Content of Phycobilin Pigments in Two Strains of Cyanobacteria of The

Total Page:16

File Type:pdf, Size:1020Kb

Content of Phycobilin Pigments in Two Strains of Cyanobacteria of The www.symbiosisonline.org Symbiosis www.symbiosisonlinepublishing.com Short Communication SOJ Microbiology & Infectious Diseases Open Access Content of Phycobilin Pigments in Two Strains of Cyanobacteria of the Atacama Desert, Chile Iris Pereira1*, Iván Razmilic2 and Jeffrey Johansen3 1Institute of Biological Sciences, Universidad de Talca, Talca, Chile 2Department of Chemistry, Institute of Natural Resources, University of Talca, Talca, Chile, Chile 3Department Biology, John Caroll University, Cleveland, USA Received: February 24, 2014; Accepted: June 24, 2014; Published: June 27, 2014 *Corresponding author: Iris Pereira, Institute of Biological Sciences, Universidad de Talca, 2 Norte 685, Talca, Chile, E-mail: [email protected] The phycobilin pigments have been used successfully in the Abstract location of tumor cells in the treatment of cancer and it is known that the C-phycocyanin ameliorates experimental autoimmune Cyanobacteria with the encephalomyelitis and induces regulatory T-cells [1]. The light The aim of this study was to assess qualitative and quantitatively Thephycobilin studied pigments strains wereof two Nostoc nitrogen-fixing commune and Tolypothrix tenuis purpose to optimize in the future, the culture conditions to high scale. that phycobilins may be used as chemical “tags”. The pigments produced by this fluorescence is so distinctive and reliable, Chile. They were obtained from a total of twelve transects made, which were gotten from cryptogamic crusts of the Atacama Desert, solution of cells. Also these molecules are used in biotechnology [2]are chemicallyand in food bonded due to to its antibodies, antioxidant which activity. are then Based put on into the a min.between After La they Serena were and inoculated Iquique, inin thePetri north plates of Chile.and then Soil samplesisolated of each station were activated in 250 ml Erlenmeyer flasks for 30 they were cultured for 3 weeks or one month in Petri Plates on agar and massed to a low scale. Once the soil samples were activated, obtained information, we proposed to assess qualitative and quantitatively the content of these pigments in two nitrogen- conditionsZ8-N medium and and continuous later the irradiance.inoculates wereChemical transferred determination to 250 mlof fixers cyanobacteria strains from Atacama Desert. Therefore, pigmentsErlenmeyer and flasks their inconcentrations Z8-N liquid medium were made under by spectrophotometry. room temperature withthe following the purpose objectives to optimize were the proposed: conditions a) toof assesstheir culture quali- andin a quantitatively the phycobilin pigments that these strains possess the C-phycocianin. Strain of Tolypothrix high scale. In both strains, C-phycoerythrin was found in bigger proportion than Materials and Methods other hand The Nostoc presents more quantity of phycobilin pigments: 0.66 mg/ml PE and 0.32 mg/ml PC. On the Collection of the Samples strain, showed 0.080 mg/ml PE and 0.037 determinationmg/ml PC. Due of theseto the pigments high commercial in others strains value ofof cyanobacteriathese pigments to Soil samples came from sites established along different in the market, it is suggested to continue with the detection and assess the possibility of their mass culture and exploitation. Keywords: Nostoc commune Bornet & Flahault came from the transect ATA Pigments Content altitudinal transects made° in the Atacama° Desert in July 2009. Atacama Desert; Cryptogamic crusts; Phycobilin Tolypothrix tenuis 11-6B° (north Calama,° 20 56’074”S, 68 57’440”O, 2.964 m) and Introduction Kütz. ex Bornet & Flahault of ATA 2-3 (Vallenar, Cyanobacteria 29Activation22’454’’, 70 and58’936’’O, Incubation 446 m). of the Soil Samples are organisms capable to fix carbon only as that is transformed in ammonium and in this way it is liberated and waterfalls. Previous to the taxonomical determination of higher plants. Also they can fix atmospheric nitrogen, a compound Soil samples were obtained from cryptogamic crusts, pools biofertilizer. They also have phycobilin pigments as: phycocyanin to the soil, enriching it with this element, which acts as natural and phycoerythrin. Cyanobacteria are part of numerous the species, the soil samples of each site of the transects were sieved and then activated in a shaker for 30 min contained 200 ml of distilled water. Aliquots were plated in Petri plates in agar ecosystems both freshwater and marine, but also of desert soil all Z8 and Z8-N media and were grown under controlled conditions: stress.over the Their world. high On deserttolerance ecosystems, to these these conditions microorganisms allows us are to continuous light, room temperature for a period of 3 weeks to a supportcontinuously that these submitted organisms to a strong could hydric,be easy thermic to culture and and nutritive in this month. After that time, the colonies were replicated in Petri plates with agar Z8 and Z8- N media with the purpose to obtain unialgal way achieve the commercialization of these molecules. inocula that afterwards were cultured in 250 ml Erlenmeyer flasks with liquid Z8-N media. Symbiosis Group *Corresponding author email: [email protected] Content of Phycobilin Pigments in Two Strains of Cyanobacteria of the Atacama Desert, Copyright: Chile © 2014 Pereira et al. Taxonomical Determination C-phycocyanin. found in major proportion than the C-phycocyanin. For the determination of the species, morphological and • In both the studied strains, the C-phycoerythrin was Tolypothrix strain had lucidareproductive camera characters and graduated were ocular.used. Measurements The obtained informationwere taken using a Nikon optic microscopy Optiphot model equipped with was submitted to keys and compared with descriptions presented • The Nostoc major quantity of phycobilin in the specialized bibliography such as [3-6]. pigments, with 0.66 mg/ml PE and 0.32 mg/ml of PC. On the other hand, the strain had 0.080 mg/ml PE and Treatment of Samples and Extraction of Phycobilin 0.037 mg/ml PC. Pigments • According to the obtained results, it can be speculated Cyanobacteria ofthat phycocyanin with a biomass can bebetween obtained 100 for and the 200 case mg/ml of Tolypothrix of moist samples had fresh weights, between 70-120 tenuis.weight of algae, 1 mg/ml of phycoerythrin and 0.5 mg/ml mg; 30 mg of sand were added to those samples. After that, they were washed with concentrated HCL, sieved, calcined, dried and market (phycocyanin about of US $535 the milligram macerated in a mortar with fine sand. To homogenize and extract • According to the high value of these pigments in the the pigments, 1 ml of buffer phosphate of pH 6.8 was added to the samples. Then, 2 ml of the treated samples were transferred to an itand is phycoerythrinsuggested to aroundcontinue of withUS $244 the thedetection milligram), and Eppendorf tube and the remnant solution was again washed with determinationdepending on ofthe these type pigments of species in other (Sigma-Aldrich), cyanobacteria two aliquots of 0.5 ml of buffer phosphate. Finally, the samples strains to assess the possibility of their mass culture and Determinationwere centrifuged in of a micro-the Concentration centrifuge at 1000 of rpm Phycobilin for 20 min. exploitation. Pigments The supernatant obtained was measured in a from the more rentable strain (Tolypothrix tenuis) the • To obtain one milligram of phycoerythrin and phycocyanin spectrophotometer at the following wavelength: 455, 565, absorbance were used for the calculation of the phycobilins andcommercial harvest. cost was of US $4 and US $7.5 respectively. pigments592, 618, concentrations645 and 730 nm(phycocyanin using a quartz and phycoerythrin) cell. Readings byof This value includes the cost of reagents, isolation, culture Conclusions three replicates Table 1. the equations of [7]. The results were expressed in an average of Results and Discussion strains of cyanobacteria different Based proportions on the obtained of phyocyanin results, we and can phycoerythrin.conclude that bothThe Both strains presented phycobilin pigments (C-phycoerythrin percentage of yields of thesefrom two the pigments Atacama could Desert be increased possess and C-phycocyanin). Tolypothrix tenuis was the strain that under different types of light allowing to increase the added value presented a major concentration of C- phycoerythrin and cyanobacteria possess. of these natural resources, due to the “chromatic adaptation” that Acknowledgments The authors thank to project 2009-2010 Biodiversity of forterrestrial the facilities cyanobacteria provided inof theAtacama development Desert, of Chile this study.financed by NSF (National Science Foundation) and to the Talca University References 1. Pentón-Rol G, Martínez-Sánchez G, Cervantes-Llanos M et al. Noctoc commune Tolypothrix tenuis C-Phycocyanin ameliorates experimental autoimmune encephalomyelitis Figure 1: Cyanobacteria strains used in obtaining of phycobilin pig- and induces regulatory T cells. Int. Immunopharmacology. 2011; 11: 29- ments. The black scale represents 1 mm. 38. 2. riksen NT. Production of phycocyanin- a pigment with applications in Table 1: Content of phycobilin pigments in the studied strains. biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol. Phycobilin pigments 2008;E 80: -84. C- phycoerythrin C-phycocyanin 3. esikachary TV. Cyanophyta. New Delhi: Indian Council of Agricultural ( (PC) Research. 1959; 1-686. Cyanobacteria Strains/ Content mg/ml mg/ml D PE) Kryptogammenflora Nostoc commune von Deutschland, Osterreich, under
Recommended publications
  • Ecological and Physiological Studies on Freshwater Autotrophic Picoplankton
    Durham E-Theses Ecological and physiological studies on freshwater autotrophic picoplankton Hawley, Graham R.W. How to cite: Hawley, Graham R.W. (1990) Ecological and physiological studies on freshwater autotrophic picoplankton, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6058/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Ecological and physiological studies on freshwater autotrophic picoplankton by Graham R.W. Hawley B.Sc. (DI.melm) A thesis submdtted for the degree of Doctor of Philosophy in the university of Durham, England. Department of Biological Sciences, August 1990 The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged. w~ 1 8 AUG 1992 2 This thesis is entirely the result of my~~ work.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Indicators of Iron
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Indicators of Iron Metabolism in Marine Microbial Genomes and Ecosystems A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Oceanography by Shane Lahman Hogle Committee in charge: Katherine Barbeau, Chair Eric Allen Bianca Brahamsha Christopher Dupont Brian Palenik Kit Pogliano 2016 Copyright Shane Lahman Hogle, 2016 All rights reserved . The Dissertation of Shane Lahman Hogle is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2016 iii DEDICATION Mom, Dad, Joel, and Marie thank you for everything iv TABLE OF CONTENTS Signature Page ................................................................................................................... iii Dedication .......................................................................................................................... iv Table of Contents .................................................................................................................v List of Figures ................................................................................................................... vii List of Tables ..................................................................................................................... ix Acknowledgements ..............................................................................................................x Vita ..................................................................................................................................
    [Show full text]
  • Photosynthetic Characteristics of Phycoerythrin- Containing Marine Synechococcus Spp
    MARINE ECOLOGY - PROGRESS SERIES Vol. 39: 191-196, 1987 Published August 24 Mar. Ecol. Prog. Ser. I Photosynthetic characteristics of phycoerythrin- containing marine Synechococcus spp. 11. Time course responses of photosynthesis to ph.otoinhibition R. G.Barlow. R. S. ~lberte' Department of Molecular Genetics and Cell Biology, Barnes Laboratory, The University of Chicago, 5630 S. Ingleside Avenue, Chicago, Illinois 60637, USA ABSTRACT Marine Synechococcus spp. optimize growth and photosynthesis at low light levels and show photoinhibition of photosynthesis at high levels. We exam~nedthe photosynthetic response to, and recovery from, exposure to photoinhibitory light levels after growth at low photon flux densities in 2 clones of Synechococcus spp. Clones WH 7803 and WH 8018 were grown at 25 pE m-' S-', exposed to photoinhibitory light (1500 pE m-' S-') for 3 h, and then returned to the growth light level. Clone WH 7803 showed a 40 % decrease in P,,, while Clone WH 8018 showed a 30 % decrease during the exposure. This was accompanied by a proportional increase in whole-cell phycoerythrin fluorescence and by a decrease in the cellular content of P700, the photochemical reaction center of Photosystem I. On return to low light, photochemically active P700 recovered to pre-photoinhibitory levels within 1 h in Clone WH 8018 and within 2 h in Clone WH 7803. Photosynthetic rates and phycoerythrin fluorescence required 2 to 3 h and 3 to 4 h to recover in Clones WH 8018 and WH 7803, respectively. During exposure and recovery, no changes in cellular levels of chlorophyll or phycobiliproteins were observed. It is concluded that (1) the primary deleterious effect of photoinhibition of photosynthesis was reversible losses in Photosystem I activity, and (2) recovery from photoinhibition was rapid and occurred within hours.
    [Show full text]
  • 33 Subunit of R-Phycoerythrin from Gracilaria Chilensis Has a Typical Double Linked Phycourobilin Similar to Γ Subunit
    RESEARCH ARTICLE The γ33 subunit of R-phycoerythrin from Gracilaria chilensis has a typical double linked phycourobilin similar to γ subunit Aleikar VaÂsquez-SuaÂrez1☯, Francisco Lobos-GonzaÂlez1☯, Andrew Cronshaw2, Jose Sepu lveda-Ugarte1, Maximiliano Figueroa1, Jorge Dagnino-Leone1, Marta Bunster1*, Jose MartõÂnez-Oyanedel1* 1 Laboratorio de BiofõÂsica Molecular, Departamento de BioquõÂmica y BiologõÂa Molecular, Facultad de Ciencias BioloÂgicas Universidad de ConcepcioÂn, ConcepcioÂn, Chile, 2 Michael Swann Building, Kings' a1111111111 Buildings, University of Edinburgh, Edinburgh, Scotland, United Kingdom a1111111111 a1111111111 ☯ These authors contributed equally to this work. a1111111111 * [email protected] (MB); [email protected] (JM-O) a1111111111 Abstract Phycobilisomes (PBS) are accessory light harvesting protein complexes formed mainly by OPEN ACCESS phycobiliproteins (PBPs). The PBPs absorb light that is efficiently transferred to Photosys- Citation: VaÂsquez-SuaÂrez A, Lobos-GonzaÂlez F, tems due to chromophores covalently bound to specific cysteine residues. Besides phycobi- Cronshaw A, SepuÂlveda-Ugarte J, Figueroa M, liproteins (PE), the PBS contains linker proteins responsible for assembly and stabilization 33 Dagnino-Leone J, et al. (2018) The γ subunit of of the whole complex and the tuning of energy transfer steps between chromophores. The R-phycoerythrin from Gracilaria chilensis has a 33 typical double linked phycourobilin similar to γ linker (γ ) from Gracilaria chilensis, is a chromophorylated rod linker associated to (αβ)6 subunit. PLoS ONE 13(4): e0195656. https://doi. hexamers of R-phycoerythrin (R-PE). Its role in the energy transfer process is not clear yet. org/10.1371/journal.pone.0195656 Structural studies as well as the composition and location of the chromophores are essential Editor: Peter Butko, Nagoya University, JAPAN to understand their involvement in the energy transfer process in PBS.
    [Show full text]
  • Coexistence of Phycoerythrin and a Chlorophyll A/B Antenna in a Marine Prokaryote (Prochlorophyta/Cyanobacteria/Phycobilins/Photosynthesis/Endosymbiosis) WOLFGANG R
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 11126-11130, October 1996 Microbiology Coexistence of phycoerythrin and a chlorophyll a/b antenna in a marine prokaryote (Prochlorophyta/cyanobacteria/phycobilins/photosynthesis/endosymbiosis) WOLFGANG R. HESs*t, FREDEIRIC PARTENSKYt, GEORG W. M. VAN DER STAAYI, JOSE' M. GARCIA-FERNANDEZt, THOMAS BORNER*, AND DANIEL VAULOTt *Department of Biology, Humboldt-University, Chausseestrasse 117, D-10115 Berlin, Germany; and tStation Biologique de Roscoff, Centre National de la Recherche Scientifique Unite Propre de Recherche 9042 and Universite Pierre et Marie Curie, BP 74, F-29682 Roscoff Cedex, France Communicated by Hewson Swift, The University of Chicago, Chicago, IL, July 1Z 1996 (received for review June 7, 1996) ABSTRACT Prochlorococcus marinus CCMP 1375, a ubiq- tation maximum of the major chromophore bound by PE-III uitous and ecologically important marine prochlorophyte, corresponds to that of phycourobilin. was found to possess functional genes coding for the a and 1 subunits of a phycobiliprotein. The latter is similar to phy- coerythrins (PE) from marine Synechococcus cyanobacteria MATERIALS AND METHODS and bind a phycourobilin-like pigment as the major chro- Flow Cytometric Measurements. Sea water samples were mophore. However, differences in the sequences of the ca and collected at different depths during the France-Joint Global 13 chains compared with known PE subunits and the presence Ocean Flux Study OLIPAC cruise held in November 1994 of a single bilin attachment site on the a subunit designate it aboard the N.O. l'Atalante. Samples were analyzed immedi- as a novel PE type, which we propose naming PE-III. P. ately using a FACScan (Becton Dickinson) flow cytometer and marinus is the sole prokaryotic organism known so far that cell concentrations of Prochlorococcus and Synechococcus contains chlorophylls a and b as well as phycobilins.
    [Show full text]
  • BOT*4380, Course Outline, Winter 2016
    University of Guelph College of Biological Science Department of Molecular and Cellular Biology COURSE OUTLINE Metabolism in the Whole Life of Plants-BOT 4380 Winter 2016 Course Description This course follows the developmental changes that take place in plants, and explores the molecular, biochemical, and physiological mechanisms that are responsible for development. Emphasis will be placed on the importance of modern experimental methods and critical evaluation of the data. 0.5 U. Prerequisites: BIOL*1040 or BIOL*1090 & BIOC 2580. Teaching Team Dr. Tariq Akhtar, Science Complex, Room 4461, Ext. 54794, [email protected] & Dr. Barry Micallef, CRSC Rm 424, Ext. 54384, [email protected]. Office hours are flexible, and we will be available for discussion after class or by appointment. Feel free to contact us by email; we will do our best to respond quickly. Course Schedule Lectures are in MCKN (MacKinnon) 116, 10:30-11:20 am, Mon/Wed/Fri, starting Monday, January 11th, 2016 and ending Friday, April 8th, 2016 (35 lectures total). Learning Goals and Rationale By the end of this course, students should be able to: 1. grasp both the historical development and the current state of knowledge in plant biology, and in plant metabolism in particular, including an appreciation of emerging technologies and experimental methods; 2. integrate the physiological, biochemical, and molecular mechanisms whereby autotrophic organisms, and particularly seed plants, sustain themselves in the context of the whole life cycle of the plant; 3. interpret the scientific literature and data relevant to plant biology and to plant metabolism in particular; 4. communicate effectively using scientific writing; 5.
    [Show full text]
  • Full Text in Pdf Format
    AQUATIC MICROBIAL ECOLOGY Published April 28 Aquat microb Ecol Effects of light on pigments and photosynthetic activity in a phycoerythrin-rich strain of Spirulina subsalsa L. Tomaselli, M. C. Margheri, A. Sacchi Centro di Studio dei Microrganismi Autotrofi del CNR. P. le delle Cascine, 1-27-50144 Firenze, Italy ABSTRACT: Data on acclimation to 2 photon flux densities (15 and 100 pm01 photons m-2 S-') in Spir- ulina subsalsa strain 3F, a highly fluorescent phycoerythrin-rich cyanobacterium isolated from the brackish Lake Faro (Messina, Italy), indicated plasticity of the photosynthetlc apparatus of this organ- Ism. High-irradiance grown cells showed the greatest photosynthetlc capacity even though they had a lower chlorophyll and phycobiliprotein content. Carotenoids decreased to a lesser extent but their com- position changed. b-carotene decreased, while the amount of myxoxanthophyll more than doubled. The stability of both C-phycoerythrin and C-phycocyanin ratios in cells grown under different light quality (green and red) demonstrated the lack of complementary chromatic adaptation in S. subsalsa. This factor, combined with the efficient utilization of low-wavelength light, indicates the strong adap- tation of this strain to its habitat. KEY WORDS: Pigments . Oxygen evolution . Photoacclimation . Spirulina subsalsa . Cyanobacteria INTRODUCTION lar strain. Our results, besides contributing to the understanding of photoadaption in S. subsalsa, could Cyanobacteria of the genus Spirulina Turpin are fre- provide useful information for the possible exploitation quently found in thermal springs and in brackish or of this strain as a source of natural fluorescent dye in marine waters, mostly eutrophic, where they can form immunofluorescent assays (Strier et al.
    [Show full text]
  • Immobility of Phycobilins in the Thylakoid Lumen of a Cryptophyte Suggests That Protein Diffusion in the Lumen Is Very Restricted
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector FEBS Letters 583 (2009) 670–674 journal homepage: www.FEBSLetters.org Immobility of phycobilins in the thylakoid lumen of a cryptophyte suggests that protein diffusion in the lumen is very restricted Radek Kanˇa a,b,*, Ondrˇej Prášil a,b, Conrad W. Mullineaux c a Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovicky´ mly´n, 379 81 Trˇebonˇ, Czech Republic b Institute of Physical Biology and Faculty of Biology, University of South Bohemia in Cˇeské Budeˇjovice, Czech Republic c School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, United Kingdom article info abstract Article history: The thylakoid lumen is an important photosynthetic compartment which is the site of key steps in Received 10 November 2008 photosynthetic electron transport. The fluidity of the lumen could be a major constraint on photo- Revised 23 December 2008 synthetic electron transport rates. We used Fluorescence Recovery After Photobleaching in cells of Accepted 5 January 2009 the cryptophyte alga Rhodomonas salina to probe the diffusion of phycoerythrin in the lumen and Available online 21 January 2009 chlorophyll complexes in the thylakoid membrane. In neither case was there any detectable diffu- Edited by Miguel De la Rosa sion over a timescale of several minutes. This indicates very restricted phycoerythrin mobility. This may be a general feature of protein diffusion in the thylakoid lumen. Ó 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. Keywords: Cryptophyte (Rhodomonas salina) Fluorescence recovery after photobleaching Protein diffusion Thylakoid lumen Phycobilin Phycoerythrin 1.
    [Show full text]
  • Phycobiliproteins
    Phycobiliproteins Table 1. Contents and storage information. Material Amount Concentration Storage* Stability allophycocyanin When stored B-phycoerythrin 0.5 mL 4 mg/mL solution in 60% saturated as directed ammonium sulfate, 50 mM the product is R-phycoerythrin potassium phosphate, pH 7.0 stable for at least • 2–6˚C 1 year. allophycocyanin, crosslinked (APC-XL) 250 μL • Protect from light 4 mg/mL solution in 0.1 M sodium • DO NOT R-phycoerythrin, biotin-XX conjugate 0.5 mL phosphate, 0.1 M NaCl, 5 mM sodium When stored FREEZE azide, pH 7.5 as directed the product is 2 mg/mL solution in 0.1 M sodium R-phycoerythrin, pyridyldisulfi de stable for at least 1 mL phosphate, 0.1 M NaCl, 5 mM sodium derivative 6 months. azide, pH 7.5 Approximate fl uorescence excitation/emission maxima: See Table 2. Introduction Phycobiliproteins are stable and highly soluble proteins derived from cyanobacteria and eukaryotic algae that possess a mono-disperse population of prosthetic fluorophores. Their biological role as light collectors requires maximal absorbance and fluorescence without susceptibility to internal or external fluorescence quenching. Consequently, their absorption and fluorescence characteristics are exceptional—quantum yields up to 0.98 and molar extinction coefficients of up to 2.4 × 106 have been reported. Phycobiliproteins have been covalently conjugated to proteins such as antibodies and other molecules to make probes with greatly enhanced detectability.1 Molecular Probes offers three highly purified phycobiliproteins—B-phycoerythrin (B-PE, Cat. no. P800), R-phycoerythrin (R-PE, Cat. no. P801), and allophycocyanin (APC, Cat. no. A803)—for these applications, in addition to phycobiliprotein-labeled secondary antibodies and avidin/biotin probes.
    [Show full text]
  • BOT*4380 Metabolism in the Whole Life of Plants Winter 2020 Section(S): C01
    BOT*4380 Metabolism in the Whole Life of Plants Winter 2020 Section(s): C01 Department of Molecular and Cellular Biology Credit Weight: 0.50 Version 1.00 - January 03, 2020 ___________________________________________________________________________________________________________________ 1 Course Details 1.1 Calendar Description This course follows the developmental changes that take place in plants, and explores the molecular, biochemical and physiological mechanisms that are responsible for development. Emphasis will be placed on the importance of modern experimental methods and critical evaluation of data. Pre-Requisites: BIOL*1090, BIOC*2580 1.2 Course Description This course follows the developmental changes that take place in plants, and explores the molecular, biochemical, and physiological mechanisms that are responsible for development. Emphasis will be placed on the importance of modern experimental methods and critical evaluation of data. 0.5 U. Prerequisites: BIOL*1090 & BIOC*2580. 1.3 Timetable Lectures are in MCKN (MacKinnon) 234, 10:30-11:20 am, Mon/Wed/Fri, starting Monday, January 6th, 2020 and ending Friday, April 3rd, 2020 (36 lectures total). 1.4 Final Exam Scheduled for Wednesday, April 15, 2020, 7:00-9:00 pm (location TBA). Exam time and location is subject to change. Please see WebAdvisor for the latest information. ___________________________________________________________________________________________________________________ 2 Instructional Support 2.1 Instructional Support Team BOT*4380 C01 W20 v1.00 Instructor: Dr. Tariq Akhtar Email: [email protected] Telephone: +1-519-824-4120 x54794 Office: SC1 4461 Office Hours: By appointment. Feel free to contact us by email; we will do our best to respond quickly. Instructor: Dr. Barry Micallef Email: [email protected] Telephone: +1-519-824-4120 x54384 Office: CRSC 424 Office Hours: 1:00-2:30 pm on MWF and also by appointment.
    [Show full text]
  • Download Reprint (PDF)
    ISSN 0006-2979, Biochemistry (Moscow), 2017, Vol. 82, No. 13, pp. 1592-1614. © Pleiades Publishing, Ltd., 2017. Original Russian Text © N. N. Sluchanko, Y. B. Slonimskiy, E. G. Maksimov, 2017, published in Uspekhi Biologicheskoi Khimii, 2017, Vol. 57, pp. 71-118. REVIEW Features of Protein-Protein Interactions in the Cyanobacterial Photoprotection Mechanism N. N. Sluchanko1,2*, Y. B. Slonimskiy1,3, and E. G. Maksimov2 1Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia; E-mail: [email protected] 2Lomonosov Moscow State University, Faculty of Biology, Biophysics Department, 119991 Moscow, Russia 3Lomonosov Moscow State University, Faculty of Biology, Biochemistry Department, 119991 Moscow, Russia Received August 21, 2017 Revision received September 11, 2017 Abstract—Photoprotective mechanisms of cyanobacteria are characterized by several features associated with the structure of their water-soluble antenna complexes – the phycobilisomes (PBs). During energy transfer from PBs to chlorophyll of photosystem reaction centers, the “energy funnel” principle is realized, which regulates energy flux due to the specialized interaction of the PBs core with a quenching molecule capable of effectively dissipating electron excitation energy into heat. The role of the quencher is performed by ketocarotenoid within the photoactive orange carotenoid protein (OCP), which is also a sensor for light flux. At a high level of insolation, OCP is reversibly photoactivated, and this is accompanied by a sig- nificant change in its structure and spectral characteristics. Such conformational changes open the possibility for pro- tein–protein interactions between OCP and the PBs core (i.e., activation of photoprotection mechanisms) or the fluores- cence recovery protein.
    [Show full text]
  • Low Ph Reduces the Virulence of Black Band Disease on Orbicella Faveolata
    RESEARCH ARTICLE Low pH reduces the virulence of black band disease on Orbicella faveolata Erinn M. Muller1*, Nicole M. Leporacci2, Keir J. Macartney3, Alessandra G. Shea4, Rachel E. Crane5, Emily R. Hall1, Kim B. Ritchie1,6 1 Mote Marine Laboratory, Sarasota, Florida, United States of America, 2 Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, United States of America, 3 Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, United States of America, 4 Department of Geography, University of Hawaii, Honolulu, Hawaii, United States of America, 5 Unity College, Unity, Maine, United States of America, 6 University of South Carolina, Beaufort, South Carolina, United States of America a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract Black band is a deadly coral disease found worldwide, which may become more virulent as oceanic conditions continue to change. To determine the effects of climate change and ocean acidification on black band disease virulence, Orbicella faveolata corals with black OPEN ACCESS band were exposed to different temperature and pH conditions. Results showed a signifi- Citation: Muller EM, Leporacci NM, Macartney KJ, Shea AG, Crane RE, Hall ER, et al. (2017) Low pH cant decrease in disease progression under low pH (7.7) conditions. Low pH also altered reduces the virulence of black band disease on the relative abundance of the bacterial community of the black band disease consortium. Orbicella faveolata. PLoS ONE 12(6): e0178869. Here, there was a significant decrease in Roseofilum, the cyanobacterium that typically https://doi.org/10.1371/journal.pone.0178869 dominates the black band mat.
    [Show full text]