Quantification of Terrestrial Weathering and Contamination in Meteorites Recovered in the Sultanate of Oman

Total Page:16

File Type:pdf, Size:1020Kb

Quantification of Terrestrial Weathering and Contamination in Meteorites Recovered in the Sultanate of Oman Quantification of terrestrial weathering and contamination in meteorites recovered in the Sultanate of Oman Inauguraldissertation der Philosophisch-naturwissenschaftlichen Fakultät der Universität Bern Vorgelegt von Florian Johann Zurfluh von Isenthal, UR Leiter der Arbeit: PD Dr. Beda A. Hofmann, Naturhistorisches Museum der Burgergemeinde Bern Ko-Leiter: PD Dr. Edwin Gnos, Muséum d’Histoire Naturelle de la Ville de Genève Ko-Leiter: Dr. Urs Eggenberger, Institut für Geologie, Universität Bern Koreferent: Prof. Dr. Jochen Schlüter, Mineralogisches Museum, Universität Hamburg Quantification of terrestrial weathering and contamination in meteorites recovered in the Sultanate of Oman Inauguraldissertation der Philosophisch-naturwissenschaftlichen Fakultät der Universität Bern Vorgelegt von Florian Johann Zurfluh von Isenthal, UR Leiter der Arbeit: PD Dr. Beda A. Hofmann, Naturhistorisches Museum der Burgergemeinde Bern Ko-Leiter: PD Dr. Edwin Gnos, Muséum d’Histoire Naturelle de la Ville de Genève Ko-Leiter: Dr. Urs Eggenberger, Institut für Geologie, Universität Bern Koreferent: Prof. Dr. Jochen Schlüter, Mineralogisches Museum, Universität Hamburg Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen. Der Dekan: Bern, 14.12.2012 Prof. Dr. Silvio Decurtins Acknowledgments Acknowledgments I will fondly keep in mind the years I could participate in the Omani-Swiss meteorite search and research project with all those positive and informative moments. In this section I would like to thank all the people, who provided considerable help to my PhD-Thesis and thus are responsible for the good vibrations: First of all, I have to thank the leader of the project and my main supervisor, Beda A. Hofmann. His infective inquisitiveness to understand every detail, his broad knowledge of mineralogy, optical microscopy and his creative way to solve problems helped to find a path out of many labyrinths. I’m especially grateful for his time and patience he invested in the extremely detailed corrections of my written work or the endless performance of HHXRF analyses on meteorites. I am also grateful for the possibility to participate at several events at the Natural History Museum such as the public nights at the museum. My second supervisor, Edwin Gnos, is thanked for sharing his wide knowledge in geology of Oman, geology in general and electron microanalysis. His childish-funny, inquiring habit and well-trained eyes enriched the experience during field- and laboratory-work. I enjoyed also every working-visit at the Natural History Museum of Geneva. The third supervisor, Urs Eggenberger, I thank for his confident behavior and since he was not a meteorite-researcher before, providing a view from another perspective. His critical comments, his immense experience in X-ray analytics, data logging and database expanded significantly the dimension of the project. I appreciate also the possibility to attend his coURSes, which widened my horizon. A fundamental part of the thesis presented here is the fieldwork, which I could complete in 2009, 2009/2010 and 2012. I would like to thank the Directors of the Directorate General of Minerals, Ministry of Commerce and Industry: Salim Omar Abdullah Al-Ibrahim, Salim Al- Buseidi, Sami Al Zubaidy and Akram Hassan Abdullah Al-Murazza for the permission and aid during fieldwork. Mohammed Al-Suleimani and Khalid Al-Tobi are thanked for bureaucratic and logistical support. It was always pleasant to be a guest in the beautiful and friendly Sultanate of Oman. I am grateful to the fieldwork participants for the help with finding meteorites, cooking delicious menus, disputes about all kind of topics and identification of stars at night. This includes: Ali Al Rajhi, Ali Al-Kathiri, André Piuz, Annette Bretscher, Beda Hofmann, Christian Meister, Christoph Opitz, Edwin Gnos, Elise Wimmer, Emilie Janots, Frank Preusser, Jan Walbrecker, Karl Wimmer, Mariana Cosarinsky, Martin Fisch, Mathias M. M. Meier, Mohammed Al-Ayrami, Mohammed Al-Battashi, Musallam Al-Maashani, Nathalie Dalcher, Nicolas Greber, Reto Trappitsch, Salim Al-Shahri, Salim Bakhit Al-Kathiri, Silvio Lorenzetti, Thomas Rosenberg and Urs Eggenberger. To my precursor, Ali Al-Kathiri, I would like to say shukran for the support in the field, answering my questions, placement of the temperature logger in mid June in the middle of 5 Acknowledgments the hot desert, translation of the summary into Arabic and for all the interesting stories he told us at tasty Omani dinners he had prepared for us during fieldwork. Nicolas Greber is thanked for the great analytical support (XRD, HHXRF, SEM, EMP, Raman and MC-ICP-MS) as well as for the fruitful discussions. Fieldwork was sustainable, not only due to his fresh bread, fantastic. The hundreds of well-polished thin sections and some special whishes were fulfilled by the great technician team of the Institute of Geological Science, University Bern. Here I would like to thank in particular Vreni Jakob, Thomas Aebi, Stephan Brechbühl, Thomas Siegenthaler and Adrian Liechti. Countless hours I used the electron microprobe at the Institute of Geological Sciences, University of Bern, where Martin Robyr was always ready to help if a problem arrived. Marco Herwegh, Mike Härtel, Alex Wetztel, Katja Lehmann and Karl Ramseyer is thanked for their help with small issues occurred at the SEM. Several times I used the cathode luminescence device of the Natural History Museum at Geneva and could profit from the experience of Pierre Alain and train French, English and German at once. To find the best usage of the handheld XRF device and other technical support or share of knowledge I thank the “Niton-guys” Marc Dupayrat, Roland Bächli, Stan Piorek and Björn Klaue. The water-soluble salt study benefited from the rock-water interaction team of the Institute of Geological Sciences, Uni Bern. I thank Nick Waber, Ruth Mäder, Priska Bähler, Stephan Weissen and Urs Mäder for the support during laboratory and analytical work. Today, geology without isotopes is not serious. I thank Igor Villa and Dea Vögelin for the assistance during the Sr isotope investigations. Radiocarbon analyses for terrestrial age determination were performed by Tim Jull and Marlene Giscard at the NSF-Arizona AMS Laboratory, University of Arizona, Tucson. Richard Greenwood did the oxygen isotope analyses needed for the classification of the special meteorites. Office mates Christoph Wanner and Christine Lemp is thanked for help during preparation of XRF samples and the XRF analyzes itself, as well as the climate in the office. Visits of Dani Kurz where also pleasant and helped for example to develop the structure of the database. The staff of Natural History Museum of Bern, Ursula Menkveld-Gfeller, Bärni Hostettler, Peter Vollenweider, Maria Lauper and Hannes Bauer, I thank for hospitality and help at the Museum. I thank Uli Linden for EDV support and door opening at late night work. Werner Zauggs help at computer and database issues is acknowledged. 6 Acknowledgments Administrative help by Sarah Antenen, Barbara Grose, Tabea Zimmermann and Isabelle Jobin is appreciated. Ivan Mercollis effort to find a reflected light microscopy for my office and sharing his fundamental knowledge of the Sultanate of Oman is respected. Marc Jost, Jochen Schlüter, Rico Mettler, Luici Folco, Carlole Cordier, Uli Ott and Susanne Schwenzer loaned, provided or helped to find meteorite and/or soil samples from other localities than Oman that were needed for our studies. Flat mate Dorian Gaar is thanked for recording television emissions (dealing partly with geology/meteoritics) and the help to solve some illustrator issues. Questions concerning ArcGIS software were answered by Dirk Rike-Zapp and especially Rafael Caduff. This clever boy helped also solving a lot of other (computer) problems. Matthias Bieri is thanked for drawing the raw figure of the synopsis and a movie that shows the terrestrial history of an ordinary chondrite. Finally, I would like to thank all other people from the University, the Monday-soccer team, namely Mike Härtel and Sam Gilgen, collegues, friends and family for the activations not directly related to the thesis providing refreshing pauses between the work. Discussions with not-experts helped to clarify the ideas. The thesis was supported by Swiss National Science Foundation grants 119937 and 137924 entitled “Meteorite accumulations of Arabia”. شكرا 7 8 Contents Contents Acknowledgements 5 Summary 11 Arabic summary 14 Abbreviations 19 Chapter 1: Introduction and background 21 1.1. Meteorites 23 1.2 . Weathering of hot desert meteorites 24 1.3. Goals of the study 25 1.4. Geographical and geological settings of Oman 27 1.5. Present climate and climate history of Oman 29 1.6. Meteorite search areas 30 1.7. Meteorites from Oman 31 1.8. General goals of the Omani-Swiss meteorite project 32 1.9. Meteorite names 34 1.10. Suited surfaces for meteorite recovery in central Oman 36 1.11. Weather observations 40 1.12. References 41 Chapter 2: Weathering and strontium contamination of meteorites recovered in the Sultanate of Oman 49 2.1. Introduction 52 2.2. The Omani-Swiss meteorite search and research project 52 2.3. Weathering 55 2.4. Strontium in hot desert meteorites 57 2.5. Acknowledgments 59 2.6. References 59 Chapter 3: Evaluation of the utility of handheld XRF in meteoritics 61 3.1. Introduction 64 3.2. Methods 65 3.3. Results 73 3.4. Discussion 80 3.5. Conclusions 94 3.6. Acknowledgments 94 3.7. References 95 Chapter 4: Chemical contamination and macroscopic weathering features in meteorites from Oman and other hot deserts 101 4.1. Introduction 104 4.2. Samples and analyses 106 9 Contents 4.3. Results 109 4.4. Discussion 117 4.5. Conclusions 129 4.6. Acknowledgments 130 4.7. References 130 Chapter 5: “Sweating meteorites” – water-soluble salts and temperature variation in ordinary chondrites and soil from the hot desert of Oman 137 5.1. Introduction 140 5.2. Samples and analytical techniques 143 5.3. Results 148 5.4. Discussion 165 5.5. Conclusions 189 5.6.
Recommended publications
  • Spring 1998 Gems & Gemology
    VOLUME 34 NO. 1 SPRING 1998 TABLE OF CONTENTS EDITORIAL 1 The Dr. Edward J. Gübelin Most Valuable Article Award FEATURE ARTICLE 4 The Rise to pProminence of the Modern Diamond Cutting Industry in India Menahem Sevdermish, Alan R. Miciak, and Alfred A. Levinson pg. 7 NOTES AND NEW TECHNIQUES 24 Leigha: The Creation of a Three-Dimensional Intarsia Sculpture Arthur Lee Anderson 34 Russian Synthetic Pink Quartz Vladimir S. Balitsky, Irina B. Makhina, Vadim I. Prygov, Anatolii A. Mar’in, Alexandr G. Emel’chenko, Emmanuel Fritsch, Shane F. McClure, Lu Taijing, Dino DeGhionno, John I. Koivula, and James E. Shigley REGULAR FEATURES pg. 30 44 Gem Trade Lab Notes 50 Gem News 64 Gems & Gemology Challenge 66 Book Reviews 68 Gemological Abstracts ABOUT THE COVER: Over the past 30 years, India has emerged as the dominant sup- plier of small cut diamonds for the world market. Today, nearly 70% by weight of the diamonds polished worldwide come from India. The feature article in this issue discuss- es India’s near-monopoly of the cut diamond industry, and reviews India’s impact on the worldwide diamond trade. The availability of an enormous amount of small, low-cost pg. 42 Indian diamonds has recently spawned a growing jewelry manufacturing sector in India. However, the Indian diamond jewelery–making tradition has been around much longer, pg. 46 as shown by the 19th century necklace (39.0 cm long), pendant (4.5 cm high), and bracelet (17.5 cm long) on the cover. The necklace contains 31 table-cut diamond panels, with enamels and freshwater pearls.
    [Show full text]
  • Asteroid Origins Satellite (AOSAT) I: an On-Orbit Centrifuge Science Laboratory
    Asteroid Origins Satellite (AOSAT) I: An On-orbit Centrifuge Science Laboratory Jack Lightholder*, Andrew Thoesen*, Eric Adamson, Jeremy Jakubowski, Ravi Nallapu, Sarah Smallwood, Laksh Raura, Andrew Klesh, Erik Asphaug, Jekan Thangavelautham Arizona State University, Tempe, AZ 85287 Abstract Exploration of asteroids, comets and small moons (`small bodies') can an- swer fundamental questions relating to the formation of the solar system, the availability of resources, and the nature of impact hazards. Near-earth aster- oids and the small moons of Mars are potential targets of human exploration. But as illustrated by recent missions, small body surface exploration remains challenging, expensive, and fraught with risk. Despite their small size, they are among the most extreme planetary environments, with low and irregu- lar gravity, loosely-bound regolith, extreme temperature variation, and the presence of electrically charged dust. Here we describe the Asteroid Origins Satellite (AOSAT-I), an on-orbit, 3U CubeSat centrifuge using a sandwich- sized bed of crushed meteorite fragments to replicate asteroid surface con- ditions. Demonstration of this CubeSat will provide a low-cost pathway to physical asteroid model validation, shed light on the origin and geophysics of asteroids, and constrain the design of future landers, rovers, resource ex- tractors, and human missions. AOSAT-I will conduct scientific experiments within its payload chamber while operating in two distinct modes: 1) as a nonrotating microgravity laboratory to investigate primary accretion, and 2) as a rotating centrifuge producing artificial milligravity to simulate surface conditions on asteroids, comets and small moons. AOSAT-I takes advantage of low-cost, off-the-shelf components, modular design, and the rapid assem- bly and instrumentation of the CubeSat standard, to answer fundamental questions in planetary science and reduce cost and risk of future exploration.
    [Show full text]
  • Antarctic Guide to Martian Weathering
    PSRD: Antarctic Guide to Martian Weathering http://www.psrd.hawaii.edu/April05/DryValleysSoils.html posted April 13, 2005 Antarctic Guide to Martian Weathering --- Soils in the Antarctic Dry Valleys contain traces of silicate alteration products and secondary salts much like those found in Martian meteorites. Written by Linda M. V. Martel Hawai'i Institute of Geophysics and Planetology Field sites in the Antarctic Dry Valleys serve as useful (and relatively nearby) analogs to the surface of Mars for several reasons that have been known since the Viking Lander experiments. The environmental similarities include: low mean temperatures; strong, desiccating winds; lack of rain; sparse snowfall; sublimation; diurnal freeze-thaw cycles; low humidity; high solar radiation; and the presence of salts in the soils. A team of planetary scientists have recently reexamined earlier work on cold Antarctic desert soils to better understand the Martian near-surface environment and weathering processes. The ongoing studies by Susan Wentworth (ERC/ESCG at Johnson Space Center), Everett Gibson and David McKay (Johnson Space Center), and Michael Velbel (Michigan State University) include Martian meteorites, most of which contain traces of aqueous weathering products. They report that these meteorite weathering features, which are of Martian origin, are remarkably similar in composition, nature, and abundance to those found in the Antarctic Dry Valleys soils, suggesting the weathering processes are also similar. Reference: S. J. Wentworth, Gibson, E. K., Velbel, M. A., and McKay, D. S. (2005) Antarctic Dry Valleys and indigenous weathering in Mars meteorites: implications for water and life on Mars. Icarus, v. 174, p. 382-395. Insights from Polar Desert Soils 1 of 6 PSRD: Antarctic Guide to Martian Weathering http://www.psrd.hawaii.edu/April05/DryValleysSoils.html The photograph on the left is a general scene of the environment of Wright Valley, Antarctica.
    [Show full text]
  • Meteorites from the Lut Desert (Iran)
    Meteorites from the Lut Desert (Iran) Hamed Pourkhorsandi, Jérôme Gattacceca, Pierre Rochette, Massimo d’Orazio, Hojat Kamali, Roberto Avillez, Sonia Letichevsky, Morteza Djamali, Hassan Mirnejad, Vinciane Debaille, et al. To cite this version: Hamed Pourkhorsandi, Jérôme Gattacceca, Pierre Rochette, Massimo d’Orazio, Hojat Kamali, et al.. Meteorites from the Lut Desert (Iran). Meteoritics and Planetary Science, Wiley, 2019, 54 (8), pp.1737-1763. 10.1111/maps.13311. hal-02144596 HAL Id: hal-02144596 https://hal-amu.archives-ouvertes.fr/hal-02144596 Submitted on 31 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License doi: 10.1111/maps.13311 Meteorites from the Lut Desert (Iran) Hamed POURKHORSANDI 1,2*,Jerome^ GATTACCECA 1, Pierre ROCHETTE 1, Massimo D’ORAZIO3, Hojat KAMALI4, Roberto de AVILLEZ5, Sonia LETICHEVSKY5, Morteza DJAMALI6, Hassan MIRNEJAD7, Vinciane DEBAILLE2, and A. J. Timothy JULL8 1Aix Marseille Universite, CNRS, IRD, Coll France, INRA, CEREGE, Aix-en-Provence, France 2Laboratoire G-Time, Universite Libre de Bruxelles, CP 160/02, 50, Av. F.D. Roosevelt, 1050 Brussels, Belgium 3Dipartimento di Scienze della Terra, Universita di Pisa, Via S.
    [Show full text]
  • Phosphorus and Sulfur Cosmochemistry: Implications for the Origins of Life
    Phosphorus and Sulfur Cosmochemistry: Implications for the Origins of Life Item Type text; Electronic Dissertation Authors Pasek, Matthew Adam Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 06:16:37 Link to Item http://hdl.handle.net/10150/194288 PHOSPHORUS AND SULFUR COSMOCHEMISTRY: IMPLICATIONS FOR THE ORIGINS OF LIFE by Matthew Adam Pasek ________________________ A Dissertation Submitted to the Faculty of the DEPARTMENT OF PLANETARY SCIENCE In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College UNIVERSITY OF ARIZONA 2 0 0 6 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Matthew Adam Pasek entitled Phosphorus and Sulfur Cosmochemistry: Implications for the Origins of Life and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: 04/11/2006 Dante Lauretta _______________________________________________________________________ Date: 04/11/2006 Timothy Swindle _______________________________________________________________________ Date: 04/11/2006
    [Show full text]
  • Olivine-Dominated Asteroids and Meteorites: Distinguishing Nebular and Igneous Histories
    Meteoritics & Planetary Science 42, Nr 2, 155–170 (2007) Abstract available online at http://meteoritics.org Olivine-dominated asteroids and meteorites: Distinguishing nebular and igneous histories Jessica M. SUNSHINE1*, Schelte J. BUS2, Catherine M. CORRIGAN3, Timothy J. MCCOY4, and Thomas H. BURBINE5 1Department of Astronomy, University of Maryland, College Park, Maryland 20742, USA 2University of Hawai‘i, Institute for Astronomy, Hilo, Hawai‘i 96720, USA 3Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland 20723–6099, USA 4Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560–0119, USA 5Department of Astronomy, Mount Holyoke College, South Hadley, Massachusetts 01075, USA *Corresponding author. E-mail: [email protected] (Received 14 February 2006; revision accepted 19 November 2006) Abstract–Melting models indicate that the composition and abundance of olivine systematically co-vary and are therefore excellent petrologic indicators. However, heliocentric distance, and thus surface temperature, has a significant effect on the spectra of olivine-rich asteroids. We show that composition and temperature complexly interact spectrally, and must be simultaneously taken into account in order to infer olivine composition accurately. We find that most (7/9) of the olivine- dominated asteroids are magnesian and thus likely sampled mantles differentiated from ordinary chondrite sources (e.g., pallasites). However, two other olivine-rich asteroids (289 Nenetta and 246 Asporina) are found to be more ferroan. Melting models show that partial melting cannot produce olivine-rich residues that are more ferroan than the chondrite precursor from which they formed. Thus, even moderately ferroan olivine must have non-ordinary chondrite origins, and therefore likely originate from oxidized R chondrites or melts thereof, which reflect variations in nebular composition within the asteroid belt.
    [Show full text]
  • Naretha Meteorite (Synonyms Kingoonya, Kingooya)
    Rec. West. Aust. Mus., 1976, 4 (1) NARETHA METEORITE (Sync;>nyms: Kingoonya, Kingooya) W.H. CLEVERLY* [Received 27 May 1975. Accepted 1 October 1975. Published 31 August 1976.1 ABSTRACT Much of the missing portion of the Naretha (Western Australia) meteorite has been located in museums as an un-named specimen and as two smaller specimens masquerading under the name 'Kingoonya' (or 'Kingooya'). The use of the junior synonyms with their implications of a South Australian site of find should be discontinued. INTRODUCfION Naretha meteorite, an L4 chondrite, was found in 1915 about 3 km north of the 205-mile station during construction of the Trans-Australian Railway. It was broken into at least three major pieces which were acquired by Mr John Darbyshire, Supervising Engineer for the construction of the western end of the railway (construction was proceeding simultaneously from both Kalgoorlie and Port Augusta ends - Fig. 1). Mr Darbyshire donated the meteorite to the W.A. School of Mines in Kalgoorlie where one' piece was retained and exhibited with a photograph of the reassembled meteorite (Fig. 2). A second fragment which was passed on to the Geological Survey of Western Australia was noted briefly by Simpson (1922) who first used the name 'Naretha', the name which had been given to the 205-mile station. There is strong presumptive evidence that the third fragment was passed on to Mr S.F.C. Cook of Kalgoorlie, a private collector from whose inaccurate verbal statements and undocumented collection, the subsequent confusion arose. In late 1926 Mr Cook gave a small piece of 'meteorite to Mr G.W.
    [Show full text]
  • Copper in Ordinary Chondrites: Proxies for Resource Potential of Asteroids and Constraints for Minimum-Invasive and Economically Efficient Exploitation
    Planetary and Space Science 194 (2020) 105092 Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss Copper in ordinary chondrites: Proxies for resource potential of asteroids and constraints for minimum-invasive and economically efficient exploitation Katarzyna Łuszczek a, Agata M. Krzesinska b,* a Wrocław University of Science and Technology, Faculty of Geoengineering, Mining and Geology, Wybrzeze_ Wyspianskiego 27, 50-370, Wrocław, Poland b Centre for Earth Evolution and Dynamics, Department of Geosciences, University of Oslo, Oslo, PO1028 Blindern, 0316, Oslo, Norway ARTICLE INFO ABSTRACT Keywords: Ordinary chondrites originate from S-type asteroids. These meteorites can be used for laboratory studies that Native copper further our understanding of the geological conditions on asteroids, including assessment of their resource po- Extraterrestrial resources tential. Asteroids have since long been considered to host significant resources of siderophilic elements such as Fe, ISRU Ni, Co, Cu, that could be exploited in situ. However bulk rock mining would be largely impractical. In this paper, S-type asteroids we report on abundance and mineral occurrences of copper in H chondrites, identify Cu carrier minerals and Ore-forming processes on asteroids Shock-darkening interpret their distribution in the context of processes that must have affected parent bodies. This leads us to suggestion that some parts of S-type asteroids contain Cu in a form and amount that would satisfy requirements of potentially economically and environmentally more efficient exploitation. Parent bodies of chondrites contain 70–100 ppm of Cu in bulk and this is mainly contained in Fe,Ni-alloy. However, parts of asteroids that were affected by shock processes and post-shock thermal annealing may host Cu that exsolved from primary alloy and forms native, pure-Cu grains.
    [Show full text]
  • 1971 August Council Minutes
    Minutes of the Council Meeting of the Meteoritical Society 34th Annual Meeting August, 1971 Tubingen, West Germany The meeting convened at 8:00 p.m. with President Wood presiding. In attendance were Vice Presidents Edward Anders and Robin Brett, Secretary Ted Bunch, Treasurer Ursula Marvin, Editor Carleton Moore, Director Meteor Section Peter Millman, Councilors Vagn Buchwald, Don Gault, Ahmed El Goresy, Ian Halliday and John Wasson. Also in attendance was Denis Shaw, Executive Editor of GCA. Visitors attending included Roy Clarke, Jr., and Peter Eberhardt. Program, 34th Annual Meeting President Wood presented the meeting program, followed by a brief discussion. The Council unanimously approved the program. Minutes and Secretary's Report The Secretary presented the minutes of the Council meeting of April 15, 1971 (Washington, D. C.) that were recorded by the Acting Secretary, Ursula Marvin. The minutes were approved as submitted. The Secretary presented a report to the Council summarizing membership activity and also informed the Council that he was the Society's Representative to the 24th International Geologic Congress in 1972. Treasurer's Report The Treasurer presented two balance sheets and pointed out that we are operating at an overall yearly deficit of approximately $1000. After consultation with the Editor, C. B. Moore, the Treasurer stated that the major cause of the deficit is the publication costs of Meteoritics ($1100jissue). Several suggestions were made to improve the situation. Brett suggested that we increase the membership for larger dues income. Bunch suggested a membership booth be established at the Meeting. Anders suggested a drive to increase library subscriptions. The President offered to contact the Membership Committee Chairman, Terry Offield, for initiating a membership drive.
    [Show full text]
  • Antartic Meterorite Newsletter Volume 3
    A periodical issued by the Antarctic Meteorite Working Group to inform scientists of the basic characteristics of specimens recovered in the Antarctic. I Volume 3, Number March, 1980 I Supported by the National Science Foundation, Division of Polar Programs, and compiled at Code SN2, Johnson Space Center, NASA, Houston, Texas 77058 The Meteorite Working Group will meet next on April 10, 1980, to consider sample requests for Antarctic meteorites. Please submit requests to: John O. Annexstad Secretary, Meteorite Working Group Curator's Branch/SN2 NASA-JohnsonSpace Center Houston, TX 77058 Availability of Large Chondrites for Studies of Cosmic-Ray-lnteractions: Two large ordinary chondrites, Allan Hills 78084 (_ 15 kg) and Meteorite Hills 78028 (_ 20 kg), appear to be complete specimens in that they are nearly fully covered with a fusion crust. Preliminary examination suggests that neither meteorite is appreciably weathered or fractured. It is the intention of the MWGthat samples of one of these meteorites be made available to investigators wishing to make detailed studies of products of cosmic ray interactions as a function of depth in a relatively large chondrite. For such studies, the MWG will entertain moderately elaborate requests for multiple samples from accurately determined subsurface depths. The MWGwill also entertain requests from investi- gators who wish to organize and lead a consortium-like study of the products of cosmic ray interactions in one of these chondrites. Although the descriptions and petrographic classifications of these chondrites will not be announced until the next Newsletter, persons wishiing to participate in the planned investigations of cosmogenic products are encouraged to transmit a sample request or a statement of their intent to participate to the MWGbefore the April meeting.
    [Show full text]
  • Brachinite-Paper.Pdf
    Open Research Online The Open University’s repository of research publications and other research outputs Petrological, petrofabric, and oxygen isotopic study of five ungrouped meteorites related to brachinites Journal Item How to cite: Hasegawa, Hikari; Mikouchi, Takashi; Yamaguchi, Akira; Yasutake, Masahiro; Greenwood, Richard and Franchi, Ian A. (2019). Petrological, petrofabric, and oxygen isotopic study of five ungrouped meteorites related to brachinites. Meteoritics & Planetary Science, 54(4) pp. 752–767. For guidance on citations see FAQs. c 2019 The Meteoritical Society https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Proof Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1111/maps.13249 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk M A P S 13249-3018 Dispatch: 30.1.19 CE: Malarvizhi Journal Code Manuscript No. No. of pages: 16 PE: Nishanthan P. Meteoritics & Planetary Science 1–16 (2019) 1 doi: 10.1111/maps.13249 2 3 4 5 Petrological, petrofabric, and oxygen isotopic study of five ungrouped meteorites 6 related to brachinites 7 8 9 Hikari HASEGAWA 1*, Takashi MIKOUCHI1,2, Akira YAMAGUCHI 3,4, 10 1 Masahiro YASUTAKE5, Richard C. GREENWOOD6, and Ian A. FRANCHI6 11 12 1Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 13 113-0033,
    [Show full text]
  • 1/Keticanjfllsdum
    >1/keticanJfllsdum PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 2069 DECEMBER 29, I96I The Composition of the Ottawa, Chateau-Renard, Mocs, and New Concord Meteorites BY BRIAN MASON' AND H. B. WIIK2 THE OTAWA, KANSAS, METEORITE This meteorite fell near Ottawa, Kansas, on the evening of April 9, 1896. The only accounts of this fall we have been able to trace ap- peared in the Ottawa Weekly Times of April 16, 1896, and in the Ottawa Weekly Herald of the same date. The latter reads as follows: "A meteorite, weighing 31 ounces, was on exhibition at C. L. Becker and Co.'s drug store last week which fell the evening of April 9 on the farm ofJ. T. Black, nine miles northwest of town. The surface of the meteorite was blackened as though it had been subjected to great heat. It is globular in form, with an uneven surface." The account from the Ottawa Weekly Times reads as follows: "Last Thursday afternoon while Joe Black, of this city, was out to his farm northeast of Peoria, and was at work in his orchard trimming trees, between five and six o'clock, there was a terrific explosion in mid air just above him, followed by a number of explosions in quick succes- sion resembling the fireing of musketry. The sky was clear; not a cloud was visible; the heavens appeared to be filled with explosives, and whizzing missiles, resembling bullets and cannon balls; the noise was heard in Ottawa, and reports say, at a distance of 30 to 40 miles.
    [Show full text]