Received: 22 November 2019 | Revised: 22 December 2019 | Accepted: 22 December 2019 DOI: 10.1111/jace.16998 SPECIAL ISSUE ARTICLE Structure and lithium-ion mobility in Li1.5M0.5Ge1.5(PO4)3 (M = Ga, Sc, Y) NASICON glass-ceramics Igor d'Anciães Almeida Silva1 | Adriana M. Nieto-Muñoz2 | Ana Candida M. Rodrigues3 | Hellmut Eckert1,4 1São Carlos Institute of Physics, São Paulo University, São Carlos, Brazil Abstract 2Programa de Pós-Graduação em Ciência This work reports structural and lithium-ion mobility studies in NASICON single- 3+ 3+ 3+ e Engenharia de Materiais, Universidade or multiple phase Li1+xMxGe2−x(PO4)3 (M = Ga , Sc , Y ) glass-ceramics using Federal de São Carlos, São Carlos, Brazil solid-state NMR techniques, X-ray powder diffraction, and impedance spectroscopy. 3Departamento de Engenharia de Materiais, X-ray powder diffraction data show the successful incorporation of Ga3+ and Sc3+ Universidade Federal de São Carlos, São 4+ Carlos, Brazil into the Ge octahedral sites of the NASICON structure at the levels of x = 0.5 4Institut für Physikalische Chemie, WWU and 0.4, respectively. The glass-to-crystal transition was further characterized by Münster, Münster, Germany multinuclear NMR and electrical conductivity measurements. Among the studied Correspondence samples, the gallium-containing glass-ceramic presented the highest DC conductiv- Hellmut Eckert, São Carlos Institute of ity, 1.1 × 10−4 S/cm at room temperature, whereas for the Sc-containing samples, the Physics, São Paulo University, 13566-590, maximum room temperature conductivity that could be reached was 4.8 × 10−6 S/ São Carlos, SP, Brazil 4+ 3+ Email:
[email protected] cm.