Interspecies Interaction and Diversity of Green Sulfur Bacteria

Total Page:16

File Type:pdf, Size:1020Kb

Interspecies Interaction and Diversity of Green Sulfur Bacteria Interspecies interaction and diversity of green sulfur bacteria Dissertation der Fakultät für Biologie der Ludwig-Maximilians-Universität München vorgelegt von Johannes Friedrich Müller am 10 Juli 2012 1. Gutachter: Prof. Dr. Jörg Overmann, DSMZ Braunschweig 2. Gutachter: Prof. Dr. Anton Hartmann, LMU München Tag des Promotionskolloquiums: 11.12.2012 „Wer sich Steine zurechtlegen kann, über die er stolpert, hat Erfolg in den Naturwissenschaften.“ Erwin Chargaff, österreichisch.-amerikanischer Biochemiker u. Schriftsteller (1905 - 2002) Publications originating from this thesis Publication 1: Müller, J.F., Wenter, R., Manske, A.K., Sikorski, J., Teeling, H., Garcia-Gil, L.J., Overmann, J. (2012) Biodiversity and phylogeny of the family Chlorobiaceae based on analyses of different genomic regions. (manuscript) Publication 2: Müller, J.F., Overmann, J. (2011) Close interspecies interactions between prokaryotes from sulfureous environments. Front Microbiol 2:146. (review) Publication 3: Müller, J.F., Eisenreich, W., Bunk, B., Liu, Z., Henke, P., McGlynn, S., Wenter, R., Orphan, J.V., Bryant, D.A., Overmann, J. (2012) The complex exchange of metabolites in the phototrophic consortium "Chlorochromatium aggregatum". (manuscript) Contributions of Johannes Müller to this thesis Johannes Müller cultivated the consortia enrichment and the Chlorobium chlorochromatii CaD3T cultures used. He established and performed the magnetic capture experiments. Johannes Müller prepared the samples for isotopologue analysis by incubating the cultures and separating the consortia by cesium density gradient centrifugation. The subsequent analyses were conducted by Dr. Wolfgang Eisenreich. Johannes Müller prepared the central bacterium DNA used for genome analysis carried out by Prof. Dr. Donald A. Bryant and Dr. Zhenfeng Liu by separating the central bacterium from the epibiont by cesium density gradient centrifugation and extracting the DNA. He prepared the cDNA utilized for transcriptome analysis. Bioinformatic analysis of the results was performed together with Boyke Bunk who also processed the transcriptome raw data. Johannes Müller performed the fluorescence recovery after photobleaching (FRAP) analysis with the aid of Andreas Binder. Petra Henke performed the NanoSIMS analysis, Roland Wenter the amino acid excretion profile of the epibiont. Johannes Müller and Jörg Overmann wrote the review. Johannes Müller calculated and constructed the 16S rRNA gene tree of green sulfur bacteria. The phylogenetic trees for the ITS region, the bchg, sigA and fmoA gene sequences of green sulfur bacteria were constructed using the pre-alignments of Ann Manske and Roland Wenter as base material. Johannes Müller also calculated and constructed the concatenated phylogenetic tree. He prepared the sequence alignments for the distance matrix comparison and the pair-wise sequence dissimilarity analysis and calculation of ka and ks values. The respective calculations and figures were supplied by Johannes Sikorski. Johannes Müller performed the coverage and diversity estimates and constructed the world map containing the sampling sites of the sequences used in the 16S rDNA tree. I herby confirm the above statements ________________________ ________________________ Johannes Müller Prof. Dr. Jörg Overmann Contents Chapter 1: Summary………….………….………….………….………….………….……..1 Chapter 2: Introduction………….………….………….………….………….……………..5 2.1 Green sulfur bacteria…………………………………………………………….....5 2.2 Phylogeny of green sulfur bacteria………………………...……………………….6 2.3 Niche formation by biotic interaction…………………….…….………………….9 2.4 Characterization of phototrophic consortia …………………….……………...…11 2.5 "Chlorochromatium aggregatum" as a model system for symbiotic niche formation…………………….…………………….……………………………….…14 2.6 Aims of this study…………………….…………………….…………………….17 Chapter 3: Experimental procedures…………………….……………………...…………24 3.1 Experimental procedures for phylogenetic analysis of green sulfur bacteria…….24 Cultures of green sulfur bacteria …………………….………………………24 DNA-extraction from cultures and water samples ………………..……….…24 Standard conditions for PCR…………………….………………………...….24 Amplification of 16S rRNA gene sequences………….………….……...…….25 PCR and cloning of the 16S-23S rRNA intergenic spacer (ITS) region………27 Primer design and PCR for group 1 70-type sigma factor gene sequences (sigA) ………….………….………….………….……………...…27 BchG gene sequences………….………….………….………….………...….28 FmoA gene sequences………….………….………….………….……...…….28 Sequencing of PCR products………….………….………….………….….…28 Phylogenetic trees………….………….………….………….……………….28 Concatenated phylogenetic tree………….………….………….………….…29 Distance matrix comparisons (Mantel test) ………….………….…..……….29 Coverage and diversity estimates………….………….………….……...……30 Pair-wise sequence dissimilarity analysis and calculation of ka and ks values………….………….………….………….………….…………………30 Map of sampling sites………….………….………….………….……………30 Nucleotide accession numbers………….………….………….………..…….31 3.2 Experimental procedures to investigate the molecular basis of the interspecies interaction in “C. aggregatum” …………………….………...……31 Bacterial cultures and growth conditions…………………….………………31 Probes…………………….…………………….…………………………….31 Nanoscale secondary ion mass spectrometry (NanoSIMS) …………………32 Magnetic bead separation of 14C - labeled RNA…………………………….33 Cell counting…………………….…………………….……………….…….35 Fluorescence-Recovery-After-Photobleaching (FRAP)-analysis……………36 Sample preparation for Isotopolomics…………………….…………………36 Hydrolysis of cellular protein and silylation of the resulted amino acids......37 Gas chromatography - mass spectrometry (GC/MS) ………………………..37 Genome analysis…………………….…………………….…………….……39 In silico subtractive hybridization …………………….…………………...…39 Transcriptome analysis…………………….…………………….……...……40 HPLC analysis of amino acid excretion…………………….…………...……41 Chapter 4: Results………….………….………….………….………….………….….……47 4.1 Results of the phylogenetic analysis………….………….………….………...….47 16S rRNA gene sequence tree of GSB ………….………….……………...….47 Comparison of the concatenated tree with the 16S rDNA gene tree………….48 Distance matrix comparisons (Mantel test) ………….………….………..….51 Coverage and diversity estimates………….………….………….………..….51 Pair-wise sequence dissimilarity analysis and calculation of ka and ks values………….………….………….………….………….………...…....52 World map of sampling sites………….………….………….………….….…54 4.2 Results for the investigation of the molecular basis of the interspecies interaction in “C. aggregatum” ………….………….………….………………...56 Transfer of 14C with magnetic bead capture………….………….……...……56 NanoSIMS analysis ………….………….………….………….………..…….60 Isotopolome analysis………….………….………….………….…………….60 Excretion of amino acids by epibiont cells………….…………..….…………64 Fluorescence-Recovery-After-Photobleaching (FRAP) analysis…………..…65 Genome analysis………….………….………….………….…………………66 In silico subtractive hybridization ………….………….………….……….…76 Transcriptome analysis 77 Chapter 5: Discussion……………………………………………………………………….88 5.1 Phylogeny of the green sulfur bacteria………….…………………….……….….88 5.1.1 Diversification of green sulfur bacteria………….……………….….………….90 5.1.2 Analysis of the marker genes and the ITS region…………...………….………93 5.1.3 Future sequencing of green sulfur bacterial strains………….…………….……95 5.2 Molecular basis of the symbiosis in the phototrophic consortium “C. aggregatum” ………….………….………….………….………….………..……96 5.2.1 Transfer of metabolites from the epibiont to the central bacterium…………….96 5.2.2 Mechanisms of metabolite exchange………….………….………………..….101 5.2.3 Dependence of the central bacterium on the epibiont………….……..……….103 5.2.4 Evidence of metabolite transfer from the central bacterium to the epibiont…..105 5.2.5 Implications for the origin of phototrophic consortia………….…………..….105 5.2.6 Features of the epibiont that relate to symbiosis………….………………..….107 5.3 Conclusions………….………….………….………….………….………..……111 Ι. Danksagung ………….………….………….………….………….………….…….……123 II. Curriculum vitae ………….………….………….………….………….…………...….125 III. Supplementary material………….………….………….………….……….…...……127 Summary Chapter 1 Chapter 1 Summary The following work is shedding light on the phylogenetic classification on the family of the Chlorobiacea, the members of which are showing signs of preadaptation to symbiosis. Symbioses consisting of purely prokaryotic associations between phylogenetically distinct bacterial species have been widely documented. Only few are available as a laboratory culture to elucidate the molecular basis of their interaction. One of these few model organisms is the phototrophic consortium “Chlorochromatium aggregatum”. It consists of 12-20 green sulfur bacteria epibionts surrounding a central, Betaproteobacterium in a highly ordered fashion. The phototrophic partner bacterium, belonging to the green sulfur bacteria, is available in pure culture and its physiology has been studied in detail. In this work, novel insights into the physiology of the central bacterium that was previously uncharacterized are provided. The family of the Chlorobiaceae represents a phylogenetically coherent and isolated group within the domain Bacteria. Green sulfur bacteria are obligate photolithoautotrophs that require highly reducing conditions for growth and can utilize only a very limited number of carbon substrates. These bacteria thus inhabit a very narrow ecologic niche. For the phylogenetic studies on green sulfur bacteria, 323 16S rRNA gene sequences, including cultured species as well as environmental sequences were analysed. By rarefaction analysis and statistical projection, it
Recommended publications
  • New Opportunities Revealed by Biotechnological Explorations of Extremophiles - Mircea Podar and Anna-Louise Reysenbach
    BIOTECHNOLOGY – Vol .III – New Opportunities Revealed by Biotechnological Explorations of Extremophiles - Mircea Podar and Anna-Louise Reysenbach NEW OPPORTUNITIES REVEALED BY BIOTECHNOLOGICAL EXPLORATIONS OF EXTREMOPHILES Mircea Podar and Anna-Louise Reysenbach Department of Biology, Portland State University, Portland, OR 97201, USA. Keywords: extremophiles, genomics, biotechnology, enzymes, metagenomics. Contents 1. Introduction 2. Extremophiles and Biomolecules 3. Extremophile Genomics Exposing the Biotechnological Potential 4. Tapping into the Hidden Biotechnological Potential through Metagenomics 5. Unexplored Frontiers and Future Prospects Acknowledgements Glossary Bibliography Biographical Sketches Summary Over the past few decades the extremes at which life thrives has continued to challenge our understanding of biochemistry, biology and evolution. As more new extremophiles are brought into laboratory culture, they have provided a multitude of new potential applications for biotechnology. Furthermore, more recently, innovative culturing approaches, environmental genome sequencing and whole genome sequencing have provided new opportunities for biotechnological exploration of extremophiles. 1. Introduction Organisms that live at the extremes of pH (>pH 8.5,< pH 5.0), temperature (>45°C, <15°C), pressure (>500 atm), salinity (>1.0M NaCl) and in high concentrations of recalcitrant substances or heavy metals (extremophiles) represent one of the last frontiers for biotechnological and industrial discovery. As we learn more about the
    [Show full text]
  • The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio In
    microorganisms Review The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease Spase Stojanov 1,2, Aleš Berlec 1,2 and Borut Štrukelj 1,2,* 1 Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; [email protected] (S.S.); [email protected] (A.B.) 2 Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia * Correspondence: borut.strukelj@ffa.uni-lj.si Received: 16 September 2020; Accepted: 31 October 2020; Published: 1 November 2020 Abstract: The two most important bacterial phyla in the gastrointestinal tract, Firmicutes and Bacteroidetes, have gained much attention in recent years. The Firmicutes/Bacteroidetes (F/B) ratio is widely accepted to have an important influence in maintaining normal intestinal homeostasis. Increased or decreased F/B ratio is regarded as dysbiosis, whereby the former is usually observed with obesity, and the latter with inflammatory bowel disease (IBD). Probiotics as live microorganisms can confer health benefits to the host when administered in adequate amounts. There is considerable evidence of their nutritional and immunosuppressive properties including reports that elucidate the association of probiotics with the F/B ratio, obesity, and IBD. Orally administered probiotics can contribute to the restoration of dysbiotic microbiota and to the prevention of obesity or IBD. However, as the effects of different probiotics on the F/B ratio differ, selecting the appropriate species or mixture is crucial. The most commonly tested probiotics for modifying the F/B ratio and treating obesity and IBD are from the genus Lactobacillus. In this paper, we review the effects of probiotics on the F/B ratio that lead to weight loss or immunosuppression.
    [Show full text]
  • Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide
    antioxidants Review Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide Ivan Kushkevych 1,* , Veronika Bosáková 1,2 , Monika Vítˇezová 1 and Simon K.-M. R. Rittmann 3,* 1 Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] (V.B.); [email protected] (M.V.) 2 Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic 3 Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Vienna, Austria * Correspondence: [email protected] (I.K.); [email protected] (S.K.-M.R.R.); Tel.: +420-549-495-315 (I.K.); +431-427-776-513 (S.K.-M.R.R.) Abstract: Hydrogen sulfide is a toxic compound that can affect various groups of water microorgan- isms. Photolithotrophic sulfur bacteria including Chromatiaceae and Chlorobiaceae are able to convert inorganic substrate (hydrogen sulfide and carbon dioxide) into organic matter deriving energy from photosynthesis. This process takes place in the absence of molecular oxygen and is referred to as anoxygenic photosynthesis, in which exogenous electron donors are needed. These donors may be reduced sulfur compounds such as hydrogen sulfide. This paper deals with the description of this metabolic process, representatives of the above-mentioned families, and discusses the possibility using anoxygenic phototrophic microorganisms for the detoxification of toxic hydrogen sulfide. Moreover, their general characteristics, morphology, metabolism, and taxonomy are described as Citation: Kushkevych, I.; Bosáková, well as the conditions for isolation and cultivation of these microorganisms will be presented. V.; Vítˇezová,M.; Rittmann, S.K.-M.R.
    [Show full text]
  • Genomics 98 (2011) 370–375
    Genomics 98 (2011) 370–375 Contents lists available at ScienceDirect Genomics journal homepage: www.elsevier.com/locate/ygeno Whole-genome comparison clarifies close phylogenetic relationships between the phyla Dictyoglomi and Thermotogae Hiromi Nishida a,⁎, Teruhiko Beppu b, Kenji Ueda b a Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan b Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan article info abstract Article history: The anaerobic thermophilic bacterial genus Dictyoglomus is characterized by the ability to produce useful Received 2 June 2011 enzymes such as amylase, mannanase, and xylanase. Despite the significance, the phylogenetic position of Accepted 1 August 2011 Dictyoglomus has not yet been clarified, since it exhibits ambiguous phylogenetic positions in a single gene Available online 7 August 2011 sequence comparison-based analysis. The number of substitutions at the diverging point of Dictyoglomus is insufficient to show the relationships in a single gene comparison-based analysis. Hence, we studied its Keywords: evolutionary trait based on whole-genome comparison. Both gene content and orthologous protein sequence Whole-genome comparison Dictyoglomus comparisons indicated that Dictyoglomus is most closely related to the phylum Thermotogae and it forms a Bacterial systematics monophyletic group with Coprothermobacter proteolyticus (a constituent of the phylum Firmicutes) and Coprothermobacter proteolyticus Thermotogae. Our findings indicate that C. proteolyticus does not belong to the phylum Firmicutes and that the Thermotogae phylum Dictyoglomi is not closely related to either the phylum Firmicutes or Synergistetes but to the phylum Thermotogae. © 2011 Elsevier Inc.
    [Show full text]
  • Limits of Life on Earth Some Archaea and Bacteria
    Limits of life on Earth Thermophiles Temperatures up to ~55C are common, but T > 55C is Some archaea and bacteria (extremophiles) can live in associated usually with geothermal features (hot springs, environments that we would consider inhospitable to volcanic activity etc) life (heat, cold, acidity, high pressure etc) Thermophiles are organisms that can successfully live Distinguish between growth and survival: many organisms can survive intervals of harsh conditions but could not at high temperatures live permanently in such conditions (e.g. seeds, spores) Best studied extremophiles: may be relevant to the Interest: origin of life. Very hot environments tolerable for life do not seem to exist elsewhere in the Solar System • analogs for extraterrestrial environments • `extreme’ conditions may have been more common on the early Earth - origin of life? • some unusual environments (e.g. subterranean) are very widespread Extraterrestrial Life: Spring 2008 Extraterrestrial Life: Spring 2008 Grand Prismatic Spring, Yellowstone National Park Hydrothermal vents: high pressure in the deep ocean allows liquid water Colors on the edge of the at T >> 100C spring are caused by different colonies of thermophilic Vents emit superheated water (300C or cyanobacteria and algae more) that is rich in minerals Hottest water is lifeless, but `cooler’ ~50 species of such thermophiles - mostly archae with some margins support array of thermophiles: cyanobacteria and anaerobic photosynthetic bacteria oxidize sulphur, manganese, grow on methane + carbon monoxide etc… Sulfolobus: optimum T ~ 80C, minimum 60C, maximum 90C, also prefer a moderately acidic pH. Live by oxidizing sulfur Known examples can grow (i.e. multiply) at temperatures which is abundant near hot springs.
    [Show full text]
  • The Genome of Nanoarchaeum Equitans: Insights Into Early Archaeal Evolution and Derived Parasitism
    The genome of Nanoarchaeum equitans: Insights into early archaeal evolution and derived parasitism Elizabeth Waters†‡, Michael J. Hohn§, Ivan Ahel¶, David E. Graham††, Mark D. Adams‡‡, Mary Barnstead‡‡, Karen Y. Beeson‡‡, Lisa Bibbs†, Randall Bolanos‡‡, Martin Keller†, Keith Kretz†, Xiaoying Lin‡‡, Eric Mathur†, Jingwei Ni‡‡, Mircea Podar†, Toby Richardson†, Granger G. Sutton‡‡, Melvin Simon†, Dieter So¨ ll¶§§¶¶, Karl O. Stetter†§¶¶, Jay M. Short†, and Michiel Noordewier†¶¶ †Diversa Corporation, 4955 Directors Place, San Diego, CA 92121; ‡Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182; §Lehrstuhl fu¨r Mikrobiologie und Archaeenzentrum, Universita¨t Regensburg, Universita¨tsstrasse 31, D-93053 Regensburg, Germany; ‡‡Celera Genomics Rockville, 45 West Gude Drive, Rockville, MD 20850; Departments of ¶Molecular Biophysics and Biochemistry and §§Chemistry, Yale University, New Haven, CT 06520-8114; and ʈDepartment of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 Communicated by Carl R. Woese, University of Illinois at Urbana–Champaign, Urbana, IL, August 21, 2003 (received for review July 22, 2003) The hyperthermophile Nanoarchaeum equitans is an obligate sym- (6–8). Genomic DNA was either digested with restriction en- biont growing in coculture with the crenarchaeon Ignicoccus. zymes or sheared to provide clonable fragments. Two plasmid Ribosomal protein and rRNA-based phylogenies place its branching libraries were made by subcloning randomly sheared fragments point early in the archaeal lineage, representing the new archaeal of this DNA into a high-copy number vector (Ϸ2.8 kbp library) kingdom Nanoarchaeota. The N. equitans genome (490,885 base or low-copy number vector (Ϸ6.3 kbp library). DNA sequence pairs) encodes the machinery for information processing and was obtained from both ends of plasmid inserts to create repair, but lacks genes for lipid, cofactor, amino acid, or nucleotide ‘‘mate-pairs,’’ pairs of reads from single clones that should be biosyntheses.
    [Show full text]
  • Katalog 2015 Cover Paul Lin *Hinweis Förderung.Indd
    Product List 2015 WE LIVE SERVICE Certificates quartett owns two productions sites that are certified according to EN ISO 9001:2008 Quality management systems - Requirements EN ISO 13485:2012 + AC:2012 Medical devices - Quality management systems - Requirements for regulatory purposes GMP Conformity Our quality management guarantees products of highest quality! 2 Foreword to the quartett product list 2015 quartett Immunodiagnostika, Biotechnologie + Kosmetik Vertriebs GmbH welcomes you as one of our new business partners as well as all of our previous loyal clients. You are now member of quartett´s worldwide customers. First of all we would like to introduce ourselves to you. Founded as a family-run company in 1986, quartett ensures for more than a quarter of a century consistent quality of products. Service and support of our valued customers are our daily businesses. And we will continue! In the end 80´s quartett offered radioimmunoassay and enzyme immunoassay kits from different manufacturers in the USA. In the beginning 90´s the company changed its strategy from offering products for routine diagnostic to the increasing field of research and development. Setting up a production plant in 1997 and a second one in 2011 supported this decision. The company specialized its product profile in the field of manufacturing synthetic peptides for antibody production, peptides such as protease inhibitors, biochemical reagents and products for histology, cytology and immunohistology. All products are exclusively manufactured in Germany without outsourcing any production step. Nowadays, we expand into all other diagnostic and research fields and supply our customers in universities, government institutes, pharmaceutical and biotechnological companies, hospitals, and private doctor offices.
    [Show full text]
  • THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A
    s l a m m a y t T i M S N v I i A e G t A n i p E S r a A C a C E H n T M i THE CASE AGAINST Marine Mammals in Captivity The Humane Society of the United State s/ World Society for the Protection of Animals 2009 1 1 1 2 0 A M , n o t s o g B r o . 1 a 0 s 2 u - e a t i p s u S w , t e e r t S h t u o S 9 8 THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A. Rose, E.C.M. Parsons, and Richard Farinato, 4th edition Editors: Naomi A. Rose and Debra Firmani, 4th edition ©2009 The Humane Society of the United States and the World Society for the Protection of Animals. All rights reserved. ©2008 The HSUS. All rights reserved. Printed on recycled paper, acid free and elemental chlorine free, with soy-based ink. Cover: ©iStockphoto.com/Ying Ying Wong Overview n the debate over marine mammals in captivity, the of the natural environment. The truth is that marine mammals have evolved physically and behaviorally to survive these rigors. public display industry maintains that marine mammal For example, nearly every kind of marine mammal, from sea lion Iexhibits serve a valuable conservation function, people to dolphin, travels large distances daily in a search for food. In learn important information from seeing live animals, and captivity, natural feeding and foraging patterns are completely lost.
    [Show full text]
  • Recombinant Escheichia Coli-Catalyzed Production of Cytidine 5′-Triphosphate from Cytidine 5′-Monophosphate
    J. Ind. Eng. Chem., Vol. 12, No. 5, (2006) 757-761 Recombinant Escheichia coli-Catalyzed Production of Cytidine 5′-Triphosphate from Cytidine 5′-Monophosphate Sun-Gu Lee† and Byung-Gee Kim* Department of Chemical and Biochemical Engineering, Pusan National University, Busan 609-735, Korea *School of Chemical Engineering, and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Korea Received April 24, 2006; Accepted May 22, 2006 Abstract: A recombinant Escherichia coli overexpressing CMP-kinase was constructed and employed as a whole cell biocatalyst for the conversion of cytidine 5′-monophosphate to cytidine 5′-triphosphate. In the whole cell biocatalysis, recombinant CMP kinase catalyzed the conversion of CMP to CDP, and endogenous acetate kinase of the E. coli was utilized for the ATP regeneration as well as for the conversion of CDP to CTP. A conversion yield of ca. 88 % CTP was obtained when starting with 20 mM CMP, 1 mM ATP, and 80 mM acetyl phosphate based on the initial CMP concentration. Endogenous pyruvate kinase and poly- phosphate kinase were inefficient in the process. The CTP production system was applied to the production of CMP-NeuAc by additionally introducing the CMP-NeuAc synthetase gene into the recombinant E. coli. Keywords: CMP-kinase, whole cell biocatalysis, ATP regeneration, cytidine 5′-monophosphate Introduction employing enzymes [4]. They applied various enzymatic 1) methods and chemical methods and concluded that the As glycosyltransferase-catalyzed synthetic techniques enzymatic method based on adenylate kinase/pyruvate are becoming recognized as powerful methods for the kinase provided the most convenient route to CTP. In the preparation of biologically important oligosaccharides, process, CTP was generated efficiently from an inexpen- the development of cost-efficient production methods for sive substrate, CMP.
    [Show full text]
  • Metagenomic Insights Into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines
    Lawrence Berkeley National Laboratory Recent Work Title Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines. Permalink https://escholarship.org/uc/item/9xc5s0v5 Journal Frontiers in microbiology, 7(FEB) ISSN 1664-302X Authors Vavourakis, Charlotte D Ghai, Rohit Rodriguez-Valera, Francisco et al. Publication Date 2016 DOI 10.3389/fmicb.2016.00211 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ORIGINAL RESEARCH published: 25 February 2016 doi: 10.3389/fmicb.2016.00211 Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines Charlotte D. Vavourakis 1, Rohit Ghai 2, 3, Francisco Rodriguez-Valera 2, Dimitry Y. Sorokin 4, 5, Susannah G. Tringe 6, Philip Hugenholtz 7 and Gerard Muyzer 1* 1 Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands, 2 Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain, 3 Department of Aquatic Microbial Ecology, Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Ceskéˇ Budejovice,ˇ Czech Republic, 4 Research Centre of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia, 5 Department of Biotechnology, Delft University of Technology, Delft, Netherlands, 6 The Department of Energy Joint Genome Institute, Walnut Creek, CA, USA, 7 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration Edited by: of sodium carbonates in the absence of major divalent cations.
    [Show full text]
  • The Supramolecular Organization of Self-Assembling Chlorosomal Bacteriochlorophyll C, D,Ore Mimics
    The supramolecular organization of self-assembling chlorosomal bacteriochlorophyll c, d,ore mimics Tobias Jochum*†, Chilla Malla Reddy†‡, Andreas Eichho¨ fer‡, Gernot Buth*, Je¸drzej Szmytkowski§¶, Heinz Kalt§¶, David Moss*, and Teodor Silviu Balaban‡¶ʈ *Institute for Synchrotron Radiation, Karlsruhe Institute of Technology, Forschungszentrum Karlsruhe, Postfach 3640, D-76021 Karlsruhe, Germany; ‡Institute for Nanotechnology, Karlsruhe Institute of Technology, Forschungszentrum Karlsruhe, Postfach 3640, D-76021 Karlsruhe, Germany; §Institute of Applied Physics, Karlsruhe Institute of Technology, Universita¨t Karlsruhe (TH), D-76131 Karslruhe, Germany; and ¶Center for Functional Nanostructures, Universita¨t Karlsruhe (TH), D-76131 Karslruhe, Germany Edited by James R. Norris, University of Chicago, Chicago, IL, and accepted by the Editorial Board July 18, 2008 (received for review March 22, 2008) Bacteriochlorophylls (BChls) c, d, and e are the main light-harvesting direct structural evidence from x-ray single crystal structures, the pigments of green photosynthetic bacteria that self-assemble into exact nature of BChl superstructures remain elusive and these nanostructures within the chlorosomes forming the most efficient have been controversially discussed in the literature (1–3, 7, antennas of photosynthetic organisms. All previous models of the 11–17). It is now generally accepted that the main feature of chlorosomal antennae, which are quite controversially discussed chlorosomes is the self-assembly of BChls and that these pig- because no single crystals could be grown so far from these or- ments are not bound by a rigid protein matrix as is the case of ganelles, involve a strong hydrogen-bonding interaction between the other, well characterized light-harvesting systems (1). Small- 31 hydroxyl group and the 131 carbonyl group.
    [Show full text]
  • Découverte D'une Nouvelle Famille De Protéine Kinases Bactériennes
    Découverte d’une nouvelle famille de protéine kinases bactériennes : mécanismes de fonctionnement et rôle cellulaire de YdiB, un archétype chez Baccillus subtilis Hien-Anh Nguyen To cite this version: Hien-Anh Nguyen. Découverte d’une nouvelle famille de protéine kinases bactériennes : mécanismes de fonctionnement et rôle cellulaire de YdiB, un archétype chez Baccillus subtilis. Sciences agricoles. Université de Grenoble, 2012. Français. NNT : 2012GRENV017. tel-00721757 HAL Id: tel-00721757 https://tel.archives-ouvertes.fr/tel-00721757 Submitted on 30 Jul 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE Spécialité : Chimie-Biologie Arrêté ministériel : 7 août 2006 Présentée par Hien-Anh NGUYEN Thèse dirigée par le Dr. Jean-Michel JAULT préparée au sein de l’Institut de Biologie Structurale J.-P. Ebel, et du CEA de Grenoble dans l'École Doctorale Chimie et Sciences du Vivant Découverte d’une nouvelle famille de protéines kinases bactériennes : Mécanisme de fonctionnement et rôle cellulaire de YdiB, un représentant chez B. subtilis Thèse soutenue publiquement le 23 mai 2012 devant le jury composé de : Mme. Patricia DOUBLET Rapporteur Prof.
    [Show full text]