Compositional Characteristics and Hydration Behavior of Mineral Trioxide Aggregates

Total Page:16

File Type:pdf, Size:1020Kb

Compositional Characteristics and Hydration Behavior of Mineral Trioxide Aggregates View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector J Dent Sci 2010;5(2):53−59 REVIEW ARTICLE Compositional characteristics and hydration behavior of mineral trioxide aggregates Wen-Hsi Wang,1 Chen-Ying Wang,2 Yow-Chyun Shyu,2 Cheing-Meei Liu,2 Feng-Huei Lin,3 Chun-Pin Lin2,4* 1Orthopedic Device Technology Division, Medical Electronics and Device Technology Center, Industrial Technology Research Institute, Hsinchu, Taiwan 2Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan 3Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan 4School of Dentistry and Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei, Taiwan Received: Jan 21, 2010 Mineral trioxide aggregate (MTA) was one of most popular biomaterials for end- Accepted: Apr 5, 2010 odontic treatment in the past decade. Its superb biocompatibility, sealing ability and surface for tissue adhesion all make MTA a potential candidate for many dental KEY WORDS: applications, such as apexification, perforation repair, repair of root resorption, apexification; and as a root-end filling material. There are many review articles regarding the compositional characteristics; physical, chemical and biological properties of MTA. However, there are few reviews discussing the relationship between the composition and hydration behav- hydration behavior; ior of MTA. The aim of this article was to provide a systematic review regarding the mineral trioxide aggregates; compositional characteristics and hydration behavior of MTA. perforation repair Introduction proper selection of materials plays a very important role in the success of the surgery. The procedure Endodontic surgery and root-end filling usually involves root-end exposure and resection, material as well as preparing a Class I cavity and placing root- end filling material.3 Hence, these materials should There are about 24 million endodontic procedures form a proper seal of the root canal content from performed in the US on an annual basis, with up to periradicular tissues and repair root defects.4 Under- 5.5% of these procedures involving endodontic apical standably, this material should also be biocompat- surgery, perforation repair, and apexification treat- ible with periodontal tissues. Moreover, dimensional ment.1 Endodontic surgeries, including retrograde stability, solubility in tissue fluid, non-resorbability filling and perforation repair, are major options for and radiopaque are very important criteria for root- failed teeth and those that cannot be treated with end filling material.2 conventional endodontic procedures. Moreover, sur- gical procedures also provide a better visual field and Mineral trioxide aggregate greatly reduce misadventures, such as root perfo- ration, during canal instrumentation and post-space Many materials have been used for retrograde fill- preparation.2 In most endodontic surgical procedures, ing and perforation repair, but none of them meet *Corresponding author. School of Dentistry and Graduate Institute of Clinical Dentistry, National Taiwan University, No. 1, Chang-Te Street, Taipei 10016, Taiwan. E-mail: [email protected] ©2010 Association for Dental Sciences of the Republic of China 54 W.H. Wang et al all of the criteria of an ideal material. Mineral tri- WMTA. A study by Oviir et al.23 in 2006 showed that oxide aggregate (MTA), developed at Loma Linda OCCM-30 cementoblast and OKF6/TERT1 keratino- University, California, USA, in 1993, is a potential cytes grew better on the surface of WMTA than GMTA. alternative to conventional materials,5 and received Moreover, there are also studies which show that cell approval by the US Food and Drug Administration as proliferation significantly increased when exposed ProRoot MTA (Tulsa Dental Products, Tulsa, OK, USA).6 to WMTA.23,24 Apoptosis was not induced in two cell The setting time of MTA is around 4 hours. The prop- lines after 24 hours of exposure to WMTA, and DNA erties of MTA vary with the particle size, powder synthesis also increased, which suggests a positive to water ratio, temperature, water presence, and effect on cellular proliferation.24 This was also in ac- entrapped water.7 In clinical applications, MTA is cordance with the result that WMTA had more of a mixed with supplied sterile water in a powder to stimulating effect on human dental pulp cells than liquid ratio of 3:1, and it is recommended that a did a commercial calcium hydroxide preparation.22,25 moist cotton pellet be placed in direct contact with MTA has been widely investigated for over 15 the material until the next follow-up appointment. years. However, the relationship between the compo- sition and hydration behavior was seldom discussed. Properties of MTA The aim of this article is to present a systematic review of the compositional characteristics and There were many studies regarding clinical applica- relationships with hydration behaviors of MTA. tions of MTA in the past decade. Torabinejad et al.8 found statistically and significantly less leakage with MTA than with SuperEBA (Harry J. Bosworth Co., Compositional characteristics Skokie, IL, USA), intermediate restorative material (IRM; LD Caulk Co., Milford, DE, USA), and amalgam. Components of MTA Moreover, studies by Torabinejad et al.9,10 and Fischer et al.11 proved that MTA was superior compared with MTA is derived from ordinary Portland cement with a SuperEBA and IRM. MTA also showed better mar- slight difference in composition. MTA is mainly com- ginal adaptation with or without finishing when com- posed of three powdered ingredients, which are 75% pared with SuperEBA and IRM.12 Several in vitro and Portland cement, 20% bismuth oxide, 5% gypsum, and 26 in vivo studies demonstrated that the sealing ability trace amounts of SiO2, CaO, MgO, K2SO4 and Na2SO4. and biocompatibility of MTA are superior to those The major constituent responsible for the setting and of amalgam, IRM, and SuperEBA.13−15 In a study by biologic properties is from the Portland cement, and Torabinejad et al.15 in 1995, rhodamine B fluores- bismuth is added only for its radiopaque property. cent dye and a confocal microscope were used to There are four major components in Portland evaluate the sealing ability of amalgam, SuperEBA, cement: tricalcium silicate [(CaO)3•SiO2; abbrevi- and MTA as root-end filling material. On the other ation C3S], dicalcium silicate [(CaO)2•SiO2; abbrevi- hand, significantly higher microleakage was found ation C2S], tricalcium aluminate [(CaO)3•Al2O3; with amalgam compared with MTA using a fluid abbreviation C3A], and tetracalcium aluminofer- 16 conductive system in a study by Yatsushiro et al. rite [(CaO)4•Al2O3•Fe2O3; abbreviation C4AF]. Each in 1998. It also interestingly showed that the level of component is discussed in the following section. fluid conductance was very close to that of the neg- Tricalcium silicate is the most important constit- ative control group, and this was also confirmed in uent of Portland cement. It is the major component several bacterial leakage models.8,11,16,17 in the formation of calcium silicate hydrate (C-S-H) Evidence of healing of the surrounding tissue which gives early strength to Portland cement.27 was shown when MTA was used as a root-end filling There are seven polymorphs of tricalcium silicate material.15,18,19 In a study by Economides et al.,20 known, i.e., T1, T2, T3 (triclinic), M1, M2, M3 (mono- the presence of connective tissue was discovered clinic) and R (rhombohedral), depending on the after the first postoperative week. MTA showed presence of impurities.28 The symmetry of the crystal a high success rate as a root-end filling material in increases with a rise in temperature. The structure of a 2-year follow-up study.21 tricalcium silicate is stable (with respect to dicalcium silicate and calcium oxide) in the temperature range Gray MTA and white MTA of 1250−1800ºC, and it incongruently melts at 2150ºC. The high-temperature form of tricalcium silicate is Up to 2002, there was only one form of MTA that con- stabilized by the solid solution of impurities present sisted of gray-colored powder (gray MTA [GMTA]), in the raw materials. Tricalcium silicate with impuri- but in that year, white MTA (WMTA) was introduced ties is usually referred to as alite. The formation of because of esthetic concerns.22 There are also many solid solutions can effectively increase the per- studies that examined differences between GMTA and centage of tricalcium silicate in Portland cement.29 Mineral trioxide aggregates 55 There are five polymorphs of dicalcium silicate, oxide, and magnesium oxide. The resulting Portland 30 designated α, α′H, α′L, β, and γ. Dicalcium sili- cement can differ according to where the rock was cate hydrates much more slowly than tricalcium quarried. This indicates that there will be impuri- silicate and is responsible for the latter’s strength. ties which may be toxic when Portland cement is The impure form of dicalcium silicate is referred to applied to medical applications. This point of view as belite, the β form of which is usually found, but was also reinforced by X-ray photoelectron spectros- occasionally the α′ form is found. Belite is stabilized copy, energy-dispersive X-ray analysis and inductively by foreign ions in solid solution with respect to γ-C2S. coupled plasma optical emission spectroscopy re- Generally, there is a higher content of foreign ions sults regarding the exact composition of cements taken into solid solution than with alite. Cations, tested and the resulting physical and chemical such as Al3+, Fe3+, Mg2+ and K+, and anions, such specifications in a study by Dammaschke et al.35 in 2+ 3− SO4 and PO4 , stabilize dicalcium silicate at high 2005. Modifications to Portland cement and subse- temperatures. No link was found among the impu- quent extensive tests had to be conducted to ensure rity content, dislocation density, and reactivity of that the resultant materials met the requirements different kinds of dicalcium silicate.29 set out by the US Food and Drug Administration for Tricalcium aluminate is the most reactive con- medical devices.
Recommended publications
  • 96 Quality Control of Clinker Products by SEM and XRF Analysis Ziad Abu
    ACXRI '96 Quality Control of Clinker Products By SEM and XRF Analysis Ziad Abu Kaddourah and Khairun Azizi MY9700786 School of Materials and Mineral Resources Eng., Universiti Sains Malaysia 31750 Tronoh, Perak, Malaysia. ABSTRACT The microstructure and chemical properties of industrial Portland cement clinkers have been examined by SEM and XRF methods to establish the nature of the clinkers and how variations in the clinker characteristics can be used to control the clinker quality. The clinker nodules were found to show differences in the chemical composition and microstructure between the inner and outer parts of the clinker nodules. Microstructure studies of industrial Portland cement clinker have shown that the outer part of the nodules are enriched in silicate more than the inner part. There is better crystallization and larger alite crystal 9ize in the outer part than in the inner part. The alite crystal size varied between 16.2-46.12um. The clinker chemical composition was found to affect the residual >45um, where a higher belite content causes an increase in the residual >45um in the cement product and will cause a decrease in the concrete strength of the cement product. The aluminate and ferrite crystals and the microcracks within the alite crystal are clear in some clinker only. The quality of the raw material preparation, burning and cooling stages can be controlled using the microstructure of the clinker product. INTRODUCTION Examination of manufactured industrial clinkers using the Scanning Electron Microscope (SEM) is usually conducted to study problems that can't be defined by the normal quality control procedures. Such a study can be used to give better information and knowledge about clinkers characteristics and how variations in the clinker characteristics are affected by variations in the various stages during the manufacturing process.
    [Show full text]
  • Industrial Scale Kiln Problems and Their Solution with Controlling Different Operating Parameters
    Open Access Austin Chemical Engineering Research Article Industrial Scale Kiln Problems and Their Solution with Controlling Different Operating Parameters Fazeel Ahmad* Department of Chemical Engineering, University of Wah, Abstract Wah Engineering College, Pakistan The chemical composition homogeneity of kiln feed has an important *Corresponding author: Fazeel Ahmad, Department relationship to fuel consumption, kiln operation, clinker formation and cement of Chemical Engineering, University of Wah, Wah strength. Kiln operation can be made stable and smooth. The basis for this Engineering College, Pakistan property is a well-burned clinker with consistent chemical composition and free lime. The main reason for the clinker free lime to change in situation with Received: April 19, 2020; Accepted: May 12, 2020; stable kiln operation is variation in the chemical composition of the kiln feed. Published: May 19, 2020 This variation in chemical composition is related to raw mix control and the homogenization process. To ensure a constant quality of the product and maintain a stable and continuous operation of the kiln, the attention must be paid to storage and homogenization of raw materials and kiln feed. Due to variations in the kiln feed chemical compositions that affect its burn ability and the fuel consumption. The objective of this research paper is to provide solutions of the problems occurring in well burned clinker through stable kiln operation and efficient cooler heat transfer. The quality of cement is assessed typically from its
    [Show full text]
  • Separate Calcination in Cement Clinker Production
    Separate Calcination in Cement Clinker Production A laboratory scale study on how an electrified separate calcination step affects the phase composition of cement clinker Amanda Vikström Master thesis, 30 hp M.Sc. in Energy Engineering, 300 hp Department of Applied Physics and Electronics, Spring term 2021 Separate Calcination in Cement Clinker Production A laboratory scale study on how an electrified separate calcination step affects the phase composition of cement clinker Amanda Vikström [email protected] Master Thesis in Energy Engineering Department of Applied Physics and Electronics Umeå University Examiner: Robert Eklund Supervisors: Matias Eriksson, José Aguirre Castillo and Bodil Wilhelmsson Performed in collaboration with Cementa AB and the Centre for Sustainable Cement and Quicklime Production at Umeå University 31 may 2021 Abstract Cement production is responsible for around 7% of the global anthropogenic carbon dioxide emissions. More than half of these emissions are due to the unavoidable release of carbon dioxide upon thermal decomposition of the main raw material limestone. Many different options for carbon capture are currently being investigated to lower emissions, and one potential route to facilitate carbon capture could be the implementation of an electrified separate calcination step. However, potential effects on the phase composition of cement clinker need to be investigated, which is the aim of the present study. Phases of special interest are alite, belite, aluminate, ferrite, calcite, and lime. The phase composition during clinker formation was examined through HT-XRD lab-scale experiments, allowing the phase transformations to be observed in situ. Two different methods of separate calcination were investigated, one method in which the raw meal was calcined separately, and one method where the limestone was calcined separately.
    [Show full text]
  • Equivalent Cement Clinker Obtained by Indirect Mechanosynthesis Process
    materials Article Equivalent Cement Clinker Obtained by Indirect Mechanosynthesis Process Rabah Hamzaoui * and Othmane Bouchenafa * Institut de Recherche en Constructibilité IRC, ESTP, Université Paris-Est, 28 Avenue du Président Wilson, 94234 Cachan, France * Correspondence: [email protected] (R.H.); [email protected] (O.B.); Tel.: +33149080334 (R.H.); +33149082327 (O.B.) Received: 23 September 2020; Accepted: 6 November 2020; Published: 9 November 2020 Abstract: The aim of this work is to study the heat treatment effect, milling time effect and indirect mechanosynthesis effect on the structure of the mixture limestone/clay (kaolinite). Indirect mechanosynthesis is a process that combines between mechanical activation and heat treatment at 900 ◦C. XRD, TGA, FTIR and particle size distribution analysis and SEM micrograph are used in order to follow thermal properties and structural modification changes that occur. It is shown that the indirect mechanosynthesis process allows the formation of the equivalent clinker in powder with the main constituents of the clinker (Alite C3S, belite C2S, tricalcium aluminate C3A and tetracalcium aluminoferrite C4AF) at 900 ◦C, whereas, these constituents in the conventional clinker are obtained at 1450 ◦C. Keywords: cement clinker; clinkerization; indirect mechanosynthesis; nanostructured materials; crystalline structures 1. Introduction Portland cement is manufactured from raw material obtained by mixing and grinding limestone and minerals rich in silica and alumina (clay or kaolin) and other additives. This mixture is then calcined at 1450 ◦C to obtain the clinker. The clinker is finely crushed and blended with a source of sulfate (gypsum or anhydrite) and other minerals to form the cement [1]. However, the production of cement is responsible for high energy consumption.
    [Show full text]
  • Delayed Ettringite Formation
    Ettringite Formation and the Performance of Concrete In the mid-1990’s, several cases of premature deterioration of concrete pavements and precast members gained notoriety because of uncertainty over the cause of their distress. Because of the unexplained and complex nature of several of these cases, considerable debate and controversy have arisen in the research and consulting community. To a great extent, this has led to a misperception that the problems are more prevalent than actual case studies would indicate. However, irrespective of the fact that cases of premature deterioration are limited, it is essential to address those that have occurred and provide practical, technically sound solutions so that users can confidently specify concrete in their structures. Central to the debate has been the effect of a compound known as ettringite. The objectives of this paper are: Fig. 1. Portland cements are manufactured by a process that combines sources of lime (such as limestone), silica and • to define ettringite and its form and presence in concrete, alumina (such as clay), and iron oxide (such as iron ore). Appropriately proportioned mixtures of these raw materials • to respond to questions about the observed problems and the are finely ground and then heated in a rotary kiln at high various deterioration mechanisms that have been proposed, and temperatures, about 1450 °C (2640 °F), to form cement compounds. The product of this process is called clinker • to provide some recommendations on designing for durable (nodules at right in above photo). After cooling, the clinker is concrete. interground with about 5% of one or more of the forms of Because many of the questions raised relate to cement character- calcium sulfate (gypsum shown at left in photo) to form portland cement.
    [Show full text]
  • Alite Calcium Sulfoaluminate Cement: Chemistry and Thermodynamics
    This is a repository copy of Alite calcium sulfoaluminate cement: chemistry and thermodynamics. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/144183/ Version: Accepted Version Article: Hanein, T. orcid.org/0000-0002-3009-703X, Duvallet, T.Y., Jewell, R.B. et al. (5 more authors) (2019) Alite calcium sulfoaluminate cement: chemistry and thermodynamics. Advances in Cement Research, 31 (3). pp. 94-105. ISSN 0951-7197 https://doi.org/10.1680/jadcr.18.00118 © 2019 ICE Publishing. This is an author produced version of a paper subsequently published in Advances in Cement Research. Uploaded in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Abstract: Calcium sulfoaluminate (C$A) cement is a binder of increasing interest to the cement industry and as such is undergoing rapid development. Current formulations do not contain alite; however, it can be shown that hybrid C$A-alite cements can combine the favourable characteristics of Portland cement with those of C$A cement while also having a lower carbon footprint than the current generation of Portland cement clinkers.
    [Show full text]
  • Reactions Accompanying Stabilization of Clay with Cement A
    Reactions Accompanying Stabilization Of Clay with Cement A. HERZOG, Senior Lecturer in Civil Engineering, University of New South Wales, Newcastle, Australia, and J. K. :MITCHELL, Assistant Professor of Civil Engineering, and Assistant Research Engineer, Institute of Transportation and Traffic Engineering, University of California, Berkeley This paper reports the results of an investigation aimed at de­ lineating the nature of the reactions accompanying the stabili­ zation of clay with portland cement. Consideration of the nature of cement hydration, the physico-chemical character­ istics of clays and lime-clay interaction leads to the hypothesis that during the hydration of a clay-cement mixture, hydrolysis and hydration of cement could be regarded as primary reac­ tions which form usual cement hydration products, increase the pH, and liberate lime. The high pH and Ca(OHh concen­ tration could initiate attack of the clay particles and also cause breakdown of amorphous silica and alumina which then could combine with calcium to form secondary cementitious material. A clay-cement skeleton and a clay matrix are likely. Mechanical, X-ray diffraction, and chemical tests on kao­ linite and montmorillonite stabilized with portland cement and with pure tricalcium silicate (C3S), the major strength-producing compound in portland cement, gave results in agreement with this hypothesis. Compacted clay-cement mixtures were cured at 100 percent relative humidity and at 60 C (to accelerate hardening) and studied at different times after molding. X-ray analyses showed that calcium hydroxide was formed in hydrat­ ing clay-cement, but was rapidly used up in reaction with the clay. Minor alteration of the kaolinite-cement X-ray pattern and marked alteration of the montmorillonite-cement X-ray pattern were indicated after curing periods of 12 weeks, sug­ gesting clay mineral structure breakdown and/or interaction with cement at particle surfaces.
    [Show full text]
  • Faculty of Science Internal Bylaw of Graduate Studies "Program Curricula and Course Contents" 2016
    . Faculty of Science Internal Bylaw of Graduate Studies "Program Curricula and Course Contents" 2016 Table of Contents Page 1-Mathematics Department Mathematics Programs 1 Diplomas Professional Diploma in Applied Statistics 2 Professional Diploma in Bioinformatics 3 M.Sc. Degree M.Sc. Degree in Pure Mathematics 4 M.Sc. Degree in Applied Mathematics 5 M.Sc. Degree in Mathematical Statistics 6 M.Sc. Degree in Computer Science 7 M.Sc. Degree in Scientific Computing 8 Ph.D. Degree Ph. D. Degree in Pure Mathematics 9 Ph. D Degree in Applied Mathematics 10 Ph. D. Degree in Mathematical Statistics 11 Ph. D Degree in Computer Science 12 Ph. D Degree in Scientific Computing 13 2- Physics Department Physics Programs 14 Diplomas Diploma in Medical Physics 15 M.Sc. Degree M.Sc. Degree in Solid State Physics 16 M.Sc. Degree in Nanomaterials 17 M.Sc. Degree in Nuclear Physics 18 M.Sc. Degree in Radiation Physics 19 M.Sc. Degree in Plasma Physics 20 M.Sc. Degree in Laser Physics 21 M.Sc. Degree in Theoretical Physics 22 M.Sc. Degree in Medical Physics 23 Ph.D. Degree Ph.D. Degree in Solid State Physics 24 Ph.D. Degree in Nanomaterials 25 Ph.D. Degree in Nuclear Physics 26 Ph.D. Degree in Radiation Physics 27 Ph.D. Degree in Plasma Physics 28 Ph.D. Degree in Laser Physics 29 Ph.D. Degree in Theoretical Physics 30 3- Chemistry Department Chemistry Programs 31 Diplomas Professional Diploma in Biochemistry 32 Professional Diploma in Quality Control 33 Professional Diploma in Applied Forensic Chemistry 34 Professional Diploma in Applied Organic Chemistry 35 Environmental Analytical Chemistry Diploma 36 M.Sc.
    [Show full text]
  • Morphological Analysis of White Cement Clinker Minerals: Discussion on the Crystallization-Related Defects
    Hindawi Publishing Corporation International Journal of Analytical Chemistry Volume 2016, Article ID 1259094, 10 pages http://dx.doi.org/10.1155/2016/1259094 Research Article Morphological Analysis of White Cement Clinker Minerals: Discussion on the Crystallization-Related Defects Mohamed Benmohamed,1,2 Rabah Alouani,2 Amel Jmayai,1 Abdesslem Ben Haj Amara,1 and Hafsia Ben Rhaiem1 1 UR05/13-01, Physique des Materiaux´ Lamellaires et Nanomateriaux´ Hybrides (PMLNMH), Faculte´ des Sciences de Bizerte, 7021 Zarzouna, Tunisia 2Departement´ de Geologie,´ Faculte´ des Sciences de Bizerte, Zarzouna, 7021 Bizerte, Tunisia Correspondence should be addressed to Mohamed Benmohamed; [email protected] Received 23 January 2016; Accepted 28 April 2016 Academic Editor: Valentina Venuti Copyright © 2016 Mohamed Benmohamed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The paper deals with a formation of artificial rock (clinker). Temperature plays the capital role in the manufacturing process. So, itis useful to analyze a poor clinker to identify the different phases and defects associated with their crystallization. X-ray fluorescence spectroscopy was used to determine the clinker’s chemical composition. The amounts of the mineralogical phases are measured by quantitative XRD analysis (Rietveld). Scanning electron microscopy (SEM) was used to characterize the main phases of white Portland cement clinker and the defects associated with the formation of clinker mineral elements. The results of a study which focused on the identification of white clinker minerals and defects detected in these noncomplying clinkers such as fluctuation of the amount of the main phases (alite (C3S) and belite (C2S)), excess of the free lime, occurrence of C3S polymorphs, and occurrence of moderately-crystallized structures are presented in this paper.
    [Show full text]
  • Production and Hydration of Calcium Sulfoaluminate-Belite Cements Derived from Aluminium Anodising Sludge
    This is a repository copy of Production and hydration of calcium sulfoaluminate-belite cements derived from aluminium anodising sludge. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/103378/ Version: Accepted Version Article: da Costa, E.B., Rodríguez, E.D., Bernal, S. et al. (3 more authors) (2016) Production and hydration of calcium sulfoaluminate-belite cements derived from aluminium anodising sludge. Construction and Building Materials, 122. pp. 373-383. ISSN 0950-0618 https://doi.org/10.1016/j.conbuildmat.2016.06.022 Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Preprint of a paper published in Construction and Building Materials, 122(2016):373-383. Version of record is available at http://dx.doi.org/10.1016/j.conbuildmat.2016.06.022 1 Production and hydration of calcium sulfoaluminate-belite 2 cements derived from aluminium anodising sludge 3 Eugênio Bastos da Costa1, Erich D. Rodríguez1,2*, Susan A.
    [Show full text]
  • Machine Learning Enables Prompt Prediction of Hydration Kinetics Of
    www.nature.com/scientificreports OPEN Machine learning enables prompt prediction of hydration kinetics of multicomponent cementitious systems Jonathan Lapeyre1, Taihao Han1, Brooke Wiles1, Hongyan Ma2, Jie Huang3, Gaurav Sant4 & Aditya Kumar1* Carbonaceous (e.g., limestone) and aluminosilicate (e.g., calcined clay) mineral additives are routinely used to partially replace ordinary portland cement in concrete to alleviate its energy impact and carbon footprint. These mineral additives—depending on their physicochemical characteristics—alter the hydration behavior of cement; which, in turn, afects the evolution of microstructure of concrete, as well as the development of its properties (e.g., compressive strength). Numerical, reaction- kinetics models—e.g., phase boundary nucleation-and-growth models; which are based partly on theoretically-derived kinetic mechanisms, and partly on assumptions—are unable to produce a priori prediction of hydration kinetics of cement; especially in multicomponent systems, wherein chemical interactions among cement, water, and mineral additives occur concurrently. This paper introduces a machine learning-based methodology to enable prompt and high-fdelity prediction of time-dependent hydration kinetics of cement, both in plain and multicomponent (e.g., binary; and ternary) systems, using the system’s physicochemical characteristics as inputs. Based on a database comprising hydration kinetics profles of 235 unique systems—encompassing 7 synthetic cements and three mineral additives with disparate physicochemical attributes—a random forests (RF) model was rigorously trained to establish the underlying composition-reactivity correlations. This training was subsequently leveraged by the RF model: to predict time-dependent hydration kinetics of cement in new, multicomponent systems; and to formulate optimal mixture designs that satisfy user-imposed kinetics criteria.
    [Show full text]
  • 2 Manufacture of Portland Cement Peter Del Strother
    2 Manufacture of Portland Cement Peter del Strother 2.1 RAW MATERIALS FOR CLINKER MANUFACTURE 2.1.1 Chemical Targets for Raw Meal Lime saturation factor (LSF) is a measure of the ratio of limestone to other recipe components, normally expressed as a percentage. LSF ¼ 100∗CaO=ðÞ2:8∗SiO2 +1:18∗Al2O3 +0:65∗Fe2O3 When clinker LSF is 100, the proportion of alite, the principal strength giving calcium silicate, is maximised. In practice clinker LSF is typically in the range 94–98. Clinker LSF depends on the raw meal LSF and the contribution of fuel ash, which is normally low LSF. Silica modulus (SM) and alumina modulus (AM) influence both clinker quality and burnability, the ease with which alite forms in the hottest part of the kiln, the ‘burning zone’. SM ¼ SiO2=ðÞAl2O3 +Fe2O3 AM ¼ Al2O3=Fe2O3 2.1.1.1 Quarried Raw Materials Limestone The fundamental requirement for clinker manufacture is a source of lime (CaO) and sources of silica, alumina and iron oxide. In almost all cases the lime comes primarily from limestone. Limestone is a sedimentary rock composed of the hard parts of once living organisms. If raw material limestone has a LSF of more than about 200 it should not be difficult to devise a recipe with LSF, SM and AM suitable for clinker production. If LSF in limestone is lower than about 200 it becomes harder to find suitable non- calcareous components. Limestone is rarely pure calcium carbonate; deposits often incorporate siliciclastic components, such as silt from rivers or even volcanic ash. Limestone may also contain compounds of zinc, lead and fluorine, for example.
    [Show full text]