<<

BNL-94287-2010 Formal Report

Proceedings of RIKEN BNL Research Center Workshop Volume 99

The of W and Z

June 24-25, 2010

Organizers:

S. Dawson, K. Okada, A. Patwa, J. Qiu and B. Surrow

RIKEN BNL Research Center

Building 510A, Brookhaven National Laboratory, Upton, NY 11973-5000, USA

DISCLAIMER

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. Preface to the Series

The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the "Rikagaku Kenkyusho" (RIKEN, The Institute of Physical and Chemical Research) of Japan. The Memorandum ofUnderstanding between RIKEN and BNL, initiated in 1997, has been renewed in 2002 and again in 2007. The Center is dedicated to the study of strong interactions, including physics, lattice QCD, and RHIC physics through the nurturing of a new generation of young .

The RBRC has both a theory and experimental component. The RBRC Theory Group and the RBRC Experimental Group consists of a total of 25-30 researchers. Positions include the following: full time RBRC Fellow, half-time RHIC Physics Fellow, and full-time, post-doctoral Research Associate. The RHIC Physics Fellows hold joint appointments with RBRC and other institutions and have tenure track positions at their respective universities or BNL. To date, RBRC has --50 graduates of which 14 theorists and 6 experimenters have attained tenure positions at major institutions worldwide.

Beginning in 2001 a new RIKEN Spin Program (RSP) category was implemented at RBRC. These appointments are joint positions of RBRC and RIKEN and include the following positions in theory and experiment: RSP Researchers, RSP Research Associates, and Young Researchers, who are mentored by senior RBRC Scientists. A number of RIKEN Jr. Research Associates and Visiting Scientists also contribute to the physics program at the Center.

RBRC has an active workshop program on physics with each workshop focused on a specific physics problem. In most cases all the talks are made available on the RBRC website. In addition, highlights to each speaker's presentation are collected to form proceedings which can therefore be made available within a short time after the workshop. To date there are ninety seven proceeding volumes available.

A 10 teraflops RBRC QCDOC computer funded by RIKEN, Japan, was unveiled at a dedication ceremony at BNL on May 26, 2005. This supercomputer was designed and built by individuals from Columbia University, IBM, BNL, RBRC, and the University of Edinburgh, with the U.S. D.O.E. Office of Science providing infrastructure support at BNL. Physics results were reported at the RBRC QCDOC Symposium following the dedication. QCDSP, a 0.6 teraflops parallel processor, dedicated to lattice QCD, was begun at the Center on February 19, 1998, was completed on August 28,1998, and was decommissioned in 2006. It was awarded the Gordon Bell Prize for price performance in 1998.

N. P. Samios, Director March 2010

*Work performed under the auspices ofD.S.D.D.E. Contract No. DE-AC02-98CHI0886.

CONTENTS Preface to the Series Introduction . First Measurement ofW+/W- Production at STAR in Polarized pp Collisions at RHIC Jan Balewski . First Observations at PHENIX of W Production From Polarized pp Collisions at RHIC DavidKawall . 7 ResBos and RhicBos: QT Resummation for (un)polarized EW Boson Production Pavel Nadolski . 13 Precision Determination ofMW from Observables at Colliders Alessandro Vicini . 19 W and Z Physics from HERA DavidSouth . 25 Measurement of W Boson at DO Junjie Zhu . 31 Measurement ofthe W Boson Mass at CDF Ashutosh Kotwal : . 37 Monte Carlo Modelling Issues for W Measurements Jan Stark . 43 Theoretical Issues in Monte Carlo Modelling for W/Z Production Jan Winter . 49 W Boson Physics and Global Analysis ofPDFs C. -P. Yuan . 55 Prospects and Future ofthe STAR W Program Collisions at RHIC 61 Joe Seele . Prospects ofthe Forward W Measurement in Polarized pp Collisions at the RHle-PHENIX Experiment Yoshi Fukao , .. 67 ANofW Production in Polarized pp Collisions Zhong-Bo Kang . 73 Precision Measurement ofthe W Mass and New Physics Ulrich Baur .. 79 W Measurements and Prospects at ATLAS Kevin Black . 85 Current Status and Prospects for W and Z Cross Section Measurementsat CMS Carsten Magass . 91 The Status ofNNLO Tools for W/Z Production at Hadron Colliders Frank Petriello . 97 List ofRegistered Participants . 105 Agenda . 107 Additional RIKEN BNL Research Center Proceeding Volumes . 109 Contact Information

Introduction

A two-day workshop on "The Physics of Wand Z Bosons'' Was held at the RIKEN BNL Research Center at Brookhaven National Laboratory on June 24-25, 2010.

With the recent release of the first measurement of W bosons in -proton collisions at RHIC and the first observation of W events at the LHC, the workshop was a timely opportunity to bring together experts from both the high energy and communities to share their ideas and expertise on the physics of Wand Z bosons, with the aim of fully exploring the potential of the W/Z physics programs at RHIC and the LHC.

The focus was on the production and measurement of W/Z bosons in both polarized and unpolarized proton-proton collisions, and the role of W/ Z production in probing the parton flavor and helicity structure of the colliding proton and in the search for new physics. There were lively discussions about the potential and future prospects of W/Z programs at RHIC, Tevatron, and the LHC.

Organizers: S. Dawson, K. Okada, P. Patwa, J. Qiu and B.Surrow

First Measurement of W+/W- Boson Production at STAR in Polarized pp Collisions at RHIC Jan Balewski (For the STAR Collaboration) Massachusetts Institute of Technology [email protected]

The STAR experiment has acquired its first set of W -boson events from collisions of longitu­ dinally polarized at VS = 500 GeV. The STAR Electromagnetic Calorimeter triggered on / from the weak decay of the III and provided the energy of the , while the STAR Time Projection Chamber allowed reconstruction of the lepton track and its sign. The QeD physics background was suppressed by isolation cuts around a candidate lepton track as well as vetoing on transverse energy opposite in azimuth. In the leading­ order W± production is through u+d --+ W+ and d+u -+ W-. These interactions are ideal tools to study the spin-flavor structure of the proton, because the spin-dependent W production cross section ~a == a(pp) - a(*pp) depends strongly on the polarization of the and anti-quark in the proton, with p(*P) representing a proton with its spin aligned with (against) its momen­ tum. \Ve will present the status ofthe STAR measurement of A L = D..a j(a(pp) + a(pp)) for mid-rapidity charge separated W+ and W-.

1 *AR Simulated W-+e+v event at STAR EM shower from W --> e _...... (L2-trigger)

------tv

--t P

.- .-r:-ze ----7 J~JT~~ID,~~_~,~-,JCJ r~ rr'_~,_,_J...L--=,_I_,I-~_='__~-.-J . ~-'l f r• r ['['-r _ l L, =J_-==:JL P v

Ws@STAR,results and pe_rs:..:.p_e_ct_iv_e~s ~ _ ~__Ja_n_B_alewski, MIT I *AR p+p~ W~e+v events selection

I.Find lepton inTPC (direction) and in EMC (energy) Zx2 EM cluster with highest ET sum, -TPC & EMC matching . must contain tower pointed by the track , , , t i , , 2.Suppress QCD background -EMC cluster isolation 4x4 patch centered on -near jet veto 2x2 patch -away ET veto

Transverse plane view 3000 M-C:W's w El M-C: QCD -STAR data 60, I M-C arb. norm. :> accepted Run 9 data Q) 50 ~ asWs E~/~4 ~~:L.>C,.,.~2! -- 0: I I i 8 ,300, 6 :200I 4 :100 2 oI .DfI!IDS....~;"J...\,_..s >, ,..:•. ,).~ :.:.:.",..:.:.:.'t ' o °0 o0.5 _ - .---~--

Ws @ STAR, results and perspectives Jan Balewski, MIT 2 *AR j Reconstructed Jacobian Peak for W+, W- I

....en 23 c c Run 9 STAR Preliminary~=500 GeV ~ Run 9 STAR Preliminary 'is= 500 GeV ~ o p+p~ ~ o p+p -'J> ~ e+ +V o w- e- -s; () w+ 80 1111 <1 80 positron !rll<1 - W· candidates - W+ candidates -+- Backg. est. -+- Backg. est. ...- Backg. subtr. W· ...... Backg. subtr. W+ 60 60

40 40 ~

20 20

01 'tf. - 41 01...... ,• !:T:7 • ' •T , • • • !

10 20 30 40 50 60 70 EMC cluster E T (GeV)

Ws @ STAR. results and Jan Balewski, MIT 3 *AR t~~~~,~~~~~,~~~~~~i~~:~~~~~~~~~,1

ll~- H~+ -+ c: + iJe -1- e+ + Ve :li' Run 9 STAR Preliminary p+p \jS=500 GeV .. rob.'; J.\ l;jG 513 .s: Kinematic acceptance: ~lel < 1 and E~ > 25 GeV 'tV b 90 A'back 2G ~~l 46 +36 O'(W± -7 e± + vel -11 () l":G +0.11 . so +0.12 t:. Etotal .•J -0.09 O... 0 -0.09 ~ ... 80 , ... '¢> .r Ldt (pb-1 ) 1~3. 7 ± ~3.2 13.7 ± :3.2 I ' I II \ \ I ,, I w+ ,f VI , Run 9 STAR Preliminary (p-p 500 GeV) I \ a w+ = 61 ± 3 (stat.) ~~~ (syst.) ± 14 (lumi.) pb , I • STAR Dala 0 C:::~~~.;~~I.

40 ... -;' I Lumi. Uncert. -e- MR~~~~B,?e~um. a w: = 17 ± 2 (stat.) ~~ (syst.) ± 4 (lumi.) pb I ;:a~:~~:~. ~ CT~~~~~:sum. 30 .... - ...... , ... I \ t:. o(lo There is reasonable 20f;' It; Ii w- \ I agreement between the 10~, .... _... ; measured and expected OL------~ cross sections.

We: (m !':TAR, results and perspectives Jan Balewski, MIT 4 *AR AL for Ws measured in Run 9

0"+ - 0"_ STAR Preliminary Rung \jS=500 GeV A L A L p+p --) W± --) e± + v 0"+ + 0"_ 0.4 e;>25GeV ~ ~~ ~ ~ ~ ~t m ~ ~ ~ ,.. -- ...... J STAR Preliminary Run 9 w- _. -... -.F.:.:;.:,:;.-: 0.2 AL(W+) = -0.33 ± 0.10(stat.) ± O.04(syst.)

0 ..... cr. AL(W-) = 0.18 ± O.19(stat.) ~g:gj(syst.) AL=0'. + cr. 0'1 ... -..-_ .. W· W+ RHICBOS ...... --. •••• -ONS-K I _ . .••• -DNS-KKP .... -OSSV08 Summary del'lorian & Vogelsang ...• -.- DSSV08 (for mid rapidity ) • Al(yV+) negative, as predicted, -3 sigma <0

-0.4 • Al(yV-) central value positive, as expected • systematic errors of AL under control "'. ~ ' Syst. uncertainty due to abs. Ii polariZatic;>" and background • TPC charge separation works up to ET-SO GeV -2 -1 0 1 2 I lepton 11

~ STAR. results and perspectives Jan Balewski, MIT ._------~------5 First Observations at PHENIX of VV Production from Polarized pp Collisions at RHIC

Dave Kawall, RIKEN-BNL Research Center and University of Massachusetts Amherst on behalf of the PHENIX Collaboration

~ t•

-...... J / ! / 1 ct

t The evidence for pp ~ H + --+ e + X' in polarized pp collisions at VB == 500 GeV in the PHENIX detector at RHIC is presented. The physics importance, analysis strategy, and r preliminary results on the single longitudinal, parity-violating spin Ar + are also presented.

D. Kawall TV and Z Workshop, BNL. June 2-1-25 2010 Motivation for Spin Physics with Vlls at RHIC

® Key measurement of spin program: flavor separated, polarized PDFs 6D,(x) and 6rl(~r)

$ Semi-inclusive polarized DIS experiments (SMC, HERMES, COMPASS) have made such measurements

@ STAR and PHENIX can do it exploiting maximal-parity violation in W production in polarized pp collisions 2 Measurements made at high scale O\1a/ > 6000 GeV )

No uncertainty from fragmentation (couplings of VV well known)I no higher twist effects

- 0.04 xAu xi\d _.. 0.04

@l Unpol. PDFs known to about 10~;Q 0.02 0.02

@l Theoretical uncertainties small o f- ··· - ·- ·•··..·.·.f o (NLO+resummation) 00 -0.02 -0.02 • Robust extraction of 6u(x) and t6.d(x) -0.04 -0.04 f) Can also measure ratio u(x)jd(x) 0.3 0.04 xAs 0" 0.02 0.1 o J.- -- - -.,.~;,.; :.,~ -<= D. de Florian, R. Sassot, M. Stratmann, o and W. Vogelsang, Phys. Rev. Lett. -0.02 -0.1 101, 072001 (2008) 2 -0.041-- Q2::= 10 GeV ( At Q2 = 10 GeV2 )

-I 2 -j 10 -... 10 x 10- ro x

D. Kawall TF and Z Workshop, BNL. June 24-25 2010 PHENIX Central Arm Spectrometers

PHENIX Detector • Electromagnetic calorimeter (EMCal fi nely segmented : 6.¢ x 6.r, ~ 0.01 x 0.01 0 • Calibrated with M:», of 1r at high P7 PbGI 1'-0~ ~ 8~~~~06~~.Fooooo~oOTOOOl s;¢'J.. 1 1 1 \.Q

West Beam Vie".' East 6 8 to 12 1. 18 ''til pt (GeVlc) ~ ~ Focus on jJp lV± + X e± + X' ~ Tracking: Charged tracks measured i • Detect high E e± in central arms of PHENIX Drift Chamber (DC) and Pad Charr ber(PCl) 4ft Acceptance of each arm: rapidity /17j < 0.35 (70 < e < 110), 6.¢==1r/2 * J13 .dl ==- 0.78 Tesla-meters e Vertex cut: Izl < 30 cm

D. Kawall rv and Z Workshop. BNL June 24-25 2010 Comparison of Data with Background Estimation

I Raw counts (Positive Charge) i + Raw counts (Negative C 8 {EYeal cluster associated with track} s (.EMC81 cfuster aHociamd with ttack) ~ Data driven BG estimation BO.timation (10..20GeV assumed to be ai' BG) 10·20GeV 8esumedto be all 80) i~ iii ~"BG+PYTHIA(normalized) At"'.....DY1"'i4IA CnormlliHdl

o .....,"'~ • ""'~'" Ei' PH ENIX e PH· EN'X

~ o

70 PJGevfcl

To determine background under signal region (30-50 GeV) :

• Take measured nO + r spectrum x conversion prob + accidental matching track ® ac- ceptance ~ Add charged (NLO) 0 detector response (GEANT) + e± from FONLL c/b decays ~ Normalize h± component so total background matches data in range 10-20 GeV

8 Black histogram: background estimate; largest component from 11"0 + r, h± slightly less

D, Kawall n' and Z Vv'orkshop, BNL, June 24-25 2010 Parity-Violating Single Spin Asymmetry ",4 L (tfp ---+ "VV+ -4 e")

~ Preliminary result, using PE = 0.38 ± 0.04 and Pv = 0.40 ± 0.04 (SP/P = 9.2S~) e Raw asymmetry in background region (12-20 GeVIc) consistent with 0 : E~~~d = 0.035 ± 0.047 ~ Raw asymmetry in signal region (30-50 GeV/c) inconsistent with 0 : E;~~?al = -0.29 ± 0.11

e A L = ~ XEraw X D, correct for dilution of A L by Z and QeD background (D = 1.11 ± 0.04)

r-~cc~--_cc~c_---~~-~c_~'~_C_-' .~.~ ..~ I AL(jJp -+ W+ -+ e+) = - 0.83 ± 0.31

~ ~J

-0.6

=O.39±O.04 dilution 1.11±O.O

..0.8

A~'0 30 35 PH.i'I:'ENIX P [GeV/c] T

D. Kawall TF and Z Workshop, BNL, June 24-25 2010 Summary and Outlook

@ Developed analysis techniques to isolate lV ---+ e signal above backgrounds • Clear evidence for W"± ---+ e± at 1171 < 0.35 in PHENIX central arms • Preliminary determination of single-spin parity-violating asymmetry: Arl(pp ~ lV+ ---+ e!) == - 0.83 ± 0.31

7 $ Analysis underway for cross-section estimates, final Ar ± determinations

e Upgrades will help refine analysis, add acceptance and new physics channels:

...... Si Barrel vertex detectors in PHENIX central arms tv arms: RPCs + muon trigger upgrade: W ---+ f.-l signal 1.2 < l17ftl < 2.2

• (-AD getting closer to design luminosity at yI506 GeV, ~ 40% polarization e Will need 300+ pb-1 integrated luminosity, 60% polarization to meet goals of program

D. Kawall TV and Z Workshop, BNL June 24-25 2010 ResBos and RhicBos QT resummation for (un)polarized EW boson production

I--' W Pavel Nadolsky

Southern Methodist University

June 24, 2010

Pavel Nadolsky (SMU) W/Z workshop, BNL 06/24/10 1 Objectives of the talk

An overview of physics in

• ResBos: Resummation for electroweak Bosons and their decays in unpolarized pp or pp collisions

~ • RhicBos = ResBos adapted to compute longitudinal +:>. single-spin and double-spin in leptonic decays of r*, ~ Z in pp collisions

• Single-spin asymmetries in hadronic decays of W· bosons -0 useful measurement complementary to the leptonic mode

. Interruptions and questions are welcome'

Pavel Nddolsky (SMU) W/Zworkshop,BNL 06/24/10 2 Today's focus is on...

• unpolarized parton distributions: fajp(x, Q) - f:/p+(x, Q) + f:;~+(x, Q)

• longitudinally polarized parton distributions: llfajp(x, Q) f:/p+(x, Q) - <: Ur, Q) .- Vi • unpolarized cross sections: (J = ~ [(J(P-> p) + (J(P+-p)]

• single-spin cross sections f:,. L (J = ~ [(J (p->p) - (J (p+-P)] <#- 0 if V - A interaction):

• single-spin asymmetry as dllLajdy a function of W boson rapidity AL(y) - d(Jjdy y:

Pavel Nadolsky(SMU)W/ZWorkshop, BNL 06/24/10 3 Two classes of subprocesses with W bosons

1: Resonant (s-channel) W boson production 1J,~ w+

I--" 0"1 • Hadronic decays: Br(W ~ hadrons) ~ 67% d '\-d

2: Non-resonant scattering into a dijet final state, mediated by -r, W, Z, and g, and interference terms

u. . d u I UU I • UU U

w Hl ,*,Z 9

u 11 d d d d d d I etc.

Pavel Nadolsky (SMU) 'W/Z workshop, BNL 06/24/10 4 Related publications On-shell W boson production 1. C. Bourrelv. J. Softer. PLB 314/132 (1993); Nucl.Phys. B423, 329 (1994)

. 2. A. Weberf Nucl. Phys. B 403/ 545 (1993) 3. RNcdolskv. hep-ph/9503419 4. T. Gehrmann, Nucl. Phys. 8534,21(1998) 5.. M. Gluck, A. Hartl, and E. Reya, Eur. Phys. J. C19, 77 (2001)

...... -...J Leptonic decay mode 1. B. Kamal, Phys. Rev. D57/6663 (1998) 2. F? Nadolsky and C.-F? Yuan, NucL Phys. 8666,3 and 31 (2003)

Dijet mode 1. H. Haber and G. Kane, Nucl. Phys. B146,109 (1978) 2. F. Paige, T. L. Trueman, T. Iudron. Phys. Rev. D 19,935 (1979) 3. C. Bourrely, J. R Guillet, and J. Soffer, Nucl. Phys. B361, 72 (1991) 4. S. Arnold, A. Metz, V. Vogelsang, arXiv:0807,3688; S. Arnold, K. Goeke, A. Metz. RSchweitzer, W, Vogelsang, Eur.Phys.J.ST 162(2008)

Pavel Nodolsky (SMU) W/ZworkshopjBNL 06/24/10 5 Data-driven search for resonant VV ~ jet + jet contributions AL(y) is most accessible in the signal region:

Q == M~v ± 10 - 15 GeV, PTj 2: 25 GeV, IYIj - Y2j! ;S 1 The measurement can be based. on the following strategy: 1. Discard events with -Iike jets (wide. large multiplicity) to the best of ones ability 2. Precisely measure the smooth background 00- outside of the signal region 3. Use this measurement to predict and subtract the background inside the signal region

4. Look for a large .44L (y) at y > +1 (driven by a large ilu(x)j'u(x) ot » ~ 1) 5. Measure moderate AL(y) at y < -1 to constrain fj.d(x )/ d(x) at x < 0.1

Pavel Nadolsky (SMU) W/Z workshop, BNL 06/24/10 3"] Precision determination of MW from observables at hadron colliders

Alessandro Vicini Dipartimento di Fisica, Universita degli Studi di Milano and INFN, Sezione di Milano, Via Celoria 16, 20133 Milano ()

Abstract

The measurement of ~1W will probably reach the 15 MeV level at the Tevatron. The measurement of this pseudo-observable heavily involves theoretical ingredients. In order to attempt an estimate of the final theoretical systematic uncertainty, one needs a classi­ fication of the impact of different classes of radiative corrections in terms of shifts of the final value of M\V. Once known higher order effects have been estimated and possibly included in the data analysis, it will be possible, by comparing the predictions of different codes, to study the remaining sources of theoretical uncertainty and to obtain a final theoretical systematic error on 1''''1\\1. Fixed order calculations provide the first basic estimates of the relevant cross sections, but a realistic simulation shows which effects survive after e.g. the convolution with multiple gluou/ emission and with the smearing of lepton momenta. or the lepton­ photon recombination. In this talk I will describe a simple procedure to perform a template fit of theoretical distributions, treated as pseudo-data, deriving a classification of the impact of M\V of different classes of radiative corrections. This procedure will be applied to study: i) change of E\iV input scheme, use of factorized expressions, E\V higher orders; ii) QeD corrections by different codes; iii) combination of QCD+E\V corrections; iv) PDF uncertainties.

19 The template fitting procedure A distribution computed with a given set of radiative corrections and with a given value M\Vo is treated as a set of pseudo-data. The templates are prepared in Born approximation, using 100 values of MWi Each template is compared to the pseudo-data and a distance is measured.

Nbins ( Ojata _ o~empl=i) 2 2 1~ X1. Z:: i = ... , IVtempl (1) = ""' ata j=l (a1 ) 2

The template that minimizes the distance is considered as the preferred one and the value of I'vlW, used to generate it, is the measured M\~T. The difference I'v1W-MWo represents the shift induced on the measurement of the VV mass by including that specific set of radiative corrections The distributions used in the evaluation of XT in general do not have the same nor­ malization. It is also possible to compare distributions that have been normalized to their respective cross-sections, to appreciate the role of the shape differences.

2.5 1M 10M 100 M 340 M 2

'" 1.5 ...... " ...

...... ~.~~ -,

nominal MVil=80.398 GeV templates with 1B events Tevatron pp-? H!± -? fW,.

0.5 +------..----,.-----...... --,---,----"---..,----j 80.38 80.385 80.39 80.395 80.4 80.405 80.41 80.415 80.42

Alvl/ (GeV)

Figure 1: Pseudodata in Born approximation, fitted with Born templates. The nominal M\iV value used to generated the pseudodata is found from the fitting procedure, with increasing accuracy depending on the number of events in the pseudodata sample. The ~X2 = 1 rule, valid in this exercise, determines the uncertainty in the fitting procedure associated to the extraction of a preferred value of M\\1.

20 Effect of higher order corrections in the 0:(0) input scheme

1.4 i&f0) O(a) FSR-PS !f ~(O) exp FSR-PS i! !a(O) exact O(a) 1.2 !i J a(O) best if i fit iff 0.8 !f I nominal MW=80.398 GeV :;I :: i bare cuts 0.6 if! Tevatron if J pp -+ W+ -+ f.l+1JJ.! := f 0.4 :If if I ::f 0.2

o \.J) 80.3 80.304 80.308 80.312 80.316 80.32 80.324 80.328 1Y1w (GeV)

Figure 2: Impact of different higher order corrections, all evaluated in the 0:(0) input scheme, on the extraction of a preferred MW value.

The templates used to evaluate the effects in fig.2 have been prepared using HORACE, Born approximation, a(O) input scheme, 10 billions of events, 80.248 :s: ~,",,1lV :s: 80.348 GeV.

21 Effect of different EW input scheme choices

ac scheme I 1.4 p 0:(0) 0(0:)

(XcI' scheme II 1.2 cxc" exp cx(O) exp

0.8 nominal M\V=80.398 GeV bare cuts 0.6 Tevatron pp ---+ vV+ ---+ M+Vt-t 0.4

0.2 o 80.3 80.304 80.308 80.312 80.31G 80.32 80.324 80.328 Mw (GeV)

Figure 3: Impact of different E\V input scheme choices on the extraction of a preferred MW value, in different perturbative approximations.

The templates used to evaluate the effects in fig.3 have been prepared using HORACE, Born approximation, 0(0) input scheme, 10 billions of events, 80.248 ::; 2\1~'V ::; 80.348 GeV.

22 Effect of different methods to include multiple gluon radiation

30 ,------,.--...... ,---..,.------r---,

25

2Q

60 70 so 100 mlf (GoV)

Figure 4: Transverse mass distribution obtained with different code that share NLO-QCD accuracy but include multiple gluon radiation with different approaches: analytical re­ summation (Resbos) or QeD Parton Shower with different ordering algorithms (HER\VIG vs PYTHIA)

3" POWllEG+HERlIf& POllHEG+P'ffHIl\" 30 Re sbee-v-r-' NLO-QG!;-- 25 € 'J i ~ 15

10

0 2[, :10 3fJ 40 4fl 50 ss , ~ (GoV)

Figure 5: Same as in fig.4, for the transverse lepton distribution.

The templates used to evaluate the effects in fig.4,5 have been prepared using Resbos, best approximation, 0:(0) input scheme, 1 billion of events, 80.348 S lHTV S 80.448 GeV. The effect of the corrections is very stable in the case of the transverse mass distribution (.6.MlV = +18 MeV) for both PO\VHEG+HERWOG and PO\VHEG+PYTHIA. In the case of the lepton transverse distribution, the fitting procedure is much more sensitive to the QeD details of the different approximations) both for their impact on the normalization and on the shape of the distribution.

23 Effect of the combination of EvV and QeD corrections

The QeD and E\V corrections to different distributions can be combined, up to terms of O(CY~), 0(0:0: 8 ) and of terms of according to the following recipes.

(2)

1 + [rc,]MC@NL~ - [rc,]HERWIG PS) x {[~~] } ... (3) ( [dO LOINLO EW BERM IG PS

additive 1.4 ! / factorized 1.2

C'-l'g'" ;>< 0.8 I C'l ;>< 0.6

0.4

0.2 /,/ " o 80.3 80.32 80.34 80.36 80.38 80.4 1'v1w (GeV)

Figure 6: Preferred M\V value obtained in the two approximations of eq.2 and of eq.3

The templates used to evaluate the effects in fig.6 have been prepared using Resbos, best approximation, 0;(0) input scheme, 1 billion of events, 80.219 ~ AHV ::; 80.419 GeV.

24 technische universitat .' dortmund

Wand ZPhysics from HERA

David South (Technische Universitat Dortmund) tv lJ) on behalf of the Hi and ZEUS Collaborations

The Physics of Wand Z Bosons/ June 24 - 25 2010/ NATIONALBROOKHAVENLABORATORY

Outline: Introduction to HERA, Hi and ZEUS· High Q2 Measurements of Neutral and Charge Current Combined Hi and ZEUS measurements and QCDjEW fits Rare processes at HERA involving Wand Z Bosons Summary Efectroweak Physics at HERA

HI and ZEUS ::J > 'f vu -v.....-PlW(preil Inclusive measurements (j", lDGeV' H1 preliminary t. v" -POF(Prell Q2~Mw,z OJ) -,-, HERAPDFI.Q electroweak effects at • "P.ueee rt. 0.51- 68% CL HERA -==:J modtll,lrK'1!rt.. .~""'U8C«1. ..­:> Q) V H1 .'p NC (preL) e 10 :i3 6. Ht e'p NC (pra!.) a C ZEUS .'p He 0&07 (prell Q ZEUS .'p NC 05-0& - SM .'p He (HERAPOF , ,0) -0.5 ~ SM e~p Nc (HERAPDF 1.0) * Standard Model -1 ~ -" LEPEWWG COF I.~ x -1 -0.5 0 0.5 au

N QeD and electroweak fits to the HERA data 0-.

e+,_~.e+

, ::: :-. p+ e+ ~q • -W'" - - ~X~lUt:d:~·~n ];:+ ofW and Z bosons q 1'/ZO e-

Measurements with Wand Z bosons at HERA are within reach!

DavidSouth, W/Z Physics from HERA, The Physics of W/Z Bosons, BNL, June 24-252010 ~ ;~~~I~.li~~~e IJnj'\'Br$iti5~ HERA II Polarisation Asymmetry in NC y ------+~ influence ofZO H1 Preliminary 1 ir------· A A± = 2~. _()~c(~)-a~c(~) •A e'p .~ --Pr a~c(l1)+al~c(Pr) 0.51- - H1PDF 2009

~ t t 1-----1 P >0 p- NR-NL R e NR+NL N PL <0 -...... ) -0.5 •A ep -« - H1PDF2009 a: w I

-I ' 1 i !I 'i! i ' 103 104 Q2 [GeV2]

Form polarisation asymmetry from HERA II measurements - clear observation of parity violation of NC electroweak exchange Nicely illustrates the properties of the different polarisation and lepton charge data Well described by the SM prediction

David South, W/Z Physics from HERA, The Physics of W/Z Bosons, BNL, June 24-25 2010 ~ ~~;~~I!,~~~e Ulll\",~rSlt~t Cross Section vs. Polarisation

1 • ZEUS CC e-p (175 pb- ) HERA Charged Current e'p Scattering o ZEUS CC (P =0) e-p (16.4 pb'') .... 120, iii iii iii iii j iii iii '> - SM (ZEU8-J"ETS) .c 400 GeV made by ZEUS j ':t -Po +P y<0.9 using various polarisation values 0.1 ·0.5 o :1 ~ ~ O~'.J~mr~_:~2t ... Data exhibit linear dependence of average polarisation and ·1 -0.8 ·0.6 ·0.4 ·0.2 0 0.2 0.4 0.6 0.8 1 HERA I and II measurements agree with the SM prediction Po

.t1'!'T!\ technische uni-,,'8"lsitat David South, WjZ Physics from HERA, The Physics of W/Z Bosons, BNL, June 24~2S 2010 ~ dortmund Impact of HERA Data at the LHC W+, Z rapidities (at 14 TeV!) after Voica Radescu, andAmanda Cooper-Ssrkar Prior to any HERA data Only ZEUS data Separate HI and ZEUS HERAPDF 1.0 2~- ~i~:--~--:~~"j ~2(!iC~~';C~='::"::-":~~'~'i" 2 v~=-'~\ r. j L5. 1 ;'.:

, . D.5 \0.5 iiF='-:~~ ~c-~=;;:=:~~ ~IE .... ';1Ab: ,4 .QZ'~' 2 -1 0 1 2'~:\" ,,1'.4 :3~~o~"~~ ~ iii -4 -3 2 -1 0 1 2 3 ... W -4 -3 -2 -1 0 1 2 3 41' v "'i',""; v';::·. ~ IIA tv 8.4 r----.. -..-.- ----, 0.4 ---~- ~,- -1' \D ~~_. o.J L "" OJ 0.2~/ "'" .•.. l .. -_" ""." . .:..:~ --=-_::.:_~... 0.21./,.">d=--~'~""'."",,,,.\1'.~ U, " t...••....•...... '." .....--'.'-." . .__ ...... •...... ""..,.'",'",""."".."""'..,,.",.',.',',""", •.. '., ~. ,J/<, OJ 1f-:~~~===-3 F;~==?~~ 1 4 -4 ·3 ·2 ·1 0 1 2 3 4,",:",,'" -4 -3 -2 -1 0 1 2 3 .. v ~ v " v \ Note scale! Experimental uncertainty at central rapidities using combined HERA data-1%1 http://www.desy.de/hlzeus/combined_results/benchmark/herapdfl.O.html

Impressive precision on the low x sea and gluon of the HERAPDF 1.0 is relevant forW,l production at the LHC Inclusion of HERA data shows the tremendous improvement on the predictions for Wand l production at the central rapidity

DavidSouth, W/Z Physics from HERA, The Physics of W/Z Bosons, BNL, June 24-25 2010 ~ ~";~;;;~~~eo,,,v8rs,"" Hl+ZEUS Isolated Leptons: Results

J!J J!J • H1+ZEUS (0.98 fb") e 50 • H1.j.ZEUS(0.98 lb") c • H1.j.ZEUS(0.98 lb") SM _SM Q) _8M ~ 2 E2J SM Signal W [22J SMSignal Iii 10 EZJ SM Signal 40 Jacobian 30 ...-- peak

20

10

V.J o Hl+ZEUS Data SM SM OtherSM Good overall 1994-2007 e±p 0.98 fb- 1 Expectation Signal Processes agreement Electron Total 61 69.2 ± 8.2 48.3 ± 7.4 20.9 ± 3.2 with the Standard Model pI> 25GeV 16 13.0 ± 1.7 10.0 ± 1.6 3.1 ± 0.7 Muon Total 20 18.6 ± 2.7 16.4 ± 2.6 2.2 ± 0.5 SM expectation pI> 25GeV 13 11.0 ± 1.6 9.8 ± 1.6 1.2 ± 0.3 dominated W Combined Total 81 87.8 ± 11.0 64.7 ± 9.9 23.1 ± 3.3 production ~ Cross section Pi > 25 GeV 29 24.0 ± 3.2 19.7 ± 3.1 4.3 ± 0.8

Measured: 1.06 ±O.16 (stat.) ± 0.07 (sys.) pb SM: 1.26 ± 0.19 pb from EPVEC NLO DavidSouth, WjZ Physics from HERA, The Physics of WjZ Bosons, BNL, June 24-25 2010 @:. tu ~~';";~:~~~ecni""'"itat ~ I ... 'b''''ii'''*'ATA. DfJ

Measurement of W boson mass at D0

w ...... Junjie Zhu University of Michigan

The Physics of Wand Z Bosons June 24, 2010 ~ -XiiiUA.'§-...... ~ W boson mass DfJ

2 ita 1 1 M - _ TY - JiG sin' Ow (1-Q2») t:l r - 30/0 F <>; H -~~J-~~ ~f"~C~ W W

W I1r oc M 2 Sr oc logM N t H

~~ '~~ () _V'./'Jv(/ q ~~~~/V'.,-,- W, ! Vi -, ;:;, / W W "'-~

Mw can be increased by up to 250 MeV in MSSM

A precise measurement of Mw can be used to make indirect constraints on MH and possible new physics 2010-06-24 Junjie Zhu ~ I'hii.'ifiiil...... '~ Measurement strategy ., W~ev Z~ee

w w

• Three observables: PT(e),PT(v) (inferred from missing transverse energy), transverse mass MT2=(ETe+ETv)2_1 P;e+PTv 12 • Develop a parameterized Me simulation with parameters determined from the collider data (mainly Z~ee events) • Generate Me templates with different input Mw, compare with data distributions and extract Mw •Z ~ee events are used to set the absolute electron energy scale, so we are effectively measuring Mw/Mz 2010-06-24 Junjie Zhu -t.'.:iii,,§1...... Calibration results .T.~ ., ... I zrnass > 91.10 ±O.11 GeV I Z--.ee I resn - 3.35 ± 0.11 GeV zmass .. 90.958 ± 0.032 GeV > L resn « 2.095 ±O.038 GeV g250 Nz" 1888 ±18 i2200 ~2000 Nz= 11451 ±45

J!l200 ::'1800 ~ 11600 1400 150 ! 1200 1000 100

50

~.t ,j* , 'ttl. re:e::::c d • d • J. • ... h J 70 90 70 w ~ !(j(PiPrl [ O.~~O:4TR;O.7fJ 1(j(Pr)/Prl I 0.4 < 1111 < 0.8 (R:o.7) J t- 0.3-..------~-.....-...- .....,,---- .. -'" ._... .__·__,,_oc__...... 0.3· -~-_...._._-_....._--..-.._-- a. ;;,.t­ ~ a. ,HAD resolution a. ""6 0.25 ""6 0.25 0.0< If) I<0.4 0.4< If) 1<0.8

0.2 0.2 Before Before ...--~- 0.15 0.15 i--: 0.1 0.1

0.05 0.05 After 00 00

2010~06~24 Junjie Zhu ..., -&tAilli-U­ •.• ~ Mass fits -- Z (Mee ), 18k W transverse mass (MT), SOOk

10000 • Data I ~ 1-- DO Preliminary, 1 ftS'l -FastMC I ~ 7500 i Q ! h I i 5OOO ' FitReglQrl > .,1 W i+----BtH~_-- ", 125 l 'l.~,ldof ,,1!h\rt60 11 i x2fdof '" 48149 .1 II il I " -- ~ 0;0 15 f~.GeVO 80 90 "100 f1\.r,GeV

x 4 r-::----'.-.'~--"------;~------.,-'---.-----"-----"~.------'-'-'--~------, w .. DOPreliminary, 11b' i ;>0< 4, poPreliminary, 1 fb-1 Vl 2~:, i. .' ! ii '" ,I ; I. I. i. i t~ ~: ~~! 'I ,_'ii '.,.-• . I'j :'. I: I I ,.... " : •.,,;.: j,'oj , .':'.,:';''*1 > ':':"'.-.J ,-,' : ' Il " .', .'.'!;! ! • ..' It· ~.~!, ~.~, ~ .~. ~' ll~/l" ~~'!'~i 0 ~ OHill.'.'i'~,· ·4~:JI;tI.!, .' ,.·f.~'~·.~·.'·'I~,1 .i~If;'; •... !,. ~~.·li.'i",; :.:':'j.!f'I;:"'c'l,.I~lllii..:,.j"~tt"'1 ., ~Ii;;,:• ~II!,il :nl~r~,.u:\t~, l~ ~ !t'#.i.~.~t ,,~.J t}lJ~.'I. ~ ~ .. .';.jj..•.. 1~1li l' .. " ""I ".'.11.'.''''' .• 41 ~~ 1ri.'!'.l .•. :!i. ii. ..a' .' I ",1 .,';.I.~!,;+,""l'! i ,- ".'...1 .•:~I'!~I" fI 'i! ttXf+'# .. ~,tT ~ l ~.. ~ __ :' ;1 :r..ld5li-; '••11 _- II' ·i'. rr, j ,:::.' 'i'! • :r 'T n- r I' . J• .,. :t,.T t,m fIT i It1 ·2f-'~ ••t -,-,' [f ,.,...', •••';:,';" 'I; .oi'..";'l, ' '.'j - ': .,: '"... ,',I 2 L . I 'il.I .. -, ••. " '. 'r t I • 1--- 'rr I ., I I • i •• ," .. i. -4Jo ! ,I iij 9() " 15 80 85 90 95 100 1~.GeVO 60 70 80 m,-,GJf

M z = 91.185 ± 0.033 (stat)GeV M w = 80.401 ± 0.023 (stat) GeV

(WA M z=91.188 ± 0.002 GeV) PRL 103, 141801 (2009)

2010-06-24 Junjie Zhu ...., .'·'II:+I..'§I ...... Uncertainties ~...... -... a(Tnltv) l'v'1eV~ Source TnT PT ItT Electron energy calibration I:34 :34 34 Electron resolution model 2 2 3 Electron energy offset 4 6 7 Electron energy loss model 4 4 4 Recoil model 16 12 20 I w Electron efficiencies 5 6 5 0\ Backgrounds 2 5 4 'ExperiInelltal Subtotal :35 :37 41 P~F 19 11 14 QED 7 7 9 f Boson ]JT 2 5 2 . Productioll Stlbtotal 12 14 17 'Total Systclnatic :37,10 44 Statistical 2:3 27 23 Total 44 48 50

2010-06-24 Junjie Zhu Measurement of the W Boson Mass at CDF Ashutosh Kotwal Duke University

We present a techniques used for precise measurements ofthe W boson mass at the CDF experiment at Fermilab. We present the results and the prospects for future improvements at Fermilab and the LHC. w -.)

Riken Brookhaven Research Center Workshop June 24-25,2010 Outline ofCDF Analysis Energy scale measurements drive the W mass measurement • Tracker Calibration - alignment ofthe central drift chamber (COT with ~2400 cells) using cosrmc rays - COT momentum scale and tracker non-linearity constrained using J/lIJ -----. J.l J.l and Y ------'J.l fJ mass fits

-~ w • Confirmed using Z J.l J.l mass fit 00 • EM Calorimeter Calibration - COT momentum scale transferred to EM calorimeter using a fit to the peak ofthe E/p spectrum, around E/p ~ 1 - Calorimeter energy scale confirmed using Z -.ee mass fit • Tracker and EM Calorimeter resolutions • Hadronic recoil modelling - Characterized using PT-balance in Z ----....11 events Internal Alignment ofCOT

• Use a clean sample of ~200k cosmic rays for cell-by-cell internal alignment

• Fit COT hits on both sides simultaneously to a single helix VJ \0 (A.Kotwal, H. Gerberich and C. Hays, NIMA 506, 110 (2003)) - Time ofincidence is a floated parameter

• Same technique being used on ATLAS and eMS Tracking Momentum Calibration • Set using JI'V -.. JJIJ and Y-.. JJJJ resonances - Consistent within total uncertainties

• Use II'V to study and calibrate non-linear response oftracker

• Systematics-dominated, improved detector modelling required

1 +:>. -1 COF II JL dt~ 200pb· o CDF II I L dt z 200 pb

Scale correction =(-1.64±O.01start0.06slope)x10-3 ~p/p ..0.001 JI'¥ mass independent OfPT(IJ)

~ * •. .• -0.002 -t-- ·

J/lP~~l~ data y -~ JJ ~ mass fit -0.003 011 I I 0 f q.1 9 9.5 10 (GeV' ) m~~ (GeV) z ~ll Mass Cross-checks

•Z boson mass fits consistent with tracking and E/p-based calibrations

CDF II L r-J 200/pb +:-. I--'"

200 400 t~1 .-:. D.ata ~Datal . rrrrr~ Simu ation M =(91190 ± 67 ) MeV SImulation Mz =(91184 ± 43) MeV z stat ~ I t~ l/dof = 32 I 30 x'/dof =34 I 38 r >(1) ~t ~ U 100 If) r 11 o

---­CZl ~ ~ +t~l ~\ (1) .i, + > l:Ll ._A-*~.#t! I. _.1 ~o 80 - ,- 110 m~l!1 (GeV) M(ee) (GeV) M(~~) (GeV) Summary

• The Wboson mass is a very interesting parameter to measure with .. . . mcreasmg precision

• CDP Run 2 W mass result with 200 pb' data:

-Mw == 80413 ± 48 MeV

• DO Run 2 W mass result with 1 fb' data:

"t:;;. tv -Mw == 80401 ± 43 MeV

• Most systematics limited by statistics ofcontrol samples

- CDP and DO are both working on c>Mw < .25 MeV measurements from ~ 2 fb' (CDF) and ~ 4 fb' (DO)

~ • Learning as we go: Tevatron LHC may produce bMw r-.I 5-10 MeV Monte Carlo modelling issues for W measurements

Jan Stark Laboratoire de Physique Subatomique et de Cosmcloqle Grenoble, France

~ w The physics of Wand Z bosons RIKEN BNL Research Centre Workshop, June 24-25,2010

------~~--~~ ~1~: ~ ~b ~ crprs c;;:-; _!=J__ L "C Subatomique et de Cosmologie Les deux infinis Context Most of the comments in this talk are based on experience from the 00 1 tb' measurement of the W boson mass. A complete overview of this analysis was described in Junjie Zhu's talk earlier today. Here we provide more details on the use of simulations in this measurement.

~> ~aooof CDF Run 011 80.436 ± 0.081 ::00 -DATA --, • "? 7600·:'" -FASTMC c DO Run I --+--t 80.4781:0.083 !l .w·~,,, i 5000 !i@lilz->co ~ OCD CDF Run II -.-.... 80.4131:0.048

Tevatron 2007 ....-.-. 80.432 ± 0.039 ···'lnr-.<'j~ DO Run II ~ 80.402 ± 0.043

Tevatron 2009 ...... 80.420 ± 0.031 +::­ +::- ~r~A~~f!~~li#iN~VI~*~!~\~t~!~f~~~ LEP2 OV~;-r\)gl~ "'-1f?-~ 80.376 :: 0,033 " World average ..... 80.3991: 0.023 I I I JvfyGl> 1~ 80 80.2 80.4 80.6 60 70 80 90 m,.,-oJGO (GeV)

.--... 0.2 :5 ~ 00. L=O.75fli' ..... ,.-..- .. ~25GcV But many of the techniques and strategies discussed 00 ~ -0.2 Er>25 GcV ~ -("TEQ6.6("t'ltlrnlml-ue N ~ here also apply to many other Wand Z measurements ... -7' -004 "---' "Ut:-iT!.MNJ.OI.'t'IlITlllmlm· e CTEQ6.f. Ulll,'erl:dnt)' rt"ud ~ -J -0.6 0::: 0 0.5 1.5 ;: 2.5 0... 11]"' Jan Stark The physics of Wand Z bosons, Brookhaven, June 24-25, 2010 Reminder: signature in the detector, requirements on precision Isolated, high PT leptons, missing transverse momentum in W's

Z events provide critical control sample

~ Vl

Of .~ L

In a nutshell, measure two objects in the detector: - Lepton (in principle e or J1; e in our analysis), need energy measurement with 0.2 per-mil precision (11) - Hadronic recoil, need - 1% precision !

_._--~-

Jan Stark The physics of Wand Z bosons, Brookhaven, June 24-25, 2010 Measurement strategy W mass is extracted from transverse mass, transverse momentum and transverse missing momentum: Need Monte Carlo simulation to predict shapes of these observables for given mass hypothesis q NLO event generator: 00 uses ResBos [Balazs, Yuan; Phys ReV 056, 5558] + Photos {Barbiero, Was; Comp Phys Com 79, 291] for W/Z production and decay

+:>. 0'\ + Parameterised detector model ii' v ~i l , W mass templates Validated in Detector calibration liMe closure test" - calorimeter energy scale backgrounds+ - recoil data____ -: binned likelihood fit ! Wmass

Jan Stark The physics of Wand Z bosons, Brookhaven, June 24-25, 2010 "First principles" vs. "parameterised" simulations We all like "first principles" simulations, i.e. simulations where everything is based on a formal theory that predicts everything.

Examples: -A used to simulate some e+ e --+ X collision. -A simulation based on the known laws of the interactions between high-energy and , as well as a model of the 00 detector geometry is used to predict the electron energy response in 00.

But what to do when the "first principles" cannot be made precise/complete enough? ~ ...... :J Examples: - Tricky mathematical issues in QeD description of p' p+/- --+ X. - Response to hadrons not simulated quite right in detector simulation.

Here "parameterised" simulations can be very powerful, because they have simple "knobs" that we can turn to adjust things. Examples: - Non-perturbative form factors to be determined from collider data. - Simple parameterisation of hadron energy response, to be fit to control sample from collider data.

In practice, the trick is to combine the two approaches. In the 00 m(W) measurement we have a parameterised simulation with many parameterisations derived from first-principles simulations.

Jan Stark The physics ofW and Z bosons, Brookhaven, June 24-25, 2010 Model of W production and decay Tool I Process QeD E\~,7 RESBOS w.z NLO \VGRAD Bi­ LO complete 0(0), Matrix Element. ~ 1 photon ZGRAD Z LO complete O(Q): Matrix EleulCut: ::; 1 photon PHOTOS QED FSR; < 2 photons

Our main generator is "ResBos+Photos". The NLO QeD in ResBos allows us to get a reasonable description of the PT of the vector bosons. The two leading EWK effects are the first FSR photon and the second FSR photon. Photos gives us a reasonable .,J:::.. model for both. 00

We use W/ZGRAD to get a feeling for the effect of the full EWK corrections. The final "QED" uncertainty we quote is 7/7/9 MeV (mT,PT,MET). This is the sum of different effects; the two main ones are: - Effect of full EWK corrections, from comparison of W/ZGRAD in "FSR only" and in "full EWK" modes (5/5/5 MeV). - Very simple estimate of "quality of FSR model", from comparison of W/ZGRAD in FSR-only mode vs Photos (5/5/5 MeV).

Jan Stark The physics of Wand Z bosons, Brookhaven, June 24-25, 2010 ~~%:,."·",:·,,..,,:);B:,~S::,:,*:;~i;~<®~~:W,m~~~~3rn~~~~:~~:",:,,:,:,:::::::·::..:~::/'~~),<;~mm':~TI:m:::t:f::,:,:'<;::r:~~~~~;:~:F::~~m~:i::8~~~~~~:~"087f8''f:~'f~~7~:\::):,:::~::)::::)::}*~~~~:,'; "'·'Ff:,:~~:,,~:.,i'dii. ,,20"; ~::::b:::~:iMt;::>t' b:.:- hA{<.::1i!>.Li;:i;,A6:~:::~%, M,:)1R" 4:.:,:" ,,·,,4';',,$ .'" @..:),,%£4h,:.:,:,:.¥d.,,% ,', {~,~:.;::::::",:i;: g;;:;.;:;:

Theoretical issues in Monte Carlo modelling for WIZ production

[ Physics of Wand Z bosons - workshop @ RIKEN BNL research center]

Jan Winter a - Fermilab-

..(:::.. I give an overview of how production is '-D processed in Monte Carlo event generators. In a high­ energy hadron collider environment this is always affected by QeD radia­ tion. Parton showers can capture the leading effects of soft and collinear emissions, but fail to sufficiently describe hard jets associated with the vector boson. One therefore has to improve parton-shower approaches to gain a good understanding of V+n jets - a major background to all new physics searches. I briefly review tree-level matrix-element plus parton­ shower merging and NLO calculations as means to predict V+n jet pro­ duction. I compare both types of calculations and discuss their results.

a Sherpa authors: J. Archibald, T. Gleisberg, S. Hache, H. Hoeth, F. Krauss, M. Schonherr, F. Siegert, S. Schumann, J. Winter and K. Zapp http://www.sherpa-mc.de/ Jan Winter BNL. June 24, 2010 - p.1 'Mf 4'T"1!t"m"t"trt'wrw"mrw=rzrr~; ,..: Monte Carlo modelling of a (high-PT) event

:> Factorization approach: divide jet simulation into different phases

.. Perturbative Phases: [parton jets} .., Hard process/interaction (hard jet production) exact matrix elements IM/ 2 T--. '"' .... Ie -- • ~ QeD bremsstrahlung (soft/coli multiple emissions) o~r --\ \.\ Tf'!',.I·t~ ~~ "''ft-•• ',: F i./ ,•• __ "\! ••~ ,Ill. It. 'I 1--. e::. initial- and final-state parton showering '\, .0 ~~. --~~' 1,/ I, / /,/7 • .. ,~\\\ III..~\~.e\\"-b_.;.;. "/~~• .:.,./ .~-" ••:-:~,,.' ~., .\.....') ~ bAO '" "'~,v/·....jj:.-~~--...---",-- VI Multiple/Secondary interactions •• :...-.;p Ii;;"' .;> o .. -- tft~~'~ ~!ft:[ ~~ !j~~~ \"~~-- modelling the underlying event ~~.~:;! ;;~::\,~ ~l'~ l~"'"~: --~-', 1.Q.Q..9,k,..,:q~.-.,.. ..~ -.---~- ~,.Q-"-z'T" ~"., e~ r~,~..,_".r ,t .w,;s;"-- .. Non-perturbative Phases: [jet confinement - particle jets] --.--:. --~~~ /~;-~~--~~~~~"g~.!-;~~­ --- ~~:;8~;=:-\/_---~~_ ..~il~~~, <~: ~ ~,J.·'''-.·.1S~1 ~~.' .., _.:=--O >-,,~~~~.•Q:.. ,'.' . t:_ ',' .- phenomenological models to convert partons into primary hadrons ---- ccu-fC"o:'~~~~;-~ " ,S-o/<", "'!"nn '?T:r ---- ._..-)4 / '-i,p \"'-(--<~ LKc a ron eceys -> ..,;;\ ~~.~O>,'i ~ \ ,--~ J/IifV H d d /-/ "-'/ "" '" ""-'- phase-space or effective models to decay unstable into -:1l -/0;l.i'r,\ .,'''.. ~'": \, • ••• • i stable hadrons as observed in detectors -;J':j. .Ii'.. ..~ '. :> predictions at hadron level - comparable to experimental data if corrected for detector effects

Jan Winter BNl, June 24, 2010 - p_2 'WI 'j" r~YY"Wlmrn7Tmn ; Comparison with CDF data: W+jets production

[T. AALTONEN ET AL., PRD 77 (2008) 011108]

.. Monte Carlos need to be validated and tuned against most recent Tevatron data. .. Sherpa vs1.1.3 predictions normalized to total inclusive cross section. Two choices of PDFs. .. Tree-level ME+PS can reproduce W+>=n jet xsecs to 20% after applying overall K factor.

::c 3 > .s 10 ~ !i I IV ...... CDF Run 2 data (2008) Co' - CDF Run 2 data (2008) •••• Sherpa 112 CKKW 3jet (cteq6m) :a •• • • Sherpa 112 CKKW 3jet (cteq6m) ~ s - Sherpa 112 CKKW 3jet (cteq61) - Sherpa 112 CKKW 3jet (cteq61) 2 .~ 10 ..: c. U W + jets "'C W + jets Vl .S 13 I--'" 1 "'C P 1st jet + 10 320.pb- T in t ~ T_ b ~

10_1~_ Tevatron, RU,n 2

- I II I /, I ! II 1--1 ltl / I I " I I co ~ 0.4 1U "'C "'C 0.2 - 0 ~ 1.. ..:-·--- ·· ·:1 I j - ico -0.2

l' -OAt! !!! ![ !!! !! !! o 200 300 ~ o 2 3 4 100 Jet multiplicity (incl n jets) PT,1 [GeV]

Jan Winter BNL, June 24, 2010 - p.3 ~~ ;;; M:S:.~~c~~"~,;,,,@iitJW:-;(,;,,::;;,.,,dt,$i>>>,,&'~',,,~,,,, ~~:,\' ,.."'f.::":·:::,::t:~~~;:·,,,;~.,:::>0!::.>;c~~:'&,#:,:.,; : :: . , ,, : ,: ,, : ,: ; , . ,~ .%~ c : ~ %~: ,: :~:; : :: : : ~ :: m: :: : :: . :: : :'? /~?~?: ~~':f:\ :,; \ :: :: .f: : : . :, :f~ , . " : ,, «~,i~:.,}?:", '%:;::.)!ki!_:;:;,,~,~-:,_i.~,_. M, 'i:i!"!!~d< ,.;.,,>-:.:,,:'Q:¥.{ ,. ~ %%,~::;:"h,-liA ., ,,:;,:,1ifibf9LJ "·;;dhM"h::'8:,;A:,Jk:d¥..:,::¥::~:,;}:'i:~l':,,A:~:::~:~ALA~,::JW Comparison with CDF data: Z+jets production

ME&TS :: COMIX + CSS [1. AALTONEN ET AL., PRL 100 (2008) 102001]

Jj Sherpa vsl.l [CKKW] (left) compared with Sherpa vs1.2 [ME&TS] (right). ..., Examples of jet observables: new approach better describes the data. .. Sherpa predictions multiplied by constant K factor, normalized to first-jet bin xsec.

I i I ;e ~ 4 4 I- - 10 ...... 10 >--< CDF Run 2 data (2008) T - ...0 F Ul -- Nmax=O .L - Sherpa 112 CKKW 3jet (cteq61) t.; :i -- lVmax = 1 e J:l o -- lYm ax = 2 Q 3 = 3 VI c Z/y + jets .; 10 -- lYmax N

I I I I ::a ! ~4 l: I i I -:. c7 1.2 ~ ~2 - ~ -- 1 : 0 0.8 ~ ~~ ~ -:: -~4 - ~ oy I I I ~ 2 3 2 3 Jet multiplicity (incl n jets) l\jet

Jan Winter BNL, June 24,2010 - p.4 Z+jets production @ Tevatron Run2 energies

ME&TS :: COMIX + CSS [HaCHE, KRAUSS, SCHUMANN, SIEGERT, JHEP 05 (2009) 053]

.., Merging systematics of total cross section (LO) has improved: flO"tot/O"tot < ±3%

.. Differential k T jet rates in Qcut = Qjet variation @ hadron level. Note N m a x = .5. .. Qcut variation now within ±10%. Note J.L~ == M;e and 66 GeV < Ms; < 116 GeV.

.----. 8 6' _LO ~ H 1.0 4 o t;" ~ Nmax =6 cD <, ..s 1O~1 --==...... b N 5 'D max = ~--'.. VI ~_- b W 1.02 Nmax =4 ""C 10-2 Nmax = 3 -- QCllt = 20GeV 10-3 ~.._- Qcut = 30GeV -Nmax =2 ==t= ..~ -- Qcut = 45GeV 1.0 iEBffi Nmax = 1 ; . 10-4

0.98 IIIII

I I I 0.96 0.8 0.6 r IIII f I III[ J' IIIIIIIII l 20 30 45 0.,5 1.5 2 2.5 Qcut/GeV lOglO (dOl / GeV)

Jan Winter BNL, June 24,2010 - p.5 'rrT"H terr']·· tTT'nrrn m 7 Recent comparison of LHe predictions for W+3jets

[HaCHE, HUSTON, MAITRE, WINTER, ZANDERIGHI; LH09 PROCEED.: ARXIV:1 003.1241J

.. between BLACKHAT [BERGER ET AL.], ROCKET [ELLIS, MELNIKOV, ZANDERIGHI] and SHERPA [GLEISBERG ET AL.] "II rather different scale choices at NLO yield> 20% deviations ... impact on BSM searches!

.II SHERPA'S ME&TS merging in good agreement with NLO once rescaled to NLO xsec

w+ + 3 jets incl. production: E of W+ W+ + 3 jets lncl, production: H T T,tot >" hi ! • i Ql ~ - BlackHat+Sherpa, scale = AT - BlackHat+Sherpa, scale =A o - Rocket, scale « (p~w+ m~il2T rL...... Sherpa, ME&TS (N~':::2+4) :a ::a ~ B ' Sherpa, ME&TS (N x=2+4), ME-level ~ ..•• Sherpa, ME&TS(N",ox=2+4) '=i ME ~ 1 ~ 3: 10- ._ I Sherpa, ME&TS (N::-=2+4), ME-Ieve Vl I!~ .,J:::.. Lti :... '-l,.... ~ "l:J 13 10-1r ,!. '=t "l:J ~ "l:J ~ ·r- 'I-"""L- 13 o I ..".., 2 ~ 10- l ~ ~ ~ .:1 I 2 .. I! ".""~•.. ~ ~ 10- r- -~. o ~ ~ 'C _ ! 8 Y _ 'C~ 3 ,J 10- LHC 10 TeV LHC 10 TeV I! .... Ii! I j I I ; I, ; I Ql ;--+ .... 1w,-4 ~ 0.2_ .5 ~t ~e j . ____ ~.- _...."'...... "'_, .T~.~,".~: ...... ] ~ O.~. ! 0 tn .j n •••••..••..···.... -.! "2 I •• , •• c :•••••••• - •••:··L.r: ..i I () -0.2 o ~ ~ -O,SE I I j I ! t ! 1 1 I' !! III ! t I ! J 50 100 150 200 250 300 100 200 300 400 500 600 700 800 900 ET,w [GeV] Hr,tot [GeV]

Jan Winter BNL, June 24, 2010 - p.6 m 77 ."r W Boson Physics r_ and Global Analysis of PDFs

U'l U'l C.-P. Yuan Michigan State University

June 24,2010 @ BNL

Workshop on The Physics ofWand Z Bosons Precision Electroweak Physics at Hadron Colliders

VI 0\ Physics of Drell-Yan, Wand Z Bosons W-boson physics

OW-boson production and decay at hadron collider

8 How to measure W-boson mass and width?

Vl -....) 8 High order radiative corrections:

n:' QeD (NLO, NNLO, Resummation)

~ EW (QED-like, NLO)

e ResBos and ResBos-A W-boson production at hadron colliders

parton model lV ~

VI O¢

(Thh' .....W+X = L t' dxldx2 {¢Jlh (xI) cTif'¢Jtjh' (X2) + (Xl +--t X2) } i,i' 10 /\

~_ ~ r ...... ---...... partonic "Born"-, cross section of f J -+ W+ W-boson production at hadron colliders

w

underlying events (from proton remnants)

V1 \0 'K ,U L---..

PDFs: probability of ISRandFSR: finding a "parton" Jet colored) initial and q inside the hadron final states q~ can radiate Fixed order pQCD prediction

_ 1 fd;A d;B ( 0" - 2S -Z:~ It/A ';A,Ji )It/n (!;n,Ji) -dO- ...PA P -----l q do-=IMI\2ny g(4)(q-k-l) d: '----.-..J ( 2ft) 2q0

PB... 0\ o P ----l ll>{

dO" 2 =! fd~A dfn Ix (~A,Ji)jYn (';n,Ji) qydydQ S ;A SB A

S ==(PA + PB)2 '(~J'IMI2 A ~B -0(1- ~Ax J.8(1- ~B J k==C;APA Q2 \ I == ~BPB .s(q: ).s(Q2 _u;)

Q -y w G M -_.eY x =-eQ Q == vQ = \jq ,J.1 = Q = 1P X A -.fS ' B .fS Prospects and Future of the STAR W Program Joe Seele (MIT) for the *AR Collaboration

...... 0\ The STAR experiment is planning a number of upgrades and measurements that will constrain the polarized anti-quark distributions in a polarized proton. The Forward GEM Tracker will add charged particle tracking in the forward rapidity allowing for charge sign identification and background rejection in the forward rapidity region.

111-. w p,. > 25GeV/c '-1.---.,------"'-'-- deftfcr.1nlVogelsang ( ~--- OSSVOO

Xl :» X2

Af- = !. ad). 2·(auit _ d· 0\ N Xl == X2 Ye Roughly the Af+ .:(Il! _AU) uncertainty in 2 d 'U ~ RHICBOS(Resummattcii: delta-ubar :{ 0.4 OS5V08 DNSwK 0.2 - DNSaKKP

o I- ..: ~.- .. __ jDid

A~c'--4ft.'Ji. -0.2 b.·. ...•.•.- -~•....~.•....._.... u -0.4 ... Xl «X2

Ye 63 · High gain ("'106)

· Fast «20 ns FWHM)

· Low mass 0'1 ~ · Good spatial resolution Drift Cathode

· Inexpensive GEM

· Foils produced by CERN and GEM Tech-etch GEM

_. Readout - PCB Readout. >----Electronics Charge sign reconstruction efficiency

: ·";"·· ..;:.J::~· ..;,,,,..· ····i,,··· ; 1"". i l~"'~U! . c). !~ ••••L~""",: OJ~....~_:· -x-.•••••" • :,.'0 !..• ·..· , ~x-..."-+.,r. . ""·":,,,,,,",l,,', "'"".+''''''''''''1'''''' : : .{r ! 0\ ... , ·f:<':, ,...... ,' U1 ''''"['+''''''''[.

·~Q: ~ ...... ; ..·t ; 0.21-·"".... ,,~'"",.,.,.,."',, """""""",""i",·""""""""""",,,,,':

j g 00 0.5 1.5 2 2.5 3 0 U 3 fJj~I*I.:It:1tJIN golWltttdl1 WaIl.lto H110:tt:!lI\ ~ generated 11 without FGT with FGT

The addition of the FGT will allow for charge sign identification at forward rapidities leptonlr1l<1: 2 beamst eff;;6.65 wI 9MHz RF, RunS QeD bckOt rhiCbOEHJW·,W '#82, 19 pb lepton 1rI1=[1.2J: 1 baal'l'l. eff=O.60 'N' eMH:l RF, M-e QeD ookg, rhicbos OW·,W ·~.3, 4.7 pb RHIC is planning to run 500 A STAR Projections LT=300 pb-1 pol=O.70 GeV polarized p-p collisions LF ~ W.+ +. 0-01 P+P"'" . - ...,. e- + V AL=~ ...e 0"+ 0. in a multi-year effort to ~T>25 GeV constrain the polarization of O.5~ . ;':'i~~''::-~~ the anti- in the proton 7 ~ / ~."~~/ 7 ~/,rJJ> ! =t= ,·/r/'/'~ ! '(~n;k"'./.{! ...... ,...4.'~ 0\ + r" W- 0\ ! ! f".~.JIIIN~"..J

Calculations assume the oI "-""".,'-0,,,,",,.•.0' " ., " •••• '.' ".' - - 7." ,••••••• ' ,

demonstrated SiB (6 and 11) 1 1III "" III 1IIi iii . for the mid-rapidity W+ ... .,... - projections and 5/B"'1 for the ~.,.~.' forward and backward rapidity .' "'~'N.·, // W· W+ RHICBOS ~ ~~.="" O.5~ •••• - DN8-K ... projections .. •••• - DNS·KKP

Co ." DSSV08 7//~ deFlorian & Vog*tlliong aflsumed 5% syst. error '•• - DSSVOB ofme.lsuNd bfiam pol. ·1 ! ... I FI I I f II f -2 ..1 o 1 2 lepton 11 Prospects of the Forward W Measurement in Polarized pp Collisions at the RHIC-PHENIX Experiment

RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan Fukao, Yoshinori

RHIC-PHENIX experiment aim to measure AL in W -+ m process and 0\ ...... :J impose significant constraint on polarized anti-quark PDF with 500 GeV polarized pp collisions. One of the major upgrade work is the development of new W trigger system, which consists of MuTRG and RPC. We completed MuTRG and RPC3 North installation and will finish RPC3 South installation during 2010 shutdown period. The commissioning of the W trigger system was performed with beam and cosmic ray, and final performance evaluation of full-chain trigger system is ongoing. In addition to the trigger development, new hadron absorber, which provide powerful background rejection, is in-manufacture and will be installed in 2010. Offline analysis and simulation for W signal extraction are also in progress towards coming physics run in 2011 and future. W Trigger System Trigger events with straight track (e.g. Astrip < 1 & L\ < 1 degree) . ..n····_·__·_·_·__·~· __··_···-····--_···_·-·_······ ~~- _ -..----.-~---._-.--.. I Level 1 I Trigger RPC .. Trigger • --- FEE .. Boa~ II II II II II MuTRG II 0\ Amp/Discri. .. 00 .. Trigger Transmit ..II 5% I. 'i Optical MuTRG :: . ADTX 1.2Gbps ..II Trigger ----....jI';; RPC / MuTRG data are MuTr also recorded on disk. ts 95% III FEE ..:: Interaction Region :: Rack Room Components of W trigger

RPC module in production

0\ \0

-'r-'-~"-~' -. MuTRG-ADTX MuTRG-MRG MuTRG-DCMIF Rejection Power with MuTRG only (MuID & SSC & MuTRG)

._-----~--_.

RPC MulD J40mv ... I :> --fi---H, J 40 mV, 20f3 at 8t1 -...... l o 0.7 + ] 100 mV 0.6 2C 2011 run (8 (9 MHz Black : b..s < 1 w/o clustering 0.5 cc collisions) Red : l1s =0 w/o clustering ~ Blue : ~s < 1 wi clustering o4 C , !!,, .1, • I ! ! !! I,, !! I I ,I, , I I,!I I I!,I I I ! I, I II,, I t III I . 0 1000 2000 3000 4000 SOOO 6000 7000 8000 9000 10000 Rejection Power - Larger rejection power can be obtained by applying tight cut. - More improvement is expected by RPC and other items. RPC Module Performance

;::[ ~.. ,~~~,~~~.~,.~.~i~~.~~J..~~~>. , , , ,1 illator 41 . • : ~

!'RPC Cosmic Modules ! r .' / / :~ Threshold = 140 mV test at ..-//)1 / ....; "". ··:~· .. Threi·hijhr=·~·60"mV .. " . ¥?/Y ,...... c~ .. Threshold ..=·1·80·mV··· ,.... RPC Factory p; .....,----:ThreshJkI.. =.~~o.m\L h 9~ 9~3 9~5 9~6 9~7 ~~8 9~9 10 ! 1! I 9:2 II II 9:4 I ! ! ! I ! !, ! ! ! ! -.....) +tV ~

l.5["i~;;r;;r;u~~~;:----::-~-"""-----'-'---:---~I ~~J"",'-"',",,...~,-' ~..'~.~. t"""1~-."'~ , • - ' --.'" 5 RPC3B13 Cluster size -- '-'--. ",.- 'f'11 ~~:T .... ~ .. 3~,,·Cl U$tS.r,.s.izd .. <2.at.. 9....5.kV :I .J. :I ..L5!-'":''' ,.....+.....;. ' .. ,.,...... +.... . i I "",: ,:- ~ : :-/. .. .. , .21-.; ... r ~-~-r"'.-"''''''l),''f,,''--ti...... ,...... Timing difference between 1.5~·""~· ~, two RPC modules Timing resolution "- 2 ns Offline Analysis / Simulation 1 Run 2011+2012 Projection (150 pb- , 500/0 pol.)

~ _ i i ~ ..

-- ONSmtn -- ONSmtn W-l-~~+ --OUII ~:v_. ----_oldON!Lm.. W + r ,+ = -- GIISVvlll -...-.-+ r: =:::: I

·0.5 0 0.5 1 1.5 2 -0.5 0 0.5 1 1.5 2 Tj~ "1jl

-.....l ~ w~~ 11 tv w- 11-

R. Seidl ·2 ·1.5 ·1 -0.5 0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ·11 (muon pseudorapidity) II (muon pseudorapidity) ~ ~ SIB =3.0 (optimistic) SIB =0.3 (conservative) > Offline background evaluation using Run 2009 data and simulation study to optimize event selection is ongoing. > New Forward VTX detector will be installed and improve SIB. AN of VV Production in Polarized p.p Collisions

Zhong- Eo Kang RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA

Much of the predictive power of perturbative Quantum Chrornodynamics (QeD) is contained in factorization theorems. They normally include two assertions: a physical quantity can be factorized into perturbatively calculable short-distance hard parts convoluted with nonperturbative long-distance distribution functions; the unizJcTsahty of the nonperturhative functions. Predictions follow when processes with different hard scatterings but the same distribution functions are compared. The phenomenon of single transverse-spin asymmetry (SSA), AN == (a(5_d - a(-81..))/(a(81..) + a( -5J.) ) , defined as the ratio of the difference and the sum of the cross sections when the spin vector S1.. is flipped, was first observed in the hadronic A0 production at Fermilab in 1976. Large SSAs, as large as 30%, have been consistently observed in various experiments involving one polarized hadron at different collision energies. One of the approach to describe the observed SSAs in QeD is so-called Transverse Momentum Dependent (TIvID) factorization approach, which factorizes a(81..) in terms of the TMD patton distri­ butions and attributes the SSAs to the nonvanishing Sivers function, the spin dependent part of TI\'ID parton distribution. One of the most non-trivial feature is that the Sivers function could be process dependent (non-universal). It was predicted by Collins around. 2002 on the ba ..sis of time-reversal and parity arguments that the quark Sivers function in semi-inclusive deep inelastic scattering (SlDlS) and in Drell-Yan process (DY) have the same functional form but an opposite sign, a time-reversal modified universality. The experimental check of this time-reversal modified universality of the Sivers function would provide a critical test ofthe TMD factorization approach and our current understanding of the SSAs. Recently, the quark Sivers function has been extracted from data of SlDlS experiments by Anselmiuo ct. ol. Future measurements of the SSAs in DY production have been planned. In this talk, we present the SSAs of inclusive single lepton production from the decay of HI bosons, and show that the lepton SSAH is significant and measurable for a good range of lepton rapidity at RHIC. We find that the lepton

SSA:-:: are sharply peaked at transverse momentum PT rv lvlw /2 with TV mass lvlw. This is because the most TV bosons at RfllC have or <.< lvlw. On the other hand, leptons from heavy decay and other potential backgrounds are unlikely to be peaked at the PT ~ Mw /2. Since the W production and DY share the same Sivers function, we argue that the SSA of inclusive high PT leptons at RHTe if, an excellent observable for testing the time-reversal modified universality.

73 on-universality of the Sivers function

m Different gauge link for gauge-invariant TMD distribution in SIDIS and

~ 1I~71L) kj~ .~I---:'" -P -s '] . DY',. . (:,1 J' --~-'-')eyi· .':/- i ·Y..:_ - I'. ~"llr ,; -- , rs -::: '- ,//1 (L. k~- : . k/) -- (, '», :, 1.1"/ (0 .0,)~- I Gauge link i u . Y-l ) II). S) .1( i / . . (.'i"...... ) .:J \... I· '. . 'J ; ,u • - • ~/l I ~ . '. m : q)~ ({ +OC, O}, OJJ ~J_ (+-x, {y J_, OJ_} )n ({+ ex: , y-}, Y~L)

-....) -(x. -f-()C .+;. o

Wilson Loop - exp [-ig.h d.a':"r.;J Area is NOT zero - x

m For a fixed spin state:

SIDIS -+ -+ fqjhi (x, kl-' S) =I fqjhl (x, kl-' S)

June 25,2010 Zhongbo Kang, RBRC Time-reversal modified universality of the Sivers function

II Relation between Sivers functions in SIDIS and DY From P and T invartance:

~TDIS -:-' D''" .-+ j' c. ,-~ ', .." (x' k , C,~) -,~ f ,I _. ir k - Q) qlll, .~ -1-' '<. --, qlh' \'(J~ _L; !J • Spin-averaged parton distribution function is universal

From definition:

!qjhT (x, k J : 8) =!qjh(X, kd + ~,6.N !qjhT (x: kL) 8· j5 X kl­ -...... l Vl

If§ One can derive:

!\ IV fSIDIS (. fro ) ..- i\ lVfDY (,y. J~ ) Ll. ,J q / IL -, •.C. fL -..L ~- - L-\ q / h ,-.-0; 1!_L

Most critical test for TMD approach to SSA

June 25, 2010 Zhongbo Kang, RBRC Intuitive understanding of the sign change

111I Difference between initial and final state interactions

j I= !

:';.·~.;;i;~;~';;;! ~ :

pI" + P ~ [r* ~ R+ R~- ] + X f+p' ~R+7T+X

-...... l 0\ DY: repulsive SIDIS: attractive

J.Vf·S~D}S 1.~ ~ f·DY.~ ;'\ ('I" i ) = .. /\ JV (x': k I) L.l q/h, .1/~"'-,-_ Ll -l qf h. ".---L

II Sign change:

w !t=:\cr of TMD factorization

m Test of current understanding of SSA

June 25, 2010 Zhongbo Kang, RBRC SSA of lepton from W decay: rapidity dependence

IJ SSA of inclusive lepton is still sufficient for measurement: ,kd,'5ir,~'

\.>~ f.!-(e-) ~+ 0.03 (e+)J 0.08 ,,/ PT=41GeV p~;;41GeV 0.02 0.06 0.01

0.04 o

-0.01 0.02

-0.02 -.....) -.....) 0.. .J ..0.03 "I!! 1., Pr! " "!!! " 111 II 1" 1111' p'!l' .,t,! " I" "I -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 Y Y

• Good flavor separation:

ill 11-(e-) at central-forward rapidity is sensitive to d Sivers function

m 1J+(e+) at forward is sensitive to u Sivers function, at backward is sensitive to d-bar Sivers function

June 25,2010 Zhongbo Kang, RBRC SSA of lepton from \N decay: PT dependence

II PT behavior of SSA of leptons:

0.01 0.03 ..... ~ ..~ ~ ..

0.02 or·.....~.~.~.:.:.:.:.~.~.~.: ---J------~ -...... l 00 .....- ] 0.01 -0.01

4~! o,, !, I !" ! I," ! ! ! J !, !,, ! I I" !! ! II I , !,( ! ! ! J II ! ! ![ !, I 30 35 40 45 50 55 60 65 70 20 30 40 50 60 70 PT PT

w inherit the key features of VV asymmtry

m sharply peeked around pT tVMw/ 2, should help control the potential background

June 25,2010 Zhongbo Kang, RBRC Precision Measurement ofthe lV Mass and New Physics

1. Why?

2. ~V Mass: Status and Measurement Techniques ...... :J \0 3. Status ofTheory Calculations for W / Z Production

4. Conclusions

Ulrich Baur State University ofNew York at Buffalo

Ulrich Baur The Physics of Vv' and Z Bosons, BNL 06/25/10 11- Why? I

• The LHC is a discovery machine. Why should we measure the lV mass, and more generally, do precision physics at such a facility?

00 • After all a precise measurement of M yv in a hadron collider environ­ o ment is no walk in the park (see talks by Ashutosh Kotwal, Junjie Zhu)

• more bluntly: "I rather commit suicide than measure Mw at the LHC"(Guido Altare11i at an early LHCC meeting)

Ulrich Baur The Physics of Wand Z Bosons, BNL 06/25/10 • Which measurements are ofinterest? ~ mt, Nlw and sin' Ovv -+ make it possible to constrain the mass of the SM :

winter 2010: M H < 155 GeV (95% CL) one-loop corrections to Mw and sin2 Ow depend logarithmically onMH 00 ~ ~ thus providing a consistency check on the SM (once a Higgs boson candidate has been observed) -+ may give hints ofnew physics, or provide constraints on new physics models new particles contribute to the one-loop corrections

Ulrich Bam The Physics ofWand Z Bosons, BNL 06/25110 Data in better agreement with SUSY models than SM but this is not surprising as SUSY models have more free parameters

uncertainties 68% CL: 80.60 '" 12 ::j

10 80.50

>(]) ~ S 80.40 00 :2 tv ------,20 Theory uncertainty 80.30 r;..:.'...... : .....;. - Fit includIng theory errors

100 150 200 250 300 80.20

MH [GeV] 140 150 160 170 180 190 200 m [GeV] CMSSM: Constrained MSSM t NUHMI: a common SUSY-breaking contribution to the Higgs is allowed to be non-universal

Ulrich Baur The Physics of Wand Z Bosons, BNL 06125/10 Wand Z Production has been observed at the LHC W--+ev candidate ------+-...... r.------

eMS Experiment at LHe, CERN Run 133874, Event 21466935 lumi section: 301 Sat Apr 242010, 05:19:21 CEST ~~ :'~, Electron PT = 35.6GeVlc MET := 36.9GeV ~1 Mr = 71.1 GeV/c2 t , 00 ~. VJ ". •, .:..1. t • ,..• • ... ~.l .•. , ...• ~.~~,~~~~;~,. .... --*"" ..ll"t..",. \-~

Ulrich Baur The Physics of Wand Z Bosons, BNL 06125110 14 - Conclusions I

• l\IIw , together with mtop, make it possible to constrain the Higgs bo­ son mass

• need bMw == 0(10 MeV) to match anticipated precision for mtop • sensitive to new physics via loop corrections

00 l\!I~~/ .,J:::.. • measuring at the LHC is non-trivial and may require special runs (deuterium, helium) and/or special detector configurations (re­ verse magentic field)

• EW radiative corrections affect the MT line shape and thus the W mass extracted from data • need better understanding how to combine calculations of QeD and EW corrections into one unified generator

Ulrich Baur The Physics of W- and Z Bosons, BNL 06/25/10 85 UTLINE

~Motivations

~l$Cross-Sectionsat 7 TeV and expected event .Yield

00 0\ ~~ Asymmetry Measurements

~~w. mass prospects

~:~ First W results from ATLAS lSI E ECTRO EAK

mw

experimental errors 68% CL -- LEP2fTevatron (today) -- Tevatron/LHC 00 ...... :J - ILC/GigaZ !(m;op, loqmi;

1"..1 ~mw 1"..1

1"..1 Sfd I',,:;·.,,;;.d ~mw 1"..1 lOMe\! r.l55M ~:'::::Cy both models k1i':if i r81 8020 Heinemeyer, HoOlk,Stockinger, Weber, Weiglein '09

'160 165 'l70 175 '180 '185 mt[GeV]

Friday, June 25, 2010 TED

eROS lIIIII!III ECTIONS 10" At7TeV

Vlot :::: ~ Tevatron LHC (JNNLO(W~lv)=lO.45nb I(t

10 roughly x2 at 14TeV

0,8 i j , , , 1 i , i' Iii i I I I o~ ratios of parton luminosities 10 at 7 TeV LHC and 14 TeV LHC 00 (ij./E.1,t> '.5/20) 00 10: ~ 0.6 .Q 10 ~ ,,,{. [ l .?:' 100 GeV) "w 0.4 ,. I o 10 c "E to': ::I 0.2 ro ~ (It IO~ cr"(~,',, >:/~) r MSTW2008NLO ,~...' 10" IT '/9:l.(M,j - 150 Levi) 0.0 I I,, II.. " '.... , j 3 102 10 M (GeV) 10'" x

IU 0.1 I 10

\"S

Friday, June 25,2010 _ __ WJmA:)I:.~TI MEASUREMEN.TS

~~ PT > 25 GeV lepton ~10~' 'A~~' l~~e~e' , [ '('\'1Iii Ii I Il (J) ····QeD ~~ C 50 pb-1 --W'tV1: MissingEt >25 GeV Q) > ., .;., . " -Zee "; 1 --::''i!'' -''.Ji}\'-''f:;:;:i};,

00 ~ \0 Expected uncertainty 10-1 (stat4-S'¥s, no .lumi):

10-2~ I, ! ~ ~5·o/o·after -·50 _pb- 1 o 20

~~2-.50/oafter 1 fb-l

Friday, June 25, 2010 UMMARY

~, LHC will offer unprecedented number Ior a variety of studies:

o\0 ~~ Detector Commissioning

~~FrecisionElectroweakFhysics

~~. Backgrounds for 'new' physies

~~..Just..gettingstarted but The Physics of 117 and Z Bosons RIKEN BNL Research Center Workshop June 24/25, 2010

Current Status and Prospects for lV and Z Cross Section Measurements at CJ\1S

Carsten Magass1 (for the CI'v1S Collaboration)

III. Physikalisclles Institut A RWTH Aachen D-52056 Aachen (Germany)

Abstract: Current status and prospects for HI and Z cross section measurements at eMS are presented. Events have been selected in electron and muon channels, and candidate l'V and Z decays have been examined. The measurements or the cross sections are in progress, and details of lepton identification, missing energy measurement, and event selection are described. Furthermore, prospects for future measurements are presented, like the measurement of the Z boson rapidity distribution and the muon charge asymmetry in TV decays. Finally, selected studies of IV!Z boson production in association with jets are discussed.

G~vlS Physics Results Webpage: https://twiki.cern.ch/twiki/bin/view/CMS/PublicPhysicsResults

[email protected]

91 CMS Performance Roadmap

1 nb' 10 nb-I 100 nb-1

W.~ ev/~v • 5 50 500• 5000• 5Dk• 500k• Z ~ ee/llfJ. • 5 5000•• 50k In readout (%) ~ 96.2 I .Candidateh\.l1M'ji@@l1nWi'1&'F • 93.l (E6-:;;99.3~~, 99.,2 EE="93.g%) j ~'f==T-~---J oow/Gw'(40I7JniJl1F~ 99,8 99.? (HB=:OO,0%, HE:=l00,a·~'t< :r ~---- f i data-driVehl'ltet~ HF=99.fK:J, HO=96_9

w~ /l V: Candidate Event w ~ /l V: Selection

Selection' 1 Muon with Pr) 25 GeV in 11]1 (2, eMS Preliminary jSQlated(tracker), muonfired trigger ~-~ muo( ~._._.}._~F=PVT

hadf~~~/

hleutr'ino escapes -" observe missing energy in

rrcnsverse plane (MET) 20 " 00 3"'00120140160 1'j) >00 2 Reconstruct : --_~ Mr (GeV/c ) Transverse mass m; == ~21trPf.(l-cos,drp)

RW1H -9- Ctlrst<1:r. MQ90S~ :"; June 25, 2010 W!2'2 ~NL

w~ Jl v : Data - Monte Carlo Comparison w ~ JlV: Matrix Method

Contributions from QCD processes difficult to predict EWKCross sections: -7 Estimate from data using the Matrix Method MCFM NLO using Variable 2 MSTW06 NLO PDF

Signal {isoicted murms) QeDBackground ,- (l,lSlAillyrot Isclcted)

CQrst~Mogasz

92 MUO~~~fO!~~:-=---...)~.•1l W -7 e V: Candidate Event fT:R~-~-'J CMSExp@nment at LHC.CERN ~~:~~~e~~~~·o~ ~ ~ ;.~.· all 1.¥.·.•• ••..•...•...••.?•....1(•.•..•.•. •.•.../f.'..J.n.1 Rim133374.e",,",21_935 ~~~f~ ~~::~~~~'~~'92'em

8ectronPT:::;35.6~VIc. M£T"".36.9GeV II,h=71.1 ~V/(~

~ ,I'" ~~..~ -.1. ,., , ~~~';~~(

\ .", ~ I

Very good agreement ' .0.2 -t,"H .0.1 .(J,e .. a.os •.1 a.iS 0.2 Transverse impact parameter "i;;l. RWIH " . Co~nMo9'lS:; ." JuntZ5.Z0lO ::. W/Z@BNL -13 - ~ VI!Z@aNL

W -7 e v : Selection W -7 e V: Data - Monte Carlo Comparison

Selection: single electron trigger fired, 1 Electron with PT > 30 GeVin I'll < 2.5, identified via track matched to ECalcluster (GaussianSum filter) and cuts on shape variables, veto on further electrons with PT > 20 GeV Extract QeD background from dot!?,

RWIH CorrtenMogc;s:i

W -7 e V: Template Method Electron Performance (1)

MET sensitive to everything (real objects. noise) in the detector Gaussian Sum Filter Level 1trigger efficiency

U makes use of high granular tracking L1candidate found offline? ~ Use Z events as templates to estimate MET in W events Detectors (track seeding) Nommo.i trlg9~r threshold: 2 GeV

$0.06 Me .ft. - ~e~o~: ~~~;i:ctron in ~ 000 jJ ~ JUR".,,·

- :ake different kinematics ~ 0..04 !\ MET from W 7 ev

Into account. . 'B eeereetee MET 4: 0.031 ) :fromZ~ee 002 I -7> Good description of MET 0.01 10 TeV

I\J 10 20 70 00 90 100 i!rIGeV)

RWIH W/Z@BNL - 17-

93 Electron Performance (2) z ~ J.l J.l : Candidate Event ------,------.------

Isolation variables nicely described by Monte Carlo j

RWIH CcestenMo9'JSs .: June 25, "2.010 :.~ W/Z@ B1\Jl -zo-

z ~ u J..l : Selection z ~ J.l J.l : Data - Monte Carlo Comparison

Selection: f~~~·rrill «:~ CMS P'rullmlnl'l)' 2DI. Measure• efficiencies from data 2 with PT> 20 GeV In 11]1 < 2, ~ uSingTa9-and-Probe Method isolated (tracker), opposite charge, 1...... "":.,;;;H.. >= 1 Muon fired trigger ~ ~:::. A ![].. Z decays provide such ~ QCD ~10·r samples used for muon ~ r j (and electron) efficiency;; l°l ~ mecsurements • ,2 1Q"~ "good" Muon r

Q Tracker -==~: Statistical precision Muondetector - i.;.if -0.5'70 with 100 pb-I Muon

RW1H UJrst~n Mo90SS ::; Jut'le 2~, 2010 :: W/Z e 6N1.. -Zl- RWIH

z ~ e e : Candidate Event ... z ~ e e : Selection

_,_-...... ~.~_ .... ._...... __..... ~_...___.... _...... _'__....._,... ,__• ~.~_...__.J" .... Selection, single electron trigger fired, 2 Electrons with PT> 20 GeV [TIl < 2.5, --~I identified via track matched to ECalcluster (GaussianSum Filter) -~" and cuts on shape variables /' Eff rcrencres f:lectronsPr""" 34.0, 3191;reV/( l e.,~ tz ->'Vl00~OJ trw.mess c:91.2Gr:V/c Ldt_10pb-' ~, - 90 ';'0 , ~ <.,~r [ ct 0 <" 1 • ( .: - (1 ) =82 Q,c t Acceptance 40!~ Efficiencies again via Tag-and-Probe Method

Carster1MogoS5

94 Z -7 e e : Data - Monte Carlo Comparison Z -7 e e : Rapidity Cros~-~:~::n-:~-i:~~~:~------~w~:c

of Z Bosonrapidity y ~ !In E + P, 2 E-p, -? Constrain PDFuncertainties

this is just the beginning

""r:>ten MQ~ :;: JoJnC 25, 2010 ::: W/Z@ Bt\l ·25 - Carsten Magas.<;

Muon Charge Asymmetry A('!) ~ ~~:: _-: ::~~::~~~ :~~:~ :'::; Wand Z with Jets

Important channels: - test QeD - background for searches - Jet Energy Scale (Z + Jets)

W/Z + Jets analyses need estimates of : - Jet Energy Scale - QCDbackground - top background (!) ;(w IZ ~(~; + 1)Jet;r "" MuonpsatJdorapidity (J(W Z 7\" Matrix method for QeD Dominant systematic uncertainties I + ]et;,) "" a, Background estimatian due to efficiency measurements~i R'IlIH Cllrstt::n Mcgass :': June 25, ZOlO ;",: W/Z@ BNL - 27 - ~:~ Gar'StenMagass JIJt"\e 25. 2010 W/Z@ BNi -28-

Z + Jets: Tool for New Physics

95 700rs~~~-~T:-;;;;'~ ~ ~ Jet Performance < 600 "..nov flfil ...... z ( ee, JlJl) + bb : Outlook .. P~25'~V ~~-----;~~~=::: -500 ~I~~ Jet Algorithm: f ,~:'::;~v Particle Flow 2500 '~',"il<' anti-kt R =0.5

.....;0;.::6: ... ,,'; x ... &>",~ W " • <" ~.,.->ifo" ... Yo ;.;.:.;.:-:. r ~ ;..;« Very good agreement between Requires two b-tagged Jets

Data and Monte Carlo < ~l WIZI!Ht-l.. -31-g U1r.litel'l Mu~s ;;: Jorw: 25, 2010 :" WIZ@ BI\!L

MET Commissioning <-> Understand Detector ~~<,------~~-.-;-;;;:~~:~:' NOise In the ECa! ~ caused by heavily IOniZing , particles In the APD -) fake MET Tag the noisy events and apply cleanup: tj~·-"···'~:':_·"':~:::.',"':"-5§j !::t;.,r:·----i --j ! ~ i'-f .""".nov ;>"'1o'r . .' .• PFAnti-kt 0.5 ~;;wi . PT) 40 GeV ·:r'.'Qd]i I "",' .• 1111 < 1.5 ~j .". r , "" '1-:~~;n1d:\~::.;,;, 0-2 ·1.5 -1 ~LS ~ ~1f'1 ~

":: W/ZeSNL WIZ@SNI..

Summary A'~;I;~'~~~/~;c I~~';e Wandk~ Z events essential understand detector - measure efficiencies - test data-driven methods - cross-check lumlnositv Presented a robust program fer start-up @ eMS

. " Very good agreement between I}\;AtU)~? @[jj}~~'t~ ®If'~g~ Data and Monte Carlo QQu~~;W~;£1

Ccesten Mc:!JOSS .. JfS>;e Z5. 2QjO ;:: W/Z@ BN:.. W/Z@~I\L

96 .TneStatus.ot fNfN'[J::J 'ffticrJ,lsfor WIZ Production at Hadron Colliders \0 -....l

FrankPetriello University ofWisconsin, Madison

The Physics ofW and Z Bosons June 25,2010 St~.d~EdCaftid];es

(0) " . , (Xs{fLR (1)., ,(, (XS(PR»)2 (2) ) a(tim /-iF) = a' (tiF) + ' •.. a' (/-iR, /-iF) +' •. ' ..,. ". a ··(J-lR, J1F 1f ' 11

pp ~ (Z,I'*)+X at Y=Q

80 r f ( ii ! i (i 1 i i tiiliiiilliiitiiilill litl ii' f i ~ ~Z production known 1..0 00 70 r ..- _., :c..:.,x:::...... ::.... l through NNLO in pQCD NNLO ~ Residual theoretical 60 uncertainties from scale LO variations <1% on inclusive 50 quantities

pdfs f "Gold-plated" observables f.LF = fl-R = I..t f-lF = f.L, f.LR = M suited to high-precision f-lF = M, f.LR = measurements

1.0 2.0 30 5.0 !LIM Nlelntk0v, FP (A.DMP)hep-ph/o3I2266 ¥rt"lZ.i~p~:aWI.'i~i~~il~~t;~·.~.ml.S

A]).N1Phep-ph/o3 06 t92 pp~l'* +X Rapidity distribution 5 rr: i , " •• , •. , I" Iii i r---r-' I .1 , r.'·.....·~i~I~I ~l-'.-..-rl-"T,. 1

NNLO,.;s= 38.76GeV 80 ~ M=BGeV ~ MRST2001 pdfs o M/2 ~ j1,.~ 2M ~ ,...... , 60 'D .c ,.a 'D c, 0.. 1..0-1 '---' LO • . '.' '. • '<, " ;>-< ~ '0 ~.,.•...... ",.,."""".~: e-; . - - - -_-',.',•... ', ' " :: ",.,,'.' .'' .:'::'.<:'.•)'.• ;r.,.'"~""'.':, - >~1~<:' '"' ".. <, 40 ~. 2. . . . . •. ',•.....••.•.•.' ";(,.,,, t:> 'tj LO "0 ~ ~x~&~ Q YS = 1.8 TeV N "'0 20!-- 66 < M < 116 GeV ~~ . M/2;;i; j.L ~ 2M '!:( EH'66da.ta, 7.2 < M <8.7 C~F'ld~ta 3 ,el;r~r,~~ttt~) ~ J'0 ,C :! ,lU,m:, I I -:1 Ii j' 1':""'1 -,:, "I r ...:0.1 0.25 0.50 0.75 1.00 1.25 0.0 0.5 1.0 1.5 2;0 2.5 v y ,l. i'~~r~f~~:fttl~~tOnffxed- ,Generallygood agreement ~~fg~t' ••••.•. da:~3:; •• 'quark·•.. distributions with CDF/Do data .w:.S~P706.04.59l090I.0002 from VRAP: NNLO y*+Z,W rapidity distributions Spilij.ii~;~'If~m~l\i6is

N Measureleptons, ndtW/Z, with cuts ~ ~ a .tA...... imposed :$SPil1YG. o.·..••·rrel£ltiollsbetween E X .(X~ production, decay

• Cut 1 : Jo--' PI' > 20 GeV . 11(1 < 2.5, liT > 20 GeV; o o • Cut 2 : Pr > 40 Ge\T . 11(1 < 2.5, liT > 20 GeV.

Tevatron LHe LO NLO !\:lCi(jNLO LO NLO 1IC·.~!iNLO ~ Cut 1 0.409 O.:l85 0.:383 0.524 0.477 Cut 1. no spin 0.413 0.394 0.:394 0..553 0.510 Cut 2 O.~j56 O.:~40 0.336 0.0':)8 0.129 O.3~9 0.:374 0.:370 0.075 0.150

with spin correlations, ··F:EWZ

\F'tl[Iyie~~lit1siMe···"W;' i 'MeIriikov; FPhep-ph/ *'lfiZWCZ: Z·,p t"btluclrOO OJJ1 0603182, 0609070

LHC 7+Z ~-'-T-'T r I ~T~--'-' "I I LO Z contributio ,..... o """<""""<"",' !' ends at pT=Mz/2 ,..... e, I, oilro '~'\ "'l, -. 0.100 ~, -, L''- \

0.050 o o ~

66 < Mn < 116 GeV 66 < MIl < 0.010 PT.I, ». Pr.e PT;l >25,GeV 0.005 17711 < 2.5 11711< 17 0 Mz/2 :;:; f.1- ~ 2M';?: Mz,/2 & '11'~ 2Mz

0.001! I I" 'T' I ...... ' 20

percent-level Need V-jet at NNLO for this region Boughezal, Gehrmann­ m''ternictions foracceprances de Ridder, Ritzmann 1001.2396 ~

J---4-,._ ..~~..~... ,.,-·~t~- .....,-:"~_:_-l_._-+ -+--+_J~_J. ~~ o c c c ceo C ~ ~ ~ ~ ~ ~ -

'it: i 'j i I I

1\ ,,,",,"" .",,,,,,,,,, ,. ., ,IL. o 5 c 5 c ~

102 D~.HLctJ,

j~~!~nativ-~ •.:S~~~~f1~~~~ •• ,~froacht() ·mooi11~g IR singulafitieS' .at ... ~~L() Catani.Cieri, Ferrera, de Florian,Grazzini °9°3.2120

I---l 30,.,----r-< I o w pp .... (z+I'~)+X .... e+e-+X y's=1.96TeV MSYI'f2008 25 L. J1.r=J1-R""' IDz

20 o -- NNLO - '2 :0 :.a ~ ----NLO ~' <, 15 •• p;, .0 p, b b 10

o 100 20 30 40 50 60 70 ao 30 40 50 60 70 80 PTmin (GeV) PTmllX (GeV)

>25 GeV 104 The Physics ofWand Z Bosons June 24-25, 2010 Registered Participants

Name Affiliation E-Mail Address

Yasuyuki Akiba RIIffiN [email protected] Leandro Almeida BNL leandro.g.almeidaergmail.com Jan Balewski MIT [email protected] Kenneth Barish UC Riverside Kenneth.Barisheaucr.edu Ulrich Baur SUNY @ Buffalo baur~buffalo.edu Alexander Bazilevsky BNL [email protected] Andrew Beckwith Amer Inst ofBeam Energy Propulsion beckwithrgaibep.org Kevin Black Harvard Univ kblack@}fas.harvard.edu Radja Boughezal Univ ofZurich, Switzerland radja.boughezal@}physik.uzh.ch Kieran Boyle RBRC [email protected] Ning Chen Stony Brook Univ chen@}max2.physics.sunysb.edu Mickey Chiu BNL chiu@}bnl.gov Michael Daugherity Abilene Christian Univ [email protected] Hooman Davoudiasl BNL hooman@}bnl.gov Sally Dawson BNL [email protected] Abhay Deshpande Stony Brook Univ abhay.deshpande@stonybrookedu Chee Sheng Fong Stony Brook Univ fong(a}instLphysics.sunysb.edu Yoshi Fukao RIKEN fukao@}riken.jp Ciprian Gal Stony Brook Univ [email protected] Thomas Gehrmann Univ ofZurich thomas.gehrmanneaphysik.unizh.ch Yuji Goto RIKEN goto@}bnl.gov Wlodek Guryn BNL [email protected] Marco Guzzi Southern Methodist Univ mguzzi(a}physics.smu.edu John Haggerty BNL haggerty@}bnl.gov Prerit Jaiswal Stony Brook Univ prerit.jaiswal@!gmail.com Zhongbo Kang RBRC zkang@}bnl.gov David Kawall RBRC I Univ ofMA [email protected] Jennifer Kile BNL [email protected] William Kilgore BNL kilgore@!bnl.gov Ashutosh Kotwal Duke Univ [email protected] Hye-Sung Lee BNL [email protected] Sookhyun Lee Stony Brook Univ [email protected] Carsten Magass RWTHAachen [email protected] William Marciano BNL [email protected] Thomas McElmurry BNL tmcelmurrygaquark.phy.bnl.gov David Morrison BNL morrison@!bnl.gov Pavel Nadolsky Southern Methodist Univ [email protected] Shigemi Ohta IPNSIKEK+SOKENDAI+RBRC shigemi.ohta@kekjp Kensuke Okada RBRC okada@!bnl.gov Fredrick Olness Southern Methodist Univ [email protected] Kwangwoo Park Southern Methodist Univ [email protected] Zohreh Parsa BNL parsa@!bnl.gov

105 Abid Patwa BNL abid~fnal. gOY Michael Peskin SLAC Natl Accelerator Lab mpeskin@}slac.stanford.edu Francis Petriello Univ ofWisconsin [email protected] Marc-Andre Pleier BNL mpleier~bnl.gov Jianwei Qiu BNL jqiu~bnl.gov Guy Roche LPC-Clermont France roche@in2p3 .fr Renata Rodrigues CBPF [email protected] Andreas Scharf SUNY at Buffalo abscharfeabuffalo.edu Joseph Seele MIT seel~j~mit.edu Amarjit Soni BNL [email protected] David South TUDortmund david.southeadesy.de Jan Stark LPSC Grenoble stark@}in2p3 .fr Justin Stevens Indiana Univ stevens4@}indiana.edu Christian Sturm BNL [email protected] Bernd Surrow MIT surro\y~mit.edu Swadhin Taneja Stony Brook Univ swadhin. tanega@}gmail.com Michael Tannenbaum BNL [email protected] Rusty Towell Abilene Christian Univ rusty .towelleaacu.edu Kathryn Tschann-Grimm Stony Brook Univ kgrimm@}grad.physics.sunysb.edu Alessandro Vicini Univ ofMilano alessandro.vicini@}mi.infn.it Doreen Wackeroth SUNY @} Buffalo [email protected] Jan Winter Fermilab [email protected] Scott Yost The Citadel scott.yost@}citadel.edu C.-P. Yuan Michigan State Univ [email protected] FengYuan LBNL [email protected] Guang-Da Zhao Peking University ktchao@}pku.edu.cn Junjie Zhu Univ ofMichigan junjie@}umich.edu

106 The Physics of Wand Z Bosons

Brookhaven National Laboratory Physics Department Large Seminar Room June 24-25, 2010

Thursday 24 June 2010

09:00->10:40 Session I [Convener: Jianwei Qiu (BNL)] 09:00 Welcome Remarks Nick Samios (RBRe)

09:10 First Measurement of W+/W- Boson Production at STAR Jan Balewski (MIT) In Polarized pp Collisions at RHIC

09:50 First Observations at PHENIX of W Production From David Kawall (U. ofMassachusetts, Polarized pp Collisions at RHIC Amherst)

10:30 Coffee

10:50- >12:10 Session II [ Convener: C.-P. Yuan (MSU) ] Pavel Nadolsky (Southern 10:50 QCD Resummation on A_L of W p_T Distributions and PDFs Methodist u.)

Alessandro Vicini (U. of 11:30 W Mass Measurements Milan)

12:10 Lunch at Berkner Hall

13:30->15:30 Session III [ Convener: Abid Patwa (BNL) ] 13:30 W/Z Physics from HERA David South (DESY) 14:10 W Mass Measurements at DO Junjie Zhu (U. ofMichigan)

14:50 W Mass Measurements at CDF Ashutosh Kotwal (Duke U.)

15:30 Coffee

15:50->17:50 Session IV [ Convener: Kensuke Okada (BNURIKEN) ] 15:50 Monte Carlo Modeling Issues for W Measurements Jan Stark (LPSC, Grenoble)

16:30 Theoretical Issues in Monte Carlo Modelling for W Production Jan Winter (Fermilab)

17:10 W Boson Physics and Global Analysis of PDFs C. .p Yuan (Michigan State u.)

18:30 Workshop Dinner: Cookout at Brookhaven Center

107 Friday 25 June 2010

09:00->10:20 Session V [Convener: Abhay Deshpande (Stony Brook U)]

09:00 Future Prospects of the STAR W Program in Polarized pp Joe Seale (MIT) Collisions at RHIC

09:40 Prospects of the Forward W Measurement in Polarized pp Yoshi Fukao(RIKE~ Collisions at the RHIC-PHENIX Experiment

10:20 Coffee

10:50->12:10 Session VI [ Convener: Frank Petriello (Wisconsin) ] 10:50 A_N of W Production in Polarized pp Collisions Zhong-Bo Kang (RBRC)

11:30 Precision Measurement of the W Mass and New Physics Ulrich Baur (U. at Buffalo)

12:10 Lunch at Berkner Hall

14:00->16:00 Session VII [Convener: Sally Dawson (BNL)] 14:00 W Measurements and Prospects at ATLAS Kevin Black (HaNard)

14:40 Current Status and Prospects for W & Z Cross Section Carsten Magass (RWTH Measurements at eMS Aachen)

'.20 The Status of NNLO Tools for W/Z Boson Production 15 at Hadron Colliders Frank Petriello (U. of Wisconsin)

108 Additional RIKEN BNL Research Center Proceedings:

Volume 98 - Saturation, the Color Glass Condensate and the Glasma: What Have we Learned from RHIC?, BNL, May 10-12, 2010 - BNL-94271-2010 Volume 97 - RBRC Scientific Review Committee Meeting, October 21-22, 2009 - BNL-90674-2009 Volume 96 - P- and CP-Odd Effects in Hot and Dense Matter, April 26-30, 2010 - BNL-94237-2010 Volume 95 - Progress in High-pT Physics at RHIC, March 17-19, 2010 - BNL-94214-2010 Volume 94 - Summer Program on Spin Physics at LBL, June 1-12, 2009 Volume 93 - PHENIX Spinfest School 2009 at BNL - July 1-31, 2009. BNL-90343-2009 Unk: .E:tU;;~lXSJQtnJ:~s"t:,;],(;,t19i:),.t?c,Q,Q~,~3?"a[~"L Volume 92 - PKU-RBRC Workshop on Transverse Spin Physics, June 30-July 4, 2008, Beijing, China, BNL-81685-2008 Volume 91 - RBRC Scientific Review Committee Meeting, November 17-18, 2008 - BNL-81556-2008 Volume 90 - PHENIX Spinfest School 2008 at BNL, August 4-8, 2008 - BNL-81478-2008 Volume 89 - Understanding QGP through Spectral Functions and Euclidean Correlators, April 23-25, 2008 - BNL-81318- 2008 Volume 88 - Hydrodynamics in Heavy Ion Collisions and QCD Equation of State, April 21-22, 2008 - BNL-81307-2008 Volume 87 - RBRC Scientific Review Committee Meeting, November 5-6, 2007 - BNL-79570-2007 Volume 86 - Global Analysis of Polarized Parton Distributions in the RHIC Era, October 8, 2007 - BNL-79457-2007 Volume 85 - Parity-Violating Spin Asymmetries at RHIC-BNL, April 26-27, 2007 - BNL-79146-2007 Volume 84 - Domain Wall at Ten Years, March 15-17, 2007 - BNL 77857-2007 Volume 83 - QCD in Extreme Conditions, July 31-August 2, 2006 - BNL-76933-2006 Volume 82 - RHIC Physics in the Context of the Standard Model, June 18-23, 2006 - BNL-76863-2006 Volume 81 - Parton Orbital Angular Momentum (Joint RBRC/University of New Mexico Workshop) February 24-26, 2006 - BNL-75937-2006 Volume 80 - Can We Discover the QCD Critical Point at RHIC?, March 9-10, 2006 - BNL-75692-2006 Volume 79 - in Collisions, February 16-17, 2006 - BNL-79763-2008 Volume 78 - Heavy Flavor Productions and Hot/Dense Quark Matter, Dec 12-14, 2005 - BNL-76915-2006 Volume 77 - RBRC Scientific Review Committee Meeting - BNL-52649-2005 Volume 76 - Odderon Searches at RHIC, September 27-29, 2005 - BNL-75092-2005 Volume 75 - Single Spin Asymmetries, June 1-3, 2005 - BNL-74717-2005 Volume 74 - RBRC QCDOC Computer Dedication and Symposium on RBRC QCDOC, May 26, 2005 - BNL-74813-2005 Volume 73 - Jet Correlations at RHIC, March 10-11, 2005 - BNL-73910-2005 Volume 72 - RHIC Spin Collaboration Meetings XXXI(January 14, 2005), XXXII (February 10, 2005), XXXIII (March 11, 2005) - BNL-73866-2005 Volume 71 - Classical and Quantum Aspects of the Color Glass Condensate - BNL-73793-2005 Volume 70 - Strongly Coupled Plasmas: Electromagnetic, Nuclear & Atomic - BNL-73867-2005 Volume 69 - RBRC Scientific Review Committee - BNL-73546-2004 Volume 68 - Workshop on the Physics Programme of the RBRC and UKQCD QCDOC Machines - BNL-73604-2004 Volume 67 - High Performance Computing with BlueGene/L and QCDOC Architectures Volume 66 - RHIC Spin Collaboration Meeting XXIX, October 8-9, 2004, Torino Italy - BNL-73534-2004 Volume 65 - RHIC Spin Collaboration Meetings XXVII (July 22, 2004), XXVIII (September 2, 2004), XXX (December 6, 2004) - BNL-73506-2004 Volume 64 - Theory Summer Program on RHIC Physics - BNL-73263-2004 Volume 63 - RHIC Spin Collaboration Meetings XXIV (May 21, 2004), XXV (May 27,2004), XXVI (June 1, 2004) - BNL- 72397-2004 Volume 62 - New Discoveries at RHIC, May 14-15, 2004 - BNL- 72391-2004 Volume 61 - RIKEN-TODAI Mini Workshop on "Topics in Hadron Physics at RHIC", March 23-24, 2004 - BNL-72336-2004 Volume 60 - Lattice QCD at Finite Temperature and Density - BNL-72083-2004 Volume 59 - RHIC Spin Collaboration Meeting XXI (January 22, 2004), XXII (February 27, 2004), XXIII (March 19, 2004)- BNL-72382-2004 Volume 58 - RHIC Spin Collaboration Meeting XX - BNL-71900-2004 Volume 57 - High pt Physics at RHIC, December 2-6, 2003 - BNL-72069-2004

109 Additional RIKEN BNL Research Center Proceedings:

Volume 56 - RBRC Scientific Review Committee Meeting - BNL-71899-2003 Volume 55 - Collective Flow and QGP Properties - BNL-71898-2003 Volume 54 - RHIC Spin Collaboration Meetings XVII, XVIII, XIX - BNL-71751-2003 Volume 53 - Theory Studies for Polarized pp Scattering - BNL-71747-2003 Volume 52 - RIKEN School on QCD "Topics on the Proton" - BNL-71694-2003 Volume 51 - RHIC Spin Collaboration Meetings XV, XVI - BNL-71539-2003 Volume 50 - High Performance Computing with QCDOC and BlueGene - BNL-71147-2003 Volume 49 - RBRC Scientific Review Committee Meeting - BNL-52679 Volume 48 - RHIC Spin Collaboration Meeting XIV - BNL-71300-2003 Volume 47 - RHIC Spin Collaboration Meetings XII, XIII - BNL-71118-2003 Volume 46 - Large-Scale Computations in Nuclear Physics using the QCDOC - BNL-52678 Volume 45 - Summer Program: Current and Future Directions at RHIC - BNL-71035 Volume 44 - RHIC Spin Collaboration Meetings VIII, IX, X, XI - BNL-71117-2003 Volume 43 - RIKEN Winter School - Quark-Gluon Structure of the Nucleon and QCD - BNL-52672 Volume 42 - Dynamics at RHIC - BNL-52669 Volume 41 - Hadron Structure from Lattice QCD - BNL-52674 Volume 40 - Theory Studies for RHIC-Spin - BNL-52662 Volume 39 - RHIC Spin Collaboration Meeting VII - BNL-52659 Volume 38 - RBRC Scientific Review Committee Meeting - BNL-52649 Volume 37 - RHIC Spin Collaboration Meeting VI (Part 2) - BNL-52660 Volume 36 - RHIC Spin Collaboration Meeting VI - BNL-52642 Volume 35 - RIKEN Winter School - Quarks, Hadrons and Nuclei - QCD Hard Processes and the Nucleon Spin - BNL-52643 Volume 34 - High Energy QCD: Beyond the - BNL-52641 Volume 33 - Spin Physics at RHIC in Year-1 and Beyond - BNL-52635 Volume 32 - RHIC Spin Physics V - BNL-52628 Volume 31 - RHIC Spin Physics III & IV Polarized Partons at High QA2 Region - BNL-52617 Volume 30 - RBRC Scientific Review Committee Meeting - BNL-52603 Volume 29 - Future Transversity Measurements - BNL-52612 Volume 28 - Equilibrium & Non-Equilibrium Aspects of Hot, Dense QCD - BNL-52613 Volume 27 - Predictions and Uncertainties for RHIC Spin Physics & Event Generator for RHIC Spin Physics III - Towards Precision Spin Physics at RHIC - BNL-52596 Volume 26 - Circum-Pan-Pacific RIKEN Symposium on High Energy Spin Physics - BNL-52588 Volume 25 - RHIC Spin - BNL-52581 Volume 24 - Physics Society of Japan Biannual Meeting Symposium on QCD Physics at RIKEN BNL Research Center - BNL- 52578 Volume 23 - Coulomb and -Asymmetry Polarimetry and Hadronic Spin Dependence at RHIC Energies - BNL-52589 Volume 22 - OSCARII: Predictions for RHIC - BNL-52591 Volume 21 - RBRC Scientific Review Committee Meeting - BNL-52568 Volume 20 - Gauge-Invariant Variables in Gauge Theories - BNL-52590 Volume 19 - Numerical Algorithms at Non-Zero Chemical Potential - BNL-52573 Volume 18 - Event Generator for RHIC Spin Physics - BNL-52571 Volume 17 - Hard Parton Physics in High-Energy Nuclear Collisions - BNL-52574 Volume 16 - RIKEN Winter School - Structure of Hadrons - Introduction to QCD Hard Processes - BNL-52569 Volume 15 - QCD Phase Transitions - BNL-52561 Volume 14 - Quantum Fields In and Out of Equilibrium - BNL-52560 Volume 13 - Physics of the 1 Teraflop RIKEN-BNL-Columbia QCD Project First Anniversary Celebration - BNL-66299 Volume 12 - Quarkonium Production in Relativistic Nuclear Collisions - BNL-52559 Volume 11 - Event Generator for RHIC Spin Physics - BNL-66116 Volume 10 - Physics of Polarimetry at RHIC - BNL-65926 Volume 9 - High Density Matter in AGS, SPS and RHIC Collisions - BNL-65762

110 Additional RIKEN BNL Research Center Proceedings:

Volume 8 - Frontiers in Vector Lattice Gauge Theories - BNL-65634 Volume 7' - RHIC Spin Physics - BNL-65615 Volume 6 - Quarks and Gluons in the Nucleon - BNL-65234 Volume 5 - Color Superconductivity, Instantons and Parity (Non?)-Conservation at High Baryon Density - BNL-65105 Volume 4 - Inauguration Ceremony, September 22 and Non-Equilibrium Many Body Dynamics -BNL-64912 Volume 3 - Hadron Spin-Flip at RHIC Energies - BNL-64724 Volume 2 - Perturbative QCD as a Probe of Hadron Structure - BNL-64723 Volume 1 - Open Standards for Cascade Models for RHIC - BNL-64722

111

For information please contact:

Ms. Pamela Esposito Ms. Susan Foster RIKEN BNL Research Center RIKEN BNL Research Center Building 510A Building 510A Brookhaven National Laboratory Brookhaven National Laboratory Upton, NY 11973-5000 USA Upton, NY 11973-5000 USA

Phone: (631) 344-3097 (631) 344-5864 Fax: (631) 344-4067 (631) 344-2562 E-Mail: [email protected] [email protected]

Homepage: http://www.bnl.gov/riken

RIKEN BNL RESEARCH CENTER

The Physics of W and Z Bosons

June 24-25, 2010

Li Keran Nuclei as heavy as bulls Copyright©CCASTA Through collision Generate new states of matter. T.D. Lee

Speakers:

Jan Balewski Ulrich Baur Kevin Black Yoshi Fukao Zhongbo Kang David Kawall Ashutosh Kotwal Carsten Magass Pavel Nadolsky Francis Petriello Joseph Seele David South Jan Stark Alessandro Vicini Jan Winter C.-P. Yuan Junjie Zhu

Organizers: S. Dawson, K. Okada, A. Patwa, J. Qiu and B. Surrow