is discussed in section IV, comparative Hybrid Reinforced Materials, Stir Casting Process, Tribological analysis is in section V, problem definition in the reinforced Characteristics and Tungsten Carbide.
    [Show full text]
  • Additive Manufacturing of Aluminium-Metal Matrix Composite Developed Through Mechanical Alloying
    Additive Manufacturing of Aluminium-Metal Matrix Composite developed through Mechanical Alloying OMOTOYOSI HELEN FAMODIMU (B.Eng., MSc.) A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy September 2016 This work or any part thereof has not previously been presented in any form to the University or to any other body whether for the purposes of assessment, publication or for any other purpose (unless otherwise indicated). Save for any express acknowledgements, references and/or bibliographies cited in the work, I confirm that the intellectual content of the work is the result of my own efforts and of no other person. The right of Omotoyosi H. Famodimu to be identified as author of this work is asserted in accordance with ss.77 and 78 of the Copyright, Designs and Patents Act 1988. At this date, copyright is owned by the author. Signature………………………… Date………………………………. 1 Abstract Laser melting of aluminium alloy - AlSi10Mg has increasingly been used to create specialised products in aerospace and automotive applications. However, research on utilising laser melting of Aluminium matrix composites in replacing specialised parts have been slow on the uptake. This has been attributed to the complexity of the laser melting process, metal/ceramic feedstock for the process and the reaction of the feedstock material to the laser. Thus an understanding of the process, material microstructure and mechanical properties is important for its adoption as a manufacturing route of Aluminium Metal Matrix Composites. The effect of the processing parameters (time and speed) on embedding the Silicon Carbide onto the surface of the AlSi10Mg alloy was initially investigated in Phase 1 and 2 of the research.
    [Show full text]
  • Titanium Metal Matrix Composites for Aerospace Applications
    TITANIUM METAL MATRIX COMPOSITES FOR AEROSPACE APPLICATIONS S. A. Singerman* and J. J. Jackson** *Pratt &Whitney West Palm Beach FL **GE Aircraft Engines Lynn MA Abstract processes consisting of alternating layers of woven fiber mats and 0.1-O. 15 mm (4-5 mil) thick titanium alloy foils which were stacked up and Aerospace engine and airframe designers are constantly seeking lighter vacuum hot press (VHP) or hot isostatic press (HIP) consolidated into weight high strength materials to reduce weight and improve performance of multilayer composites. High foil costs associated with cross-roll processing powerplants and aircraft. Titanium metal matrix composites (Ti MMCs) of the preferred titanium alloys combined with high fiber costs and low have offered the promise of significant weight savings since their initial volume demands caused Ti MMCs to only be considered for very high development in the early 1960s but until recently, their inadequate quality payoff applications. Additionally, a lack of reproducible quality for and reproducibility combined with high processing and materials costs have foil/fabric Ti MMC components precluded their introduction into any man- prevented their introduction into production applications. This paper rated aerospace applications. More recently, innovative processes including describes the state-of-the-art for Ti MMC aerospace fabrications, their tape casting,(tts12) induction plasma deposition (IPD),(“-‘5) electron beam potential payoffs and the recent advances in processing which are now physical vapor deposition (EBPVD) fiber coating(i” fiber/wire co- leading to high quality, affordable Ti MMC components. winding(“) have been developed in order to increase alloy flexibility and improve quality of Ti MMCs and at the same time reduce their fabrication Introduction & Historical Persnective costs.
    [Show full text]
  • Metal-Matrix Composite Fabricated with Gas Tungsten Arc Melt Injection and Precoated with Nicrbsi Alloy to Increase the Volume Fraction of WC Particles
    Sci Eng Compos Mater 2017; 24(2): 195–202 Aiguo Liu*, Da Li, Fanling Meng and Huanhuan Sun Metal-matrix composite fabricated with gas tungsten arc melt injection and precoated with NiCrBSi alloy to increase the volume fraction of WC particles DOI 10.1515/secm-2014-0221 investigation of Liyanage et al. [1] on plasma transferred Received July 12, 2014; accepted June 1, 2015; previously published arc welded Ni-WC overlays shows that the MMC overlays online September 5, 2015 are from two to five times more wear resistant than the matrix alloys without WC particles. Abstract: The volume fraction, dissolution, and segrega- Many welding and cladding methods have been used tion of WC particles in metal-matrix composites (MMCs) to produce WC particle-reinforced MMCs on low-cost are critical to their wear resistance. Low carbon steel substrates. However, there are still some problems to be substrates were precoated with NiCrBSi coatings and solved. The first problem is the degree of dissolution of processed with gas tungsten arc melt injection method to WC particles. In the process of welding or cladding, WC fabricate MMCs with high volume fraction of WC particles. particles are heated by a heat source and dissolve into The microstructures and wear resistance of the compos- the molten pool partially or even completely. Katsich and ites were investigated. The results showed that the volume Badisch [2] have accessed the effect of carbide degrada- fraction of WC particles increased with decreasing hopper tion in a WC/W C-reinforced Ni-based hard facing, and the height and was as high as 44% when hopper height was 2 results show significant carbide degradation with increas- 100 mm.
    [Show full text]
  • Silicon Carbide Reinforced Aluminium Metal Matrix Composites for Aerospace Applications: a Literature Review
    ISSN: 2319-8753 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol. 2, Issue 11, November 2013 Silicon Carbide Reinforced Aluminium Metal Matrix Composites for Aerospace Applications: A Literature Review Suryanarayanan K.1, R. Praveen2, S. Raghuraman3 Research Assistant, SASTRA University, Thanjavur, Tamil Nadu, India1 Research Assistant, SASTRA University, Thanjavur, Tamil Nadu, India2 Professor, SASTRA University, Thanjavur, Tamil Nadu, India3 Abstract: This paper considers the potential of use Al-SiC metal matrix composite (MMC) with particular reference to the aerospace industry. Initially, the required properties are identified, after which, the work explores pure aluminium and its importance in the industry along with its limitations. Using these limitations, MMC’s were recommended as a possible replacement for aluminium and it is seen that the exact set of properties depend on certain factors. Therefore these factors such as reactivity at the interface, volume fraction of the reinforcing material, type of the reinforcing material and distribution of the reinforcing material are reviewed using the existing literature. Using the information available, the paper advocates the use of Al-SiC MMC in the fuselage skins of high performance aircrafts. However, it must be noted that the recommendations are purely based on the data available and the author’s interpretation of it although every effort has been made to be as logical as possible. Keywords: Aluminium, silicon carbide, metal matrix composite, aerospace I. INTRODUCTION Ever since the Wright brothers flew their ‘heavier-than-air’ machine, the aviation industry has grown in great leaps and bounds. Because aircrafts were getting faster and/or bigger, the need to develop newer materials took centre stage- the use of wood and fabric gave way to stronger metallic structures (built predominantly using aluminium and its alloys).
    [Show full text]
  • An Experimental Analysis of Aluminium Metal Matrix Composite
    Volume 8, No. 4, May 2017 (Special Issue) International Journal of Advanced Research in Computer Science RESEARCH PAPER Available Online at www.ijarcs.info An Experimental Analysis of Aluminium Metal Matrix Composite using Al2O3/B4C/Gr Particles Raminder Singh Bhatia Kudlipsingh Mechanical Engineering Deoartment, Mechanical Egineering Department, SBBSIET,Padhiana, DisttJalandhar,Punjab SBBSIET,Padhiana, DisttJalandhar,Punjab [email protected] [email protected] Abstract: The present work aims to develop hybrid composites are obtained. Further, fiber reinforced Aluminium metal matrix composites (HAMC”S) by composites can be divided into laminate composites incorporating different types of reinforcements such that consisting of unidirectional, bi-directional or multi- combination of best properties could be achieved. The metal directional mats, reinforced in metal matrix. Infiltration base was selected was Aluminium alloy 12% Si and it is composites derived their name due to the processing method reinforced with varying weight percentage of alumina, graphite, and boron carbide. These AMC were developed by used for manufacturing metal matrix by using stir casting technique, in which predetermined composites. All the broadly classified metal matrix reinforcement is added to the molten matrix and then slurry is composites are processed by various routes and these routes stirred well to obtain desired castings. These castings were are explained in further sections. The aim of research is to studied for microstructural behavior and subjected to replace the conventional monolithic materials including mechanical testing to study the effects of various aluminium alloys, ferrous alloys, titanium alloys and reinforcements. The analysis of interfaces obtained revealed polymer based composites in several applications by low that boron carbide interface cracks produced greater weight high strength AMCs which requires lower power for wettability of particles and perfect interface was observed processing routes.
    [Show full text]
  • Manufacture of Silicon Carbide Reinforced Aluminium 6061 Metal Matrix Composites for Enhanced Sliding Wear Properties
    Manufacturing Rev. 6, 24 (2019) © A. Bhat and G. Kakandikar, Published by EDP Sciences 2019 https://doi.org/10.1051/mfreview/2019021 Available online at: https://mfr.edp-open.org RESEARCH ARTICLE Manufacture of silicon carbide reinforced aluminium 6061 metal matrix composites for enhanced sliding wear properties Avinash Bhat and Ganesh Kakandikar* School of Mechanical Engineering, Dr. V. D. Karad MIT World Peace University, Pune, India Received: 5 July 2019 / Accepted: 15 September 2019 Abstract. Composite materials have the capability of being customised to provide specific mechanical and tribological properties. This paper presents the manufacture of a novel composite of Al6061 with 5% SiC (50 mm size) by the stir casting method. Experimental investigations of mechanical and tribological properties of SiC reinforced Al6061 are discussed. Investigations with a Rockwell hardness tester revealed that this composite had enhanced hardness. Wear characteristics were investigated for Al6061 and the novel composite Al6061 + SiC with a Pin on disc tribometer for a load range of 5N-200N and RPM varying from 200 to 1500. The effect of crucial parameters such as load and RPM on the wear of the novel composite were presented with sensitivity analysis. The results obtained are encouraging, showing the novel composite having a lower wear rate. Keywords: Metal matrix / composite / wear / Al6061 / SiC / stir casting 1 Introduction The stir casting technique is the most widely used technique for the fabrication of MMC’s. In this method, There is a constant need for improvements in material the molten metal is stirred continuously with the help of a properties across a wide range of applications, such as stirrer or an impeller usually made of graphite and the transportation, aerospace, military engineering, etc.
    [Show full text]
  • Fabrication and Characterization of A359/Al2o3 Metal Matrix Composite Using Electromagnetic Stir Casting Method
    j mater res technol. 2013;2(3):250–254 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector www.jmrt.com.br Original article Fabrication and characterization of A359/Al2O3 metal matrix composite using electromagnetic stir casting method Abhishek Kumar ∗, Shyam Lal, Sudhir Kumar Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India article info abstract Article history: A composite material is a material consisting of two or more physically and chemically dis- Received 4 January 2013 tinct phases. The composite has superior characteristics than those individual components. Accepted 7 March 2013 Usually the reinforcing component is distributed in the continuous or matrix component. Available online 3 August 2013 When the matrix is a metal, the composite is termed a metal matrix composite (MMC). In MMCs, the reinforcement usually takes the form of particles, whiskers, short fibers, or Keywords: continuous fibers. An MMC is a composite material with at least two constituent parts, one Aluminum alloy being a metal. The other material may be a different metal or another material, such as A359 a ceramic or organic compound. Recently, aluminum and its alloy based cast MMCs have Al2O3 gained lot of popularity in all the emerging fields of engineering and technology owing to Metal matrix composites their superior strength, lower creep rate, better fatigue resistance, lower coefficients of ther- mal expansion as compared to monolithic materials. The desired properties of the cast MMCs are influenced by the solidification behavior of the cast MMCs. The present paper aimed to investigate the best possible predicted results and to carry out the experimental set up of electromagnetic stir casting process in composite materials.
    [Show full text]
  • A High Strength Ti-Sic Metal Matrix Composite
    A High Strength Ti-SiC Metal Matrix Composite K. M. Rahmana, V. A. Vorontsova, S. M. Flitcroftb, D. Dyea aDepartment of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP, UK bTISICS Ltd. 22 Invincible Road, Farnborough, Hampshire, GU14 7QU, UK Abstract A SiC reinforced Ti-5Al-5Mo-5V-3Cr matrix metal matrix composite was developed. Monolithic blocks of alloy were hot rolled via pack rolling to produce foils for MMC panel fabrication. These were consolidated using hot isostatic pressing and solution treated and aged for optimum strength. The panels exhibited a strength of 2 GPa in tension and 3.5 GPa in compression, compared to the aerospace steel 300M, which has a tensile strength of 1.69 GPa. The fatigue performance of the material exceeded that of MMCs developed using Ti-21S or Ti-6Al-4V matrices. Finally, the reaction zone between the SiC and matrix was examined, revealing the presence of TiC. Key words: Metal Matrix Composites, Fatigue, Strength, Mechanical Testing, Isostatic processing 1 1. Introduction 36 cold rolled and aged condition where dislocations are used 37 to nucleate fine α precipitates. However, Ti-5-5-5-3 is 2 Metal matrix composites (MMCs) provide superior prop- 38 stronger in the forged condition. Since Beta-C requires 3 erties compared to monolithic materials, typically having 39 cold work to maximise strength, which is not feasible in 4 higher strength and stiffness while reducing density [1]. 40 the production of large components, the alloy is restricted 5 MMCs generally exist in two forms: continuous fibre and 41 to applications such as springs.
    [Show full text]
  • Metal Matrix Composites Synthesized by Laser-Melting Deposition: a Review
    materials Review Metal Matrix Composites Synthesized by Laser-Melting Deposition: A Review Muhammad Arif Mahmood 1,2 , Andrei C. Popescu 3,* and Ion N. Mihailescu 2,* 1 Faculty of Physics, University of Bucharest, Magurele, 077125 Ilfov, Romania; arif.mahmood@inflpr.ro 2 Laser Department, National Institute for Laser, Plasma and Radiation Physics (INFLPR), Magurele, 077125 Ilfov, Romania 3 Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics (INFLPR), Magurele, 077125 Ilfov, Romania * Correspondence: andrei.popescu@inflpr.ro (A.C.P.); ion.mihailescu@inflpr.ro (I.N.M.); Tel.: +40-214574550 (ext. 2414/2423) (A.C.P.); +40-214574491 (I.N.M.) Received: 8 May 2020; Accepted: 3 June 2020; Published: 6 June 2020 Abstract: Metal matrix composites (MMCs) present extraordinary characteristics, including high wear resistance, excellent operational properties at elevated temperature, and better chemical inertness as compared to traditional alloys. These properties make them prospective candidates in the fields of aerospace, automotive, heavy goods vehicles, electrical, and biomedical industries. MMCs are challenging to process via traditional manufacturing techniques, requiring high cost and energy. The laser-melting deposition (LMD) has recently been used to manufacture MMCs via rapid prototyping, thus, solving these drawbacks. Besides the benefits mentioned above, the issues such as lower ultimate tensile strength, yield strength, weak bonding between matrix and reinforcements, and cracking are still prevalent in parts produced by LMD. In this article, a detailed analysis is made on the MMCs manufactured via LMD. An illustration is presented on the LMD working principle, its classification, and dependent and independent process parameters. Moreover, a brief comparison between the wire and powder-based LMDs has been summarized.
    [Show full text]
  • Characterization of Aluminium Reinforced with Tungsten Carbide Particulate and Flyash Metal Matrix Composites
    International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 4 Issue 05, May-2015 Characterization of Aluminium reinforced with Tungsten Carbide Particulate and Flyash Metal Matrix Composites Srikanth. B. G Amarnath. G PG Student, Associate Professor, Dept. of Mechanical Engineering Dept. of Mechanical Engineering Vijaya Vittala Institute of Technology, Vijaya Vittala Institute of Technology, Bangalore, India Bangalore, India Abstract—Metal matrix composites are formed by stiffness at room or elevated temperatures. Ceramic particles combination of two or more materials (at least one of the or fibers are commonly used as reinforcement. The basic material is metal) having dissimilar characteristics. In this reason of metals reinforced with hard ceramic particles or present investigation, aluminium (Al 6061) as base matrix metal fibers are improved properties than its original material like and tungsten carbide (WC) particulate, fly ash as strength, stiffness, wear resistance etc. It can also improve reinforcements. Fabrication of MMCs was done by stir-casting strength to weight ratio of the composites. process. The Tungsten Carbide particulate was added in proportions of 1%, 2%, and 3% and Fly ash was added in Fabrication of composites is commonly done by the stir- proportions of 2%, 4%, and 6% on mass fraction basis to the casting among the different processing techniques available, molten metal. The different combination sets of composites were because it is simplest and cheapest form, references [7][8][9]. prepared. Mechanical properties like tensile strength and hardness were studied for both reinforced and unreinforced Al In recent days, considerable work has been done on 6061 samples. Microstructure examination was carried by using tungsten carbide reinforced metal matrix composites as well Scanning Electron Microscope (SEM) to obtain the distribution as fly ash reinforced metal matrix composites.
    [Show full text]
  • Metal Matrix Composites: History, Status
    METAL MATRIX COMPOSITES: HISTORY, STATUS, FACTORS AND FUTURE By AJITH JAMES CYRIAC Bachelor of Technology in Mechanical Engineering Cochin University of Science and Technology Cochin, Kerala, INDIA 2005 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July 2011 METAL MATRIX COMPOSITES: HISTORY, STATUS, FACTORS AND FUTURE Thesis Approved: Dr. Jay C. Hanan Thesis Adviser Dr. Sandip P. Harimkar Dr. Ranji Vaidyanathan Dr. Mark E. Payton Dean of the Graduate College ii ACKNOWLEDGMENT As I sit down to write this page, I am filled with a great feeling of gratitude towards so many individuals who have made this endeavor possible. Above all, I would like to thank my thesis and academic advisor Dr. Jay C. Hanan for accepting me to his team and helping me with his kindness and patience throughout the project. Initially I was reluctant to take the task of doing a thesis, but his confidence in my abilities and the motivation from him and motivated me to take on such a great endeavor. I wish to thank Dr. Ranji Vaidyanathan and Dr. Sandip Harimkar for being part of my committee. I would like to thank our graduate coordinator Dr.Afshin Ghajar and his assistant Shelli Stapleton for supporting me throughout the program. I specially need to acknowledge help I received from the Kevin Drees of Edmon Low Library and Dona Donldson of O.S.U Tulsa Library for their assistance. I do not have any qualms in admitting that I would not be able to finish this project without their help.
    [Show full text]